
Abstract— In this paper we propose a method for robust
dense RGB-D SLAM in dynamic environments which detects
moving objects and simultaneously reconstructs the background
structure. Dynamic environments are challenging for visual
SLAM as moving objects can impair camera pose tracking and
cause corruptions to be integrated into the map. While most
methods employ implicit robust penalizers or outlier filtering
techniques in order to handle moving objects, our approach
is to simultaneously estimate the camera motion as well as a
probabilistic static/dynamic segmentation of the current RGB-
D image pair. This segmentation is then used for weighted dense
RGB-D fusion to estimate a 3D model of only the static parts
of the environment. By leveraging the 3D model for frame-
to-model alignment, as well as static/dynamic segmentation,
camera motion estimation has reduced overall drift — as well
as being more robust to the presence of dynamics in the scene.
Demonstrations are presented which compare the proposed
method to comparable state-of-the-art approaches using both
static and dynamic sequences. The proposed method achieves
similar performance in static environments and improved
accuracy and robustness in dynamic scenes.

I. INTRODUCTION

State-of-the-art dense visual SLAM methods can produce

impressive reconstructions of large indoor scenes. These

approaches, however, often rely on certain assumptions such

as the environment being static, the camera moving smoothly

and there being sufficient geometry or texture in the scene for

reliable tracking. We focus specifically on the assumption of

a static scene. Robust operation in the presence of dynamic

elements is an open problem. For example, most odometry

methods perform registration between the current image

and a previous reference and the estimated transformation

between these images is assumed to originate from the

camera motion. Dynamic elements violate this assumption

and can cause failures in pose tracking. In addition, if not

actively detected and segmented, dynamic objects can be

fused into the map which can lead to irreversible corruptions.

This research is supported by the Engineering and Physical Sciences Re-
search Council (EPSRC), as part of the CDT in Robotics and Autonomous
Systems at Heriot-Watt University and The University of Edinburgh, and the
ERC Consolidator Grant 3DReloaded. M. Fallon is supported by a Royal
Society University Research Fellowship.

1School of Engineering & Physical Sciences, Heriot-Watt University, UK.
y.r.petillot@hw.ac.uk

2School of Informatics, University of Edinburgh, UK.
raluca.scona@ed.ac.uk

3Department of Computer Science, Technical University of Munich,
Germany. {jaimez, cremers}@in.tum.de

4Department of Systems Engineering and Automation, University of
Málaga, Spain. marianojt@uma.es

5Oxford Robotics Institute, University of Oxford, UK.
mfallon@robots.ox.ac.uk

Improving the performance of SLAM in dynamic environ-

ments is an important problem particularly for mobile robots.

It is seldom the case that robots operate in strictly static

environments and such a requirement would significantly

limit the extent to which they could be successfully deployed.

In example applications, co-bots such as the Rethink Baxter

carry out assembly tasks among moving equipment and

infrastructure. Mobile service robots face similar challenges,

as their environments are also inhabited by people.

In this work we address this problem by jointly estimating

the motion of an RGB-D camera and segmenting the scene

it observes into static and dynamic parts. Camera tracking is

performed by aligning incoming frames with a dense surfel-

based model of the environment (similarly to ElasticFusion

[1]). By decoupling the static and moving parts, we can build

a background model which fuses only the static elements.

Effective detection and segmentation of moving objects

typically requires temporal feedback or a multi-frame formu-

lation. We demonstrate that background 3D reconstruction

is an efficient way to propagate this temporal information

without incurring significant runtime costs. Also, the result-

ing map is more meaningful in the sense that it only contains

structural elements and the static objects present in the scene.

The contributions of the proposed work are as follows:

• A new formulation to simultaneously estimate the mo-

tion of the camera and to segment the static objects

within the current frame.

• A dense mapping system which fuses only the tempo-

rally consistent data (i.e. it stores useful information of

what was static in the past).

• An extensive evaluation demonstrating that the proposed

algorithm outperforms state-of-the-art solutions in dy-

namic environments and achieves a very competitive

runtime (∼ 30 ms/frame).

The paper is organized as follows. We review state-of-

the-art visual SLAM methods as well as several approaches

which tackle dynamic environments in Section II. Section III

describes the overall structure of our system, with Sections

IV and V giving details about our proposed approaches for si-

multaneous estimation of camera motion and static/dynamic

segmentation and weighted fusion. Section VI states specific

details related to implementation and parameter tuning. We

present our evaluation in Section VII where we compare our

method against related state-of-the-art works. Section VIII

concludes our work and states future directions for research.

The code and the demonstration video can be found here:

http://www.edinburgh-robotics.org/students/raluca-scona

StaticFusion: Background Reconstruction for Dense RGB-D SLAM in
Dynamic Environments

Raluca Scona1,2, Mariano Jaimez3,4, Yvan R. Petillot1, Maurice Fallon5, Daniel Cremers3

II. RELATED WORK

Dense visual SLAM in indoor environments has achieved

significant progress through the emergence of commodity

3D cameras such as the Microsoft Kinect or the Asus Xtion.

A seminal work in this field is KinectFusion [2], the first

system which used RGB-D data to perform real-time dense

tracking and data fusion. The approach used a volumetric

representation of fixed size integrated on a GPU. Ongoing

research has produced systems with impressive performance,

ranging from scalable extensions [3], [4] and loop closure

capabilities [5], [6], to methods which consider run-time

limitations [7], [8] in order to enable 3D scanning and

mapping of large indoor scenes to be as robust and easy

to use as possible.

While most existing approaches focus on scanning static

environments, specific efforts have also been made to in-

crease robustness in dynamic scenes.

Implicit Handling of Dynamic Elements: It is common

to use a robust cost function within the visual odometry front-

end which penalizes the contribution of high-residual points

and implicitly increases the robustness of pose estimation

to un-modeled effects. Gutierrez et al. [9] compare different

robust functions focusing on the quality of the resulting pose

estimate, while Kerl et al. [10][8] demonstrate robustness

to the presence of small moving objects in the scene. These

solutions however are insufficient and fail when moving parts

occupy a significant portion of the image.

Reconstruction-focused approaches, such as ElasticFusion

[1] as well as the method of Keller et al. [4], require that

points be repeatedly observed through consecutive frames

before becoming integrated within the 3D model. Similarly,

in these methods dynamic elements are not explicitly de-

tected and handled, resulting in robustness which is limited

to small motions in the scene.

Outlier Rejection Strategies: A common strategy is to

treat dynamically moving objects as noise which must be

detected and filtered out.

For Keller et al. [4], input points with no close model

correspondence are used to seed a region-growing proce-

dure to segment the current image into static and dynamic

parts. Subsequently, model points which are matched with

dynamic input points are removed from the reconstruction.

This approach can only be demonstrated once a confident

reconstruction of the scene is in place.

Meanwhile, in DTAM [11], which is a monocular dense

mapping system, the authors discard pixels with a pho-

tometric error higher than a specific threshold. For ORB-

SLAM [12], [13] the authors enforce an effective survival-

of-the-fittest strategy which judges the validity of keyframes

and the points used for pose tracking. By being generous

when spawning new keyframes and points within the system

and by enforcing highly conservative culling strategies, they

demonstrate impressive robustness and versatility.

Nevertheless, within these approaches, no spatial or tem-

poral coherence is enforced among the detected dynamic

points between consecutive frames.

Model

Prediction

K-Means

Clustering

Weighted

Fusion

Joint Odometry and

Background Segmentation𝑪 𝝃

𝐶𝐷 , 𝑍𝐷

𝐵𝐷

Next iteration

𝐶𝑀, 𝑍𝑀

Fig. 1: System architecture: the process starts by receiving a new
RGB-D image (CD, ZD) and grouping its pixels into geometric
clusters C. A prediction (CM , ZM) is rendered from the model
and the last pose estimate T (ξ) and used for joint alignment
and background segmentation. Both results are then exploited for
weighted fusion of the static clusters of CD, ZD with the map.

Methods Enforcing Spatial or Temporal Coherence:

Jaimez et al. [14] introduces a joint visual odometry and

scene flow estimation method. Similarly, BaMVO [15] is an

odometry method which reconstructs the environment over

the previous 4 frames by temporal propagation. As both are

frame-to-frame methods, they will incur unbounded drift in

the pose estimate over time. Rünz et al. [16] proposed a

method to reconstruct and track each moving object with a

separate 3D model, being one of the first real-time methods

to perform dense tracking and fusion of multiple objects so

as to explicitly handle dynamics and enforce both spatial and

temporal coherence.

Finally, it is possible to robustify visual SLAM in dynamic

environments through the use of motion priors using inertial

measurement units [17] or a robot’s odometry [18], but for

many use-cases it is attractive to focus on improving the

accuracy of pose tracking and map building using only a

single camera.

III. FRAMEWORK AND NOTATION

We propose a new SLAM system for RGB-D cameras

which focuses on background segmentation and filtering of

dynamic objects in the foreground. This section provides a

general description of its main components (Fig. 1); each

individual component of the algorithm will be described in

detail in the following sections.

The input to our system is a stream of registered RGB-D

images. An RGB-D pair is represented as a colour image

CD : Ω → R
3 and a depth image ZD : Ω → R, where

Ω ⊂ R
2 is the image plane. We also compute an intensity

image ID : Ω→ R from CD for use in the algorithm.

First, every incoming pair (ID, ZD) is segmented into K

geometric clusters C = {Ci, i = 1, ...,K} by applying K-

Means on the 3D coordinates of the scene points (as de-

scribed in [14]). In order to reduce the overall computational

complexity, each cluster is assumed to behave as a rigid body,

which allows us to solve the static/dynamic segmentation

problem cluster-wise as opposed to pixel-wise. This is an

acceptable approximation because we are not interested in

estimating accurate motions of moving objects, but are rather

focused on building a conservative reconstruction of the

static structures in the scene.

Second, an artificial image pair (IM , ZM) is rendered by

placing a virtual camera at the previous camera pose estimate

within the current map of the static scene constructed up to

that point. Given the current images (ID, ZD) and the last

prediction (IM , ZM), our novel step is to jointly obtain the

camera motion ξ ∈ se(3) and a motion-based segmentation

of the scene between the two time instances. Each cluster i

is assigned a score bi ∈ [0, 1] which corresponds to the level

of dynamism: b ≃ 1 corresponds to static clusters, b ≃ 0
to moving clusters and 0 < b < 1 to intermediate levels of

uncertainty.

After the solution to the joint estimation problem is

calculated, the clusters and scores are used to compute a

per-pixel segmentation image BD for each point belonging

to the background, which, together with the current colour

and depth images (CD, ZD), is used for weighted 3D fusion.

IV. JOINT ESTIMATION OF THE CAMERA MOTION AND

THE SCENE SEGMENTATION

To estimate these two joint properties, we propose a new

formulation based on the minimization of two energy terms:

min
ξ,b
{D(ξ, b) + S(b)} s.t. bi ∈ [0, 1] ∀i (1)

where b represents the full set of scores. The term D(ξ, b)
encodes direct image alignment by enforcing photometric

and geometric consistency only for pixels that belong to

static clusters. The second term S(b) complements D(ξ, b)
by forcing clusters to be segmented as dynamic when their

residuals are very high, and vice versa. It also includes spatial

regularization to encourage a smooth segmentation of the

clusters, and exploits prior geometric knowledge to help the

optimization converge to the correct minimum. Next, we

present the formulation of D(ξ, b) and S(b) and describe

how the overall minimization problem is tackled.

A. Camera Motion

For every new RGB-D pair, the incremental motion of

the camera is computed by minimizing the geometric and

photometric reprojection errors between the current RGB-D

image and the last prediction obtained from the map. The

respective reprojection errors (or residuals) are defined as:

r
p
Z(ξ) = ZM (W(xp, ξ))−

∣

∣T (ξ)π−1(xp, ZD(xp))
∣

∣

z
(2)

r
p
I (ξ) = IM (W(xp, ξ))− ID(xp) , (3)

where xp ∈ Ω represents the coordinates of a given pixel p

and |•|z denotes the z-coordinate of a 3D point. The function

π : R
3 → R

2 projects 3D points onto the image plane

according to the camera’s pinhole model. T (ξ) ∈ SE(3) is

the homogeneous transformation associated to the twist ξ.

The warping function is given by:

W(xp, ξ) = π(T (ξ)π−1(x, ZD(xp))) . (4)

Similar procedures for minimizing these residuals are de-

scribed in [14], [19].

𝑏 ↑↑ 𝑟

𝐹(𝑟)
𝑐−𝑐 Ƹ𝑐− Ƹ𝑐

𝑏 ↑↑ 𝑏 ↓↓𝑏 ↓↓
Fig. 2: Cauchy robust penalty and the different regions defined to
distinguish between the clusters that are likely to be static (b ↑↑)
or dynamic (b ↓↓).

The novelty of our formulation is to weight these residuals

with the scores b so that only residuals associated to static

parts of the scene have a high contribution:

D(ξ, b) =
N
∑

p=1

bi(p)

[

F (wp
Zr

p
Z(ξ)) + F (αIw

p
Ir

p
I (ξ))

]

, (5)

where N is the overall number of pixels and bi(p) refers

to the score of the cluster i containing p. As the geometric

and intensity terms compute errors with different units, the

parameter αI re-scales the intensity term so that it has

a comparable effect in scale as the geometric term. The

function F (r) is the Cauchy robust penalty:

F (r) =
c2

2
log

(

1 +
(r

c

)2
)

, (6)

where c represents the inflection point of F (r) and controls

how robustly residuals are minimized. Lastly, wZ and wI

weight the photometric and geometric residuals according to

the noise of the measurements (σZ and σI) and also penalize

occlusions and discontinuities observed through high spatial

or temporal gradients:

wZ =
1

kZσ σ
2
Z + |∇xZD|+ |ZD − ZM |

, (7)

wI =
1

kIσσ
2
I + |∇xID|+ |ID − IM |

. (8)

In (7) and (8), the parameters kZσ and kIσ control the relative

importance of the noise against the derivatives.

B. Static / Dynamic Segmentation

The objective of the second term in (1) is to classify

clusters with average high residuals as dynamic and those

with low residuals as static. The underlying idea is that

clusters with high residuals are the ones whose relative

motion with respect to the camera does not coincide with

the camera motion itself. In order to implement this concept

we must quantify what a ‘high residual’ is.

Our assumption is that large residuals correspond to those

significantly higher than the parameter c, i.e. those lying

on the flatter sides of the function F (r) (see Fig. 2).

The following term sets this threshold within the overall

minimization problem:

SD(b) =
K
∑

i=1

2(1− bi)F (ĉ)Ki (9)

The total number of pixels in each cluster i is represented

by Ki, and ĉ > c is a heuristically selected threshold which

defines the frontier between low and high residuals. The

combination of this term with (5) basically encourages bi to

be as low as possible (to a minimum of 0) when the average

residual of cluster i is higher than ĉ; otherwise it favours

high values of bi (to a maximum of 1).

Furthermore, we include a regularization term that encour-

ages contiguous clusters to have a similar score:

SR(b) = λR

K
∑

i=1

K
∑

j=i+1

Gij (bi − bj)
2
. (10)

In (10), Gij is a connectivity map: it is equal to 1 when

clusters i and j are contiguous in space and it is 0 otherwise.

The parameter λR weights SR(b) with respect to the other

terms.

Lastly, we add a geometric constraint that exploits the

fact that moving objects do not appear in our map and

therefore the depth differences between ZD and ZM will

be significantly high for moving clusters. This constraint is

expressed as a segmentation prior:

SP (b) = λP

K
∑

i=1

(

bi − bPi
)2

(11)

with

bPi = 1− kp

∑Ki

k=1|ZD(xk)− ZM (xk)|

Ki

, (12)

where kp controls how high depth differences should be

to enforce a dynamic scoring and λP is the parameter

that weights this constraint within the overall optimization.

Admittedly, (11) has some degree of redundancy with (5),

however, (12) computes depth differences directly without

any pre-weighting as do (7) and (8). This provides additional

evidence of the presence of moving objects.

The three terms described above only depend on b. For

the sake of clarity we group them into the combined term

S(b) which is used in (1):

S(b) = SD(b) + SR(b) + SP (b) . (13)

C. Solver

Since (1) involves direct image alignment, the whole

minimization problem must be solved within a coarse-to-

fine scheme. This implies building a pyramid of images

and aligning them from the coarsest to the finest level.

The segmentations obtained at the intermediate levels of the

pyramid are stored and used to initialize the solver at the

following level, thus allowing the algorithm to converge to

the right segmentation at the different levels of the pyramid.

At each level, the term D(ξ, b) is nonlinear and non-

convex with respect to ξ. However, the combined optimiza-

tion problem is convex and can be solved analytically with

respect to b. Therefore, we use iteratively re-weighted least

squares (IRLS) to minimize (1) with respect to the camera

motion ξ and obtain the close-form solution for b after

every iteration of the IRLS algorithm. Decoupling ξ from b

within the solver allows us to compute the solution for each

efficiently, while the tight alternation of those two steps leads

to good rate of convergence.

V. SURFEL-BASED 3D RECONSTRUCTION

The 3D model is represented as an unordered list of

surfels, as described in the work of Keller et al. [4] and

made available through the open-source implementation of

Whelan et al. [1]. A surfel is a 3D disk, with associated

position and normal p,n ∈ R
3, colour c ∈ N

3, radius

r ∈ R, viability w ∈ [0, 1] (where w → 1 means viable),

initialization timestamp t0, timestamp of latest update t and

counter h ∈ N representing the number of times the surfel

has been updated.

At every timestep, our system takes as input the last

RGB-D pair (CD, ZD) as well as the per-pixel segmentation

image BD of each point belonging to the background. We

maintain a fused colored model for visualization purposes

but convert to intensity when rendering an image prediction.

We follow the same approach as [1], [4] for pre-processing

and data association. The difference is we propose a strategy

which judges the viability of each surfel in order to enable

the model to remove those surfels that are matched with

dynamic input points. Our fusion approach is listed in

Algorithm 1 and explained below.

A. Surfel Viability

A surfel is considered viable if it is repeatedly observed

and matched with static input points. These conditions ensure

that a viable surfel is both not spurious and static. Only in

this case do we impose that w → 1. To achieve this, each

new surfel is introduced into the model with low viability

w → 0. On subsequent observations, w is updated through

a running sum of the log-odds probabilities of matching

input points. This strategy is suitable to our application as

viability only increases through repeated matches with static

points (Bi
D > 0.5) and automatically decreases with dynamic

matches (Bi
D < 0.5):

sign

(

ln

(

w

1− w

))

=











−1 if w < 0.5

0 if w = 0.5

1 otherwise

. (14)

B. Fusion

During fusion, a weighted average scheme is used to

update a surfel’s position, color and normal. Besides BD,

we employ two additional weights to represent the quality

of each input point:

1) For each pixel i, a Gaussian weight γi
D ∈ [0, 1] biasing

in favor of points close to the central pixel xc [4]:

γi
D = exp

(

−
||xi − xc||

2σ2||xc||

)

. (15)

2) A velocity weight vD ∈ [0, 1] biasing in favor of points

seen during slow motion:

vD = max

(

1−
1−max(||ξ||, 0.15)

0.15
, 0.5

)

. (16)

Algorithm 1: Weighted Surfel Fusion

Input: CD, ZD, BD

sD ← generate input surfels();
foreach siD do

skM ← search for model correspondence();
if skM found then

compute weights(γi
D, vD) ;

//Compute input viability

wi
D ← min(Bi

D, γi
D, viD);

//Truncate to avoid early saturation

wi
M ← max(0.01,min(0.99, wi

M));
wi

D ← max(0.01,min(0.53, wi
D));

//Update position, colour and normal

through weighted average scheme

ki
M ←

hi
Mwi

Mki
M + wi

Dki
D

hi
Mwi

M + wi
D

;

∀k ∈ {p, c,n};

//Update viability by sum of log-odds

l← ln

(

wk
M

1− wk
M

)

+ ln

(

wi
D

1− wi
D

)

;

wk
M ← 1−

1

1 + exp(l)
;

//Update history counter

hk
M ← hk

M + 1;

else

if Bi
D > 0.5 then
//Add new surfels

wi
D ← α where α→ 0;

hi
D ← 1;

While the first term weighs points based on the assumption

that measurements closer to the camera center are more ac-

curate, the second penalizes the influence of points recorded

during fast motion which would introduce blur within the

model.

C. Surfels Removal

Finally, a cleaning stage removes surfels for which w <

0.5 for more than 10 consecutive frames. We also perform

free-space violation checks to remove points remaining in

front of viable surfels. This ensures that dynamic objects and

noisy measurements are removed from the map and a clean

representation of the environment structure is maintained in

the long term.

VI. IMPLEMENTATION DETAILS

A. Initialization

As we rely on a map for both odometry and static/dynamic

segmentation of the scene, we require an initialization stream

to generate the first reliable map. The initial frames (first 1-

2 seconds) observed by the system should contain no more

than 20-30% of moving elements in order to allow for a

successful initialization of the map.

Our current formulation starts by aligning the first two

RGB-D pairs read from the camera following the same

procedure described in Section IV. By solving (1) we also

obtain a segmentation of the last image (BD) that we use

to generate the first instance of the map. After this first step

the algorithm always aligns the incoming RGB-D pairs with

the last prediction obtained from the map.

B. Analyzing and processing residuals

Among the parameters presented in Section IV, the most

important ones are c and ĉ (see Fig. 2). The parameter c is

commonly chosen as a linear function of the median or the

median absolute deviation (MAD) of the residuals [9], [20].

Since this metric is computationally expensive, we sacrifice

accuracy and compute the mean (r̄) of the residuals instead:

r̄ =
1

2N

N
∑

p=1

|wp
Zr

p
Z(ξ)|+ |αIw

p
Ir

p
I (ξ)| . (17)

Note that r̄ actually represents the mean of the pre-weighted

residuals. This computation is performed before each itera-

tion of the IRLS solver described in Section IV-C (for the

first iteration ξ is assumed to be null). Afterwards, to provide

robust estimates we set c = 0.5 r̄.

On the other hand, for ĉ we select a lower value in order

to segment out dynamic parts more aggressively. The reason

to do that is that false positives (static regions segmented as

dynamic) are preferable to false negatives (dynamic regions

segmented as static). Moreover, we set this threshold to be

even lower during the initialization phase to be sure that the

initial map is built only using static parts of the scene:

ĉ =

{

max(rmin, r̄) During initialization

1.5max(rmin, r̄) Otherwise
. (18)

The variable rmin sets the minimum residual value below

which clusters should always be segmented as static. When

images are perfectly aligned the mean residual c̄ is very low

and the threshold 1.5 c̄ would also be very low, which would

lead to having static clusters segmented as being dynamic —

irrespective of how precise the alignment is. The introduction

of rmin solves this problem.

VII. EVALUATION

We perform a thorough evaluation of our approach in

static and dynamic environments. First, results are presented

for several sequences of the Freiburg dataset [21]. This

dataset has a ground truth of the camera trajectory, which

allows us to measure both relative and absolute drift. The

Freiburg dataset contains a small number of sequences with

high dynamics and, for that reason, we include additional

sequences recorded with a hand-held camera to provide a

more general evaluation with varied scenes and also on

longer trajectories.

Trans. RPE RMSE (cm/s) Rot. RPE RMSE (deg/s)
Sequence VO-SF EF CF BaMVO SF VO-SF EF CF BaMVO SF

fr1/xyz 2.1 1.9 2.3 – 2.3 1.00 0.91 1.34 – 1.42
Static fr1/desk 3.7 2.9 9.0 – 3 1.77 1.48 4.49 – 2.17
Env. fr1/desk2 5.4 7.2 9.2 – 5 2.45 4.07 4.79 – 3.39

fr1/plant 6.1 5.0 8.9 – 10.4 2.00 1.58 3.02 – 3.16

Low
Dynamic

Env.

fr3/sit static 2.4 0.9 01.1 2.4 1.1 0.71 0.30 0.44 0.69 0.43
fr3/sit xyz 5.7 1.6 2.7 4.8 2.8 1.44 0.59 1.00 1.38 0.92

fr3/sit halfsphere 7.5 17.2 3.0 5.8 3.0 2.98 4.56 1.92 2.88 2.11

High
Dynamic

Env.

fr3/walk static 10.1 26.0 22.4 13.3 1.3 1.68 4.77 4.01 2.08 0.38

fr3/walk xyz 27.7 24.0 32.9 23.2 12.1 5.11 4.79 5.55 4.39 2.66

fr3/walk halfsphere∗ 24.8 16.3 31.1 – 5 5.49 5.70 8.45 – 2.18

fr3/walk halfsphere 33.5 20.5 40.0 17.3 20.7 6.69 6.41 13.02 4.28 5.04

TABLE I: Relative Pose Error

Trans. ATE RMSE (cm)
Sequence VO-SF EF CF SF

fr1/xyz 5.1 1.2 1.4 1.4
Static fr1/desk 5.6 2.1 17.7 2.3
Env. fr1/desk2 17.4 5.7 16.8 5.2

fr1/plant 7.8 5.3 12.6 11.3

Low
Dynamic

Env.

fr3/sit static 2.9 0.8 1.1 1.3
fr3/sit xyz 11.1 2.2 2.7 4.0

fr3/sit halfsphere 18.0 42.8 3.6 4.0

High
Dynamic

Env.

fr3/walk static 32.7 29.3 55.1 1.4

fr3/walk xyz 87.4 90.6 69.6 12.7

fr3/walk halfsphere∗ 48.2 48.6 75.6 6.3

fr3/walk halfsphere 73.9 63.8 80.3 39.1

TABLE II: Absolute Trajectory Error

We compare the accuracy of our method, StaticFusion

(SF), against related state-of-the art approaches:

1) The joint visual odometry and scene flow of Jaimez et

al. [14] (VO-SF). As an odometry method designed for

dynamic scenes, a comparison is useful to investigate the

benefits of reconstructing a 3D model of the static scene.

2) ElasticFusion [1] (EF) in order to investigate the per-

formance of a state-of-the-art method designed for static

environments within dynamic scenes.

3) Co-Fusion [16] (CF), as it is a state-of-the-art approach

for tracking and reconstructing multiple moving objects.

4) The background model-based visual odometry of Kim et

al. [15] (BaMVO), which is conceptually related to our

approach but uses a multi-frame strategy instead of frame-

to-model alignment. Since we were unable to replicate

the published results using the open-source release of

this method, we only include numerical results for the

sequences evaluated in the original publication.

The experiments were performed on a workstation with an

Intel(R) Core(TM) i7-3770 CPU at 3.40GHz and a GeForce

GTX 1070 GPU using the Ubuntu 16.04 operating system.

We used registered RGB-D images and maintained default

parameters for the methods we compare against. Regarding

the image resolution, we use QVGA (320 × 240) and keep

the default resolution of the other methods included in the

comparison (VO-SF, BaMVO also use QVGA, the remaining

ones work with VGA).

A. Quantitative Evaluation

Regarding the accuracy of pose estimation, evaluation is

performed through the metrics proposed by Sturm et al. [21]:

• Translational and rotational relative pose error (RPE) to

measure the average local drift per second.

• Translational absolute trajectory error (ATE) to measure

the global quality of the trajectory.

For completeness, sequences recorded in static, low dy-

namic and high dynamic scenes are included within this

evaluation. Results are listed in Tables I and II. It can be

seen that StaticFusion’s performance in static environments

is comparable to that of ElasticFusion regarding both ATE

and RPE criteria. Table II demonstrates the advantage of

frame-to-model alignment strategies over odometry methods

in reducing overall drift. In highly dynamic sequences, our

system outperforms the other approaches for the following

reasons:

• EF is not designed to handle dynamics in the scene. Thus,

moving objects corrupt its 3D reconstruction and, in turn,

its pose estimate.

• VO-SF and BaMVO are odometry-based methods which

cannot recover from poor alignment or segmentation.

• CF works well for slow camera motions but its per-

formance deteriorates noticeably when the speed of the

camera increases.

As mentioned in Section VI, StaticFusion requires sequences

with limited dynamics during the initialization stage of

the model and for this reason it produces high errors on

fr3/walking halfsphere. We include the additional sequence

fr3/walking halfsphere*, which skips the initial 5 seconds

with high dynamics, in order to illustrate the ability of the

method to perform well for that same scene when the initial

frames are not so challenging (note that the other methods

still fail in this case).

In order to illustrate how our background model handles

moving objects, Fig. 3 shows the temporal evolution of the

map built during the sequence fri3/walking static. It can be

seen that the map evolves to reflect changes in the scene. It

efficiently removes moving parts, keeping only the structure

which represents a valuable prior for accurate segmentation

of dynamics.

B. Qualitative Evaluation with a Hand-held Camera

In this section we evaluate our approach in scenes with

varying levels of dynamism. To this end, we have recorded

two sequences with a hand-held RGB-D camera. In the

A B C D

Fig. 3: Top: The background reconstruction evolves to reflect changes in the scene. Bottom: Corresponding RGB image (left) and
computed segmentation (right) for each instance, where red means dynamic and blue means static. Between (A) and (C) the model adapts
to remove dynamic objects based on a correct segmentation. The sequence at the instance of (D) contains significant dynamics and the
model provides a valuable prior knowledge of the scene, allowing for correct segmentation and pose estimation.

first sequence the camera observes a person interacting with

objects and performing varied motions at different speeds.

Occasionally the person remains still and close to the camera,

which poses a challenge for the tracking system because it

must be able to segment out the person as soon as they

move in order not to lose track of the sensor. For the second

test we have recorded a ‘selfie sequence’ during which a

person carries the camera while it points at them. This a

very complex test because the person often occupies more

than 50% of the image and looks quasi-static with respect

to the camera (which represents a strong local minimum for

the motion estimate of any method which does not segment

moving parts explicitly).

Results for the first sequence are shown in Fig. 6. It can be

seen that the person is initially inserted in the map because

he does not move, but it is removed as soon as he moves. The

segmentations estimated by StaticFusion are almost perfect

during the whole sequence: the person is always segmented

correctly, as well as the ball and the door when it gets closed.

The second sequence starts and finishes with the camera

at the exact same position (see Fig. 5), which allows us

to measure the overall drift for the full trajectory. It can

be observed that our algorithm is able to provide good

predictions (CM , ZM) even when the person covers most

of the view of the camera. Moreover, it is able to track

the camera accurately, which seems very complicated for

a system based on direct image alignment.

(A) (B)

Fig. 4: (A) shows how ElasticFusion adds the person multiple times
into the map and eventually fails to estimate the camera motion. In
(B) Co-Fusion finds and tracks multiple independent objects which
do not exist (note that the region surrounded by the blue circle is
part of the person as well).

ElasticFusion [1] and Co-Fusion [16] are also tested with

these sequences, and they both fail to provide good pose

estimates. Figure 4 illustrates some of these failures. Figure

4 (A) shows the map reconstructed by ElasticFusion for the

first sequence before it loses track of the camera (note the

double chair and the misaligned walls). Figure 4 (B) shows

how Co-Fusion finds too many moving objects during the

second sequence and randomly keeps track of those parts

of the scene, destroying the overall map. For that sequence,

with an estimated trajectory lenght of 9.5 metres, the final

drift of our method is just 1.5 centimetres, whereas the drifts

of ElasticFusion and Co-Fusion are of 1.03 metres and 0.88

metres respectively.

VIII. CONCLUSIONS

In this paper we have described a new approach to accu-

rately estimate the motion of an RGB-D camera in the pres-

ence of moving objects. It is based on building and exploiting

a 3D background model that only contains static parts of

the scene, hence its name – StaticFusion. Quantitative and

qualitative results demonstrate that our approach outperforms

state-of-the-art techniques when the tested sequences include

several moving objects, and achieves that level of accuracy

with a very competitive runtime (30 milliseconds).

1

2

3

4

3

2

1

4

Fig. 5: Left: trajectory estimated by StaticFusion for the second
experiment in Section VII-B. Right: Some of input images of this
sequence (first column), together with our predictions for those
same views (second column) and the estimated segmentations (third
column).

Start End

Fig. 6: Top: Evolution of the map built during the first sequence of Section VII-B. Bottom: Some of the sample input images and the
segmentations that StaticFusion provides for them.

Given the rising interest in developing visual odometry and

SLAM algorithms that work in very dynamic environments,

in the future we plan to create a new RGB-D dataset for

this purpose. This dataset should contain sequences with

longer trajectories, fast and slow camera motions and varying

degrees of dynamic elements in the scene. Concerning our

approach, we are interested in investigating multi-frame

strategies that allow us to initialize our background model

even when many moving objects are observed. More efficient

strategies to fuse and remove data from the map will also be

explored.

REFERENCES

[1] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. J. Davison, “ElasticFusion: Dense SLAM without a pose graph,”
Robotics: Science and Systems (RSS), 2015.

[2] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
IEEE/ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR),
2011, pp. 127–136.

[3] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions

on Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

[4] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3D reconstruction in dynamic scenes using point-based
fusion,” in International Conference on 3D Television (3DTV), 2013,
pp. 1–8.

[5] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. Leonard, “Kintinuous: Spatially extended KinectFusion,” in RSS

Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
Sydney, Australia, Jul 2012.

[6] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling
of indoor environments,” Intl. J. of Robotics Research, 2012.

[7] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3D mapping in
real-time on a CPU,” in IEEE Intl. Conf. on Robotics and Automation

(ICRA), 2014, pp. 2021–2028.

[8] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D
cameras,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS), 2013, pp. 2100–2106.

[9] D. Gutiérrez-Gómez, W. Mayol-Cuevas, and J. J. Guerrero, “Inverse
depth for accurate photometric and geometric error minimisation in
RGB-D dense visual odometry,” in IEEE Intl. Conf. on Robotics and

Automation (ICRA), 2015, pp. 83–89.
[10] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for

RGB-D cameras,” in IEEE Intl. Conf. on Robotics and Automation

(ICRA), 2013, pp. 3748–3754.
[11] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense

tracking and mapping in real-time,” in Intl. Conf. on Computer Vision

(ICCV), 2011.
[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a

versatile and accurate monocular SLAM system,” IEEE Transactions

on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
[13] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source

SLAM system for monocular, stereo, and RGB-D cameras,” IEEE

Transactions on Robotics, 2017.
[14] M. Jaimez, C. Kerl, J. Gonzalez-Jimenez, and D. Cremers, “Fast

odometry and scene flow from RGB-D cameras based on geometric
clustering,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2017, pp. 3992–3999.

[15] D. H. Kim and J. H. Kim, “Effective background model-based RGB-D
dense visual odometry in a dynamic environment,” IEEE Transactions

on Robotics, vol. 32, no. 6, pp. 1565–1573, 2016.
[16] M. Rünz and L. Agapito, “Co-fusion: Real-time segmentation, tracking

and fusion of multiple objects,” in IEEE Intl. Conf. on Robotics and

Automation (ICRA), 2017, pp. 4471–4478.
[17] D. H. Kim, S. B. Han, and J. H. Kim, “Visual odometry algorithm

using an RGB-D sensor and IMU in a highly dynamic environment,”
in Proc. Int. Conf. Robot. Intell. Technol. Appl., 2015, pp. 11–26.

[18] R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct visual SLAM
fusing proprioception for a humanoid robot,” IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2017.
[19] M. Jaimez, M. Souiai, J. Stueckler, J. Gonzalez-Jimenez, and D. Cre-

mers, “Motion Cooperation: Smooth piece-wise rigid scene flow from
RGB-D images,” in International Conference on 3D Vision (3DV),
2015, pp. 64–72.

[20] A. Concha and J. Civera, “An evaluation of robust cost functions
for RGB direct mapping,” in European Conference on Mobile Robots

(ECMR), 2015, pp. 1–8.
[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A

benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2012, pp. 573–
580.

