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ABSTRACT 

 

Mock object frameworks are very useful for creating unit tests. However, purely compiled languages lack 

robust frameworks for mock objects. The frameworks that do exist rely on inheritance, compiler directives, 

or linker manipulation. Such techniques limit the applicability of the existing frameworks, especially when 

dealing with legacy code. 

 
We present a tool, StaticMock, for creating mock objects in compiled languages. This tool uses source-to-

source compilation together with Aspect Oriented Programming to deliver a unique solution that does not 

rely on the previous, commonly used techniques. We evaluate the compile-time and run-time overhead 

incurred by this tool, and we demonstrate the effectiveness of the tool by showing that it can be applied to 

new and existing code. 
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1. INTRODUCTION 
 

Unit testing is fundamental to the process of writing quality software. Test Driven Development 

(TDD for short) places such value on the importance of unit testing that we create unit tests first, 

before even one line of code is written [8]. In the past, unit tests were written ad hoc, but a 

collection of techniques have arisen in the eXtreme Programming and TDD communities that 

ease the process of creating worthwhile tests quickly. These techniques focus on isolating a 

section of code, such as a class or method, and strictly controlling the behavior of its surrounding 

environment. Mock objects - objects that have the same interface as the original, but provide no 

behavior [13] - are one such technique, and are the focus of this paper. 

 

While interpreted languages such as Ruby or Java have a wealth of frameworks available [7, 3] 

that provide a toolkit for mock objects, purely compiled languages such as C++ lag behind. This 

is due to the dynamic faculties that interpreted languages can offer. Metaprogramming and 

reflection allow us to inspect and alter both the state and the interface of an object at runtime, and 

are common features of interpreted languages. In compiled languages, such features are absent or, 

if they exist at all, highly limited. This leaves us with a whole class of languages that are deficient 

in the powerful isolating features that mock objects offer. 
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As TDD continues to blossom, the need to bring a robust mock object framework to compiled 

languages also grows. Some attempts have been made, following the approaches laid out in 

Michael Feathers’ seminal work [13]. Google Mocks [16], for example, applies the technique of 

inheritance: mock classes are subclasses of their full featured parents. The original methods are 

overriden and provide the appropriate mock behavior instead. 

 
Other less common approaches have also been taken to solve this issue. Mockator [5, 26] cleverly 

manipulates the order of the link step in compilation, effectively shadowing the original code with 

mocked code. On the other side of the compilation process, a tool such as fff [21] makes use of 

conditional compiler directives. These compiler directives replace original code with the mocked 

code, depending on the state of some value specified at compile time. The replacement is done 

just before the formal compilation process begins. 

 

Unfortunately, the existing solutions introduce challenges that limit their effectiveness. For 

example, the inheritance approach requires code modification. Every method that belongs to the 

interface of that class now must be changed to allow the methods to be be overridden in the child 

mock class. Like most things in engineering, making a method overridable comes with a trade-

off: some overhead must be paid to facilitate this polymorphism [12]. In a performance critical 

system, that price may not be permissible, especially if it is a price paid to aid in unit testing, but 

carries its cost in the production code. Unfortunately, compiled languages tend be used most 

frequently in applications where the demands of performance outweigh other considerations. 

We must also consider the impact introducing child classes with overriden, mocked methods 

requires in a large, legacy code base. For example, consider an application with more than 10 

million lines of code. Modifying each class in such a large system is a non-trivial expenditure of 

time, even if the task is a simple one. An organization may be loathe to open these classes for 

modification, even though the only change is simply marking methods as overridable. 

 

The conditional compiler directive solution has a similar limitation, but worse. Every class that 

needs to be mocked will require some sort of change to incorporate the directives. While no price 

is seen at runtime because the replacement is done at compile time, careful application of these 

directives will require a careful and thorough modification of the code base. Furthermore, the 

compiler directive approach can remove type safety as well as make the code more obfuscated 

[26]. 

 

Finally, the approach that cleverly manipulates the compiler tool itself avoids both the 

performance hit as well as the code maintenance problem. However, it is necessarily limited to 

the compiler that it is manipulating. If compiler the tool is created for is the one and only one that 

is in use in a particular organization for a particular program, then this approach can be 

successful. However, in an environment where different compilers may be used to target different 

platforms (g++ for the various flavors of Linux and Microsoft Visual Studio for Windows, for 

example), then this approach also falls short. The mock framework will only be available in one 

of the multiple targeted environments of the program. Different unit test code must be written for 

environments that have access to the tool versus the environments that do not. 

 

In this work, we use source-to-source compilation avoids these pitfalls. We can take existing 

code, transform it, and output source that is ready for mocking. The original source code remains 

untouched in the baseline, avoiding the risk, time, and tedium of opening them for modification. 
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Importantly, the performance penalty of inheritance is avoided in the actual production code as 

well. 
 

While there are many tools that can perform source-to-source compilation [4, 14], it would be 

beneficial to extend from a bare source-to-source compiler and utilize an approach that closely 

matches the problem of introducing a mock object framework into compiled languages. 
 

The Aspect Oriented Programming (AOP) paradigm can help meet this need. AOP gathers 

together similar logic spread through multiple parts of a codebase into an abstraction called an 

aspect [19]. We use an aspect to intercept all method calls and provide the appropriate mock 

behavior as necessary. The aspect is then woven through the original code through source-to-

source compilation using an aspect weaver, a feature of AOP that merges aspect logic with the 

original source code. 

 

By combining source-to-source compilation with AOP through the aspect weaver, the capability 

to create mock objects can then be introduced at compile time. Source code is modified for the 

unit test driver and left untouched in the main program. We avoid the issues surrounding 

inheritance, compiler directives, and linker manipulation. In our tool, StaticMock, we instead 

provide a strategy for transforming code through AOP to provide a framework for mock objects 

in compiled languages. 

 

In summary, the main contributions of this paper are: 

 

1. Background discussion on mock objects (Section ), source-to-source compilation(Section , and 

Aspect Oriented Programming (Section )  
 

2. Overview of the StaticMock tool (Section )  
 

3. Evaluation of StaticMock (Section ) 4. Discussion of future work and ways to improve 

StaticMock (Section ) 
 

2. MOCK OBJECTS, SOURCE-TO-SOURCE COMPILATION, AND AOP 
 

Before we discuss our tool, we more fully articulate the idea of a mock object. In the TDD 

community, there is some disagreement on the definition of the terms that surround this concept, 

so we clarify our usage of these terms. 

 

We also give an overview of source-to-source compilation, and AOP. We describe how these 

techniques are used with our StaticMock strategy. 

 

2.1.  Mock Objects, Stubs, Seams, And Expectations 
 

Providing a way to use mock objects for compiled languages is the heart of the StaticMock tool. 

In this section we describe mock objects, as well as the related techniques of stubs, seams, and 

expectations. 

 

The term mock object is used to denote an object that is used to ’stand-in’ for a real object [22, 

27]. Mock objects exactly mirror the interface of the real object but provide no implementation. 

In a unit test, the surrounding classes interacting with a Class Under Test (CUT) are typically 
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created as mock objects. This isolates the behavior of the CUT while still allowing us to provide 

all the necessary interacting pieces required to test. Since ”no object is an island” [9], the 

surrounding objects around the CUT form a system that can greatly influence how it behaves. By 

making mock objects that stand in for the surrounding objects, we attain the isolation needed to 

evaluate only the CUT. 

 

Mock objects usually forbid any of their methods from being called. If the mock object receives 

an unexpected method call, then the unit test can be failed. But merely having a mock object 

reject all method calls would not allow us to adequately exercise the CUT. A certain subset of 

method calls should be stubbed. A stubbed method is a method on a mock object that allows a 

call to be made to it without failing the unit test. Furthermore, a stubbed method can be 

configured at run time to return a specific value. This is highly useful: the output of the stubbed 

method may be the input to a method in the CUT. Through configuring the return value, we can 

generate a range of values to that method to ensure the behavior is correct across them. 

 

Besides allowing calls to proceed through a mock object, we also allow a stub to be introduced to 

a real object. Instead of performing the logic within the stubbed method, the method returns 

instantly with the specified return value. In a unit test, this is useful to avoid invoking behavior 

that could be destructive, irreversible, or bothersome. Oneway, permanent changes to a database 

is one example. Calling an external API owned by a different organization that charges per 

invocation is another. In such cases, returning immediately is desirable, and allows us to write 

unit tests that would otherwise be impossible. 

 

Stubs fall into two basic categories: Seams and Expectations. While a seam behaves exactly in the 

manner described above, an expectation extends the power of the stub. An expectation causes a 

unit test to fail if the method was never called by the time the unit test terminates. In other words, 

an expectation is a seam that expects to be called. 

 

A mock object should retain any arguments passed to its stubbed methods for later verification in 

the unit test. All stubs should count the number of calls as well, and fail the test if the stub method 

was called the incorrect number of times. 

 

2.2.   SOURCE TO SOURCE COMPILATION 
 

Source to source compilation translates from one type of source to another. For example, consider 

a class Foo with method Bar() as it exists before source-to-source compilation. This class is 

shown in Figure 1. 
 

 
 

Figure 1: Class Foo Before Source-to-source Compilation 
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Source-to-source compilation gives us the ability to transform the input source code and output 

modified source code as shown in Figure 2. Since we are creating a mock object framework, the 

example compilation injects logic to provide for mock object behavior. The code surrounding the 

bar() method determines at runtime if a particular object instance of Foo is a mock object or a full 

featured object. If the Foo object is a mock object, then the method performs the null behavior 

necessary. If the object is a full featured object, however, it continues on its normal path. 

 
Figure 2: Class Foo After Source-to-source Compilation 

 

2.3.  Aspect Oriented Programming 
 
StaticMock combines Aspect Oriented Programming with source-to-source compilation to create 

mockable objects. The following section describes the key concepts taken from AOP and used in 

the StaticMock tool. 

 

Figure 1 introduced a class Foo with a method Bar(). In source-to-source compilation, logic is 

injected directly around the implementation of the Bar() method (Figure 2). However, with AOP, 

that logic instead becomes an aspect as shown in figure 3. The aspect is merged with those 

methods by the aspect weaver. The weaver performs the role of the source-to-source compiler, 

introducing behavior for creating a mock object around the Bar() method. The original code of 

Foo is preserved and the mocking logic is clearly separated away into its own abstraction. 
 

 
Figure 3: Class Foo and Aspect Mocker 
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Specifically, AOP deals with the idea that there are challenges in computer programming that are 

best thought of as cross-cutting concerns [19]. A cross cutting concern is one in which the code to 

implement the solution is scattered across many sub-systems or classes in the program. For 

example, logging the execution of every function called (both entering and exiting) is a cross 

cutting concern. 

 

Another example of a cross-cutting concern, as shown in the appendix , is synchronization for a 

collection of data structure classes. Two typical data structure classes, Stack and List are 

described in the figure in pseudocode. The code is simple and clear, and the methods deal only 

with their direct main concern: operations for pushing, popping, and inserting. However, if these 

classes are extended such that only one thread at a time can modify the internal state of the 

structure, the code becomes obfuscated, as seen in the appendix . The clean data structure 

operations are now blended with logic necessary to provide thread safety. That logic is similar 

between all three operations: lock a mutex, do the data structure operation, then unlock that 

mutex. If that code could be abstracted away, then the clean data structure operations would 

reappear. 
 

This abstraction is called an aspect, and gives AOP its name. In the appendix , the low level 

synchronization details are bundled together, forming the aspect. Many of the advantagesrealized 

with the inheritance model of class layout also apply to aspects. Aspects coalesce code into one 

common place, preserving the DRY principle (Don’t Repeat Yourself) [17]. This greatly aids in 

reusability. Aspects also further the goals of information hiding: the lower-level details and data 

members are hidden away within the aspect and exposed only via methods. 

 

While an aspect abstracts cross cutting concerns into one place, mechanisms are then necessary to 

introduce that code into the necessary classes. Following the synchronized data structures 

example in Figure 8, the synchronization logic is abstracted into an aspect. This aspect then must 

be applied in some way to each of the data structure classes, Stack and List. To do so, three 

concepts are used: point cuts, advice, and class slicing. 

 

Point cuts are the insertion points in the originating code from which the aspect is called. Point 

cuts define which classes the aspect are attached to and where. In the example, Point cuts are 

defined on the entrance and exit of the public methods in each of the data structure classes. This is 

shown with the before and after keywords in the example. 

 

The second concept, advice, is then introduced to the originating class through the point cut. 

Advice can be thought of as the methods that perform the work of the aspect. In Figure 8 one 

piece of advice locks the synchronizing primitive. This is joined through the begin point cut. A 

second advice method, joined through the after point cut, unlocks the synchronizing primitive. 

Together, these pieces of advice provide the syncronization behavior to allow the data structure to 

be safe in a multi-threaded environment. 

 

The final mechanism, class slicing, introduces new data members and methods directly to the 

originating class. Class slices are attached to the originating class similarly to advice: point cuts 

define what classes gain the new members and methods, and the slice defines the members and 

methods gained. In the synchronization example, the synchronization mutex is sliced into each of 
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the data structure classes. However, it is encapsulated purely in the aspect and the logic that 

operates against it is hidden away in the advice. 
 

3. STATICMOCK OVERVIEW  
 

The StaticMock tool binds the previous discussed ideas together to form a solution to the problem 

of creating a mock object framework in compiled languages. It uses source-tosource compilation 

through AOP to allow us to create mock objects without introducing unnecessary inheritance, 

code modification, or linker manipulation. To accomplish this task, the tool is broken into two 

phases as shown in figure 4. 

 

The first step of the tool is source-to-source compilation, using an AOP compiler. The CUT, any 

supporting classes, and the AOP portion of StaticMock, the Function Interceptor Aspect, are input 

to that compiler. The compiler produces woven code as output. This woven code, together with 

the code for the unit test driver and one other piece of our StaticMock implementation, the Mock 

Repository, are fed to the actual language compiler to produce the unit test executable. 

 

Our tool, StaticMock, is comprised of two halves that work together across these compilation 

steps. In figure 4, the bolded parts show these two halves. The first half, the Function Interceptor 

Aspect, is weaved in to all classes at compile time. It provides the necessary advice to all the 

methods of a class, and through that advice communicates with the second half of StaticMock, 

the Mock Repository. 
 

The Mock Repository is a stand-alone class that maintains a record of all objects mocked, seams 

introduced, methods called and arguments seen. Classes woven together with the Function 

Interceptor Aspect inform the Mock Repository of these records. The Mock 
 

Figure 4: Steps of Compilation in Static Mock 
 

 
 

Repository is also the part of StaticMock that we use when we write an actual unit test. When we 

want to validate arguments, transform objects into mocks, or to stub out methods in the unit test, 

the Mock Repository is relied upon to performed these tasks. 
 

These two pieces are now explained in detail. 
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3.1. THE FUNCTION INTERCEPTOR ASPECT 
 

The Function Interceptor Aspect is the part of StaticMock that surrounds all the method calls for 

the classes in the unit test. By intercepting these calls, the Function Interceptor Aspect is able to 

determine the status of the object, and provide either mock object behavior, or the behavior that 

the normal, full featured object behavior. The Function Interceptor works in tandem with the 

Mock Repository, which is described in section . 

 

The Function Interceptor Aspect catches all method calls made in the unit test. There are 3 

categories of calls caught: Constructors, Destructors, and Function Calls. The calls are caught by 

introducing advice to these function categories. The advice uses an ”around” Point Cut expression 

to completely replace the function call instructions with the instructions in the advice description. 

A special method in the advice, proceed(), allows the original function to be invoked if necessary: 

if the current object is not a mock object and the function is not stubbed, then the original 

behavior should be allowed to continue. 

 

Constructors must be intercepted in a mock object, as the constructor may attempt to initialize or 

otherwise make use of other objects or resources that should not be touched. For example, the 

constructor may try to initialize a connection to a database, or connect to a live website’s API. It 

is a little tricky to prevent the constructor from being invoked, however. By the time an object is 

brought to life, the constructor has already been called and its work performed. Because of this, 

we cannot uniquely identify the object that should have its constructor disabled. Instead, one must 

register with the Mock Repository beforehand the classes that should not have their constructors 

invoked upon object instantiation. Unfortunately, such a registration is necessarily at the class 

level, not object level, because no object yet exists, and so such registration would impact all 

future object instantiations of that class. Therefore, StaticMock provides a way to also unregister 

forbidden class constructors. The preferred idiom for creating mock objects then is to register the 

classes that should have their constructors intercepted with the Mock Repository, create the 

objects one plans to use, then unregister those classes. This allows one to create a real object of 

that class, complete with full initialization, later down the line in the unit test if needed. Pseudo-

code for the constructor advice follows: 
 

Listing 1: Constructor Advice 

 
 

Destructors, unfortunately, have a similar concern. Resources normally acquired through 

construction or method use could be freed at the end of the object’s lifetime. It would be 

disastrous if one were to attempt to free these resources that were never actually acquired because 

the object was mocked. Thus, destructors must also be intercepted. There are several 

considerations that need to be kept in mind in the implementation of the destructor advice. It is 

possible that the normal construction of a mock object was allowed by the user of the tool. In this 

case, the destructor must also be permitted to continue and free any resources acquired during 
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normal initialization. Furthermore, the process of function interception for a given mock object 

acquires dynamic memory that must be freed. Finally, any expectations that were unmet by this 

object should be reported to the end user. Sadly, an exception typically should not be thrown from 

a destructor, and so the best that can be done is to send the failure out to some error stream. 

However, a user can ask for the status of the expectations on a mocked object at any time, and so 

perform the assertions necessary for the unit test in that way. The tasks the Destructor must 

follow are shown below: 
 

Listing 2: Destructor Advice 

 
 

Finally, all other Function Calls are also intercepted. When a call is intercepted, the Interceptor 

must check with the Mock Repository to determine whether the function has been seamed, if the 

target object is a mock object or not, and (in the case that the function is a method of a mock 

object) whether or not that object is expecting this call. If the function has been seamed, or if the 

object is a mock object and it is expecting the call, the Interceptor informs the Mock Repository 

of the call. The function call arguments are cataloged with the Mock Repository for later 

verification in the unit test. The interceptor then retrieves the registered return value from the 

Repository and returns that value to the caller. If the object is a mock object, however, and a call 

is not expected, an exception is thrown so that the unit test can fail. If neither of the above cases 

are met, then the function was neither seamed, nor was the object a mock object with an 

expectation set up, and so the original function is allowed to be called through the proceed() 

method. Note that the more general term /emphfunction is used here, instead of /emphmethod, as 

the Function Interceptor Aspect intercepts not just object methods, but also free functions that do 

not belong to an object at all. The interaction of this logic is captured below: 
 

Listing 3: Execution Advice 
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3.2. The Mock Repository Class 
 

The Mock Repository is the part of StaticMock that one interacts with when actually writing the 

unit test. The Function Interceptor Aspect described above in section feeds the Mock Repository 

as methods are called throughout the execution of the program. By querying this class, the 

necessary assertions can be performed in the unit test to verify the behavior of the CUT. We now 

detail the workings of the Mock Repository. 

 

The Mock Repository is a standalone class, so there is ever only one in existence as the program 

executes. This class is responsible for handling the registration of seams, mocks, and expectations 

made by the unit test. It also keeps a log of the function calls made at runtime as the Function 

Interceptor Aspect encounters them. 

 

Central to most of the Mock Repository methods is the concept of the Function Signature. It is a 

string representation of a function’s declaration, and takes the form: 

 
Listing 4: Function Signature 

 

 
 

There are a few subtleties to point out in the Function Signature. Namespaces can be nested, or 

nonexistent, as is the case for the global namespace. Free functions, global functions that do not 

belong to a class, have no class name specified. The argument list only contains the types of the 

arguments and the names of the variables are not listed. This signature uniquely identifies a 

method. 

 

The Mock Repository also frequently requires the address of an object. It uses this address to 

discriminate among the various objects that may exist at run time, allowing us to setup seams and 

expectations on a per object basis. Furthermore, when an object is destroyed, it automatically 

unregisters itself from the repository by using its address. If the seam or expectation is a free 

function, or a class level method, then the value of null is used for the address to indicate that the 

seam or expectation is not tied to any object. 

 

3.2.1. REGISTRATION  
 
Mock objects are registered through the mock() method. This method turns the object into a mock 

object, forbidding all methods on that object from being called. An exception is thrown if any 

method is called on the object henceforth. To allow a method on a mock object to receive a call a 

seam can be introduced or an expectation set up. 

 

A seam is created through the seam() method. The method is now allowed on the mock object, 

but is stubbed out. A return value can be specified, which will be returned to the caller when the 

method is invoked in the future. Expectations are similarly registered, but they use the expect() 

method. Expectations are used to ensure that the mock object receives a call to that method some 

time before the object is destroyed. Expectations can be checked at any time through the 
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metExpectation() method. All expectations on an object are checked automatically on object 

destruction. Any missing expectations are written out to the error stream. 

 

Seams can also be introduced over methods of normal, full featured, objects. This is useful for 

writing unit tests against the CUT, but preventing that class from performing behavior that is 

undesirable in a unit test, such as deleting files, making database changes, or calling external 

APIs. 

 

3.2.2.  LOGGING FUNCTION CALLS  

 
The Mock Repository contains a map of all calls made to stubbed functions during the execution 

of the test. When the Function Interceptor Aspect catches a method call, it informs the Mock 

Repository of that call so that it can be logged. The arguments that were passed to the method are 

bound together with the Function Signature and the originating object address and are stored in 

the map. These arguments can then be retrieved through the getArgument() method for 

appropriate validation within the unit test to ensure that values received by the method were 

correct. The map also contains a count of how many times a method was called so that can also 

be verified by the test. 

 

4. STATICMOCK FOR C++  
 
In this section, we discuss how we implemented the previously described pieces of the 

StaticMock tool in the C++ language. 

 

C++ was chosen as the target language for evaluation as it is a language in wide use, especially 

when performance is a concern. It is a language that does have mocking frameworks available 

[16, 5], but these frameworks rely upon the aforementioned techniques of inheritance or compiler 

manipulation. 

 

We chose AspectC++ [1] to perfors the AOP source-to-source compilation described in figure 4. 

It weaves in aspect header files and outputs valid C++ code. This code can then be included and 

built with unit test code to verify the operation of classes and methods. 

The implementation of the Function Interceptor Aspect described in section resides in the file 

smock.ah. AspectC++ transforms all classes fed to it to generate mock-ready classes and 

functions. 

 

The other part of StaticMock, the Mock Repository class (as detailed in section ), lives in the files 

MockRepository.h and MockRepository.cpp. Including the header in a unit test code file and 

linking MockRepository.cpp is all that is required to gain access to the all the functionality that 

the Mock Repository provides. 

 

4.1. METRICS  
 
To evaluate this implementation of StaticMock the following criteria were considered: 
 

1. New capabilities enabled by the tool 

2.  2. Compile build time overhead 3. File size overhead 4. Run-time execution overhead 
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Two experiments were performed to evaluate the new capabilities criteria: a Test Driver that 

demonstrates the functionality of StaticMock with new code, and a TinyXml Driver that uses the 

tool against an already existing library. 

 

The overhead induced criteria was measured through two separate builds of a small application 

(again using the TinyXml Library) that either has StaticMock framework compiled in, or it does 

not. This experiment considers the cost the StaticMock framework charges by comparing the 

differences in compile and execution times between these two configurations. 

 

All experiments were performed on a machine with these characteristics:  

• AOP Compiler: AspectC++ version 0.9  

• C++ Compiler: g++ version 4.8.1, optimization level set to -O2  

• Processor: Intel i7@2.4GHz  

• Memory: 8GB 

 

4.2. Experimental Evaluation  
 
The two experiments below investigate the ability to use StaticMock as a mock object 

framework. A simple test driver experiment was performed first, ensuring that all the necessary 

pieces of our mock framework can be utilized. The second of these two experiments use the tool 

with an already existing library. 

 

In our third and final experiment we investigate the overhead introduced to the executables that 

may use this tool. 

 

4.2.1. Test Driver  
 

The Test Driver experiment was an initial proof of the StaticMock concept. A simple hierarchy of 

two classes, Base and Derived, was created. Inside these classes, permutations of virtual and non-

virtual functions were added to ensure that both overridden and nonoverriden types of methods 

were able to stubbed - a key requirement for object oriented programming. 

 

A class method, gcd(), was also added to the Derived class. It calculates the greatest common 

divisor between two integers, using the recursive euclidean algorithm. A separate method on the 

Derived class, produce(), makes use of that gcd() function. It loops five times, on each pass 

generating two integers randomly and calling gcd() to find the common divisor between them. 

A third class, Consumer, makes use of the Derived class through its consume() method. This is 

used (as shown below) to test use between objects. consume() takes a reference to an object of the 

Derived class as an argument, and, inside the method implementation, invokes the produce() 

method of the Derived class. 

 
A unit test was then written to exercise this simple code. This unit test first creates an object of 

Derived, d. Before the demonstration of the mocking capabilities, the produce() method on d is 

called. produce(), as explained above, iterates five times, each time calculating the gcd of two 

random numbers through the gcd() class method. These are sent to Standard Out for inspection 

and validation. 
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Next, the gcd() function is seamed, such that it always returns -1. produce() is again invoked, but 

this time an exception is thrown, as produce() does not expect to receive a negative value from 

gcd(). While a contrived example, it does show how StaticMock can stub over a function and 

control its return value. Through this feature, a critical error that exists in Derived’s produce() 

method is uncovered. 

 

We now turn d into a mock object, forbidding all calls to it (except ones that are explicitly 

stubbed through seams or expectations). A Consumer object, c is also constructed. The consume() 

method on c is called, passing in d as the argument. c, in turn, calls back to d, through the 

produce() method. Since d is now a mock object and no expectation is set up for the produce() 

method, an exception is thrown. This demonstrates another use of the capabilities of mock objects 

in general and of StaticMock in particular. Interactions between objects are easily shown. It is 

clear now that Consumed is tightly coupled to Derived through the behavior of Derived’s 

produce() method. While produce() does nothing of consequence in this little function, in real 

code it could potentially write changes to a database or invoke outside APIs. By refusing to 

invoke this code and instead throwing an exception, this sort of behavior is avoided. Furthermore, 

to test consume() fully, one would want to modulate all the return values of produce() across the 

entire range of outputs that could returned. These are all capabilities delivered by using the seam 

and expectation features of StaticMock. 

 

Continuing with this experiment, another instance of Derived is created, called e. A seam is set up 

on one of the overridable methods in the hierarchy, abstractfn1(). An expectation is created as 

well, on the other overridable method, abstractfn2(). abstractfn1() is invoked, which is allowed 

through the seam. However, abstractfn2() has an expectation that it should be called. The state of 

the expectations of an object can be checked through the assertExpectationsMet() method on the 

Mock Repository. Accordingly, that method is called, and an exception thrown - abstractfn2() 

never received a call. 
 

4.2.2. Tinyxml Driver 
 
While the first experiment was created to evaluate and demonstrate the features of StaticMock, 

the intention of this second experiment is to apply the StaticMock tool to an existing code base. 

To that end, StaticMock was applied to write a small unit test against the TinyXML library. 

The TinyXML [28] program is a fast and small XML parser. It is very mature and stable, and is 

used in many real world applications. While small, it has enough complexity to demonstrate the 

usefulness of the StaticMock tool’s capabilities. The object model for Tiny XML is shown in 

figure 5 
 

Figure 5: Tiny XML Object Model 
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TiXmlDocument is the central class in the design of this library, and represents an XML 

Document, as one would expect. It was chosen as the class under test for the experiment. The unit 

test for the experiment focused on printing functionality surrounding this class. 

 

Two classes interact with TiXmlDocument during printing. TiXmlElement represents an arbitrary 

XML element that is attached to the TiXmlDocument. TiXmlPrinter implements the visitor 

design pattern [15] and is used to visit each item in the XML document. As it visits the item, the 

Print() method of that object is invoked. 

 

Two methods in the unit test driver test the behavior of TiXmlDocument. test print() evaluates the 

DOM walking capabilities of TiXmlDocument. That is to say, it ensures that the children in its 

document receive a call. To accomplish this task, it attaches three TiXmlElement mock objects to 

the TiXmlDocument object being tested through the linkEndChild() method. An expectation is 

set up on each of the three mock objects, hoping to see their own individual Print() methods are 

called. The test then invokes the Print() of the document itself. If all expectations are met, then 

test succeeds. 

 

Similarly, test visitor() ensures that the VisitEnter() and VisitExit() methods are called on a 

TiXmlPrinter object from the TiXmlDocument. A mock TiXmlPrinter is instantiated, and the 

TiXmlDocument accepts the printer visitor through the accept() method. If the expectations are 

met, the test succeeds. Otherwise, it fails. 

 

4.2.3. OVERHEAD INTRODUCED  
 

To evaluate the various overhead costs introduced by the tool, the TinyXML library was again 

used. Instead of creating a unit test, however, a small application was created. This application 

reads the contents of a local XML file from disk (about 142KB in size), parses it into an internal 

DOM representation, then writes that representation back out to disk in a separate file. 

 

Two different build configurations for this application were tested: one with the aspect code 

weaved in, and one without. For each configuration, 10 separate builds were performed and 

timed. The average time was then recorded for each, and slowdown calculated by dividing the 

average time taken with StaticMock code by the average time take without that code. The file size 

of both executables were also recorded. The results are shown in Table 1. 

 

Next, the application was executed 10 times in both configurations, recording how long it took to 

perform its task. The results are presented in Table 2. 

 

4.3. Discussion 
 

In both the Test Driver experiment and the TinyXML Driver experiment the mocking capabilities 

of StaticMock are shown. Seams and Expectations can be stubbed over any arbitrary method. 

Return values can be specified for those methods, allowing us to control the interactions between 

mocked objects and the CUT. Any class that is provided to the aspect compiler can be then be 

turned into a mock object in the unit test. Argument data to methods are saved in the 

MockRepository. That data can then retrieved later in the unit test, and be evaluated to assert that 

their values are correct. Taken in toto, this demonstrates that unit tests can be successfully written 
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take advantage of this new functionality that the StaticMock tool provides, for both new and 

existing code. 

 

The Overhead Introduced experiment shows that there is around 6.5 factor increase in time to 

compile the executable when StaticMock is added. In the experiment, the output executable took 

an additional 14.5 additional seconds to compile. More dramatically, the execution time suffered 

an 89.1 factor slowdown. While the total compile and run times with StaticMock still appear to be 

overall within reasonable parameters (seconds, not minutes) unit tests should be first of all be fast, 

both to execute as well as to build. In an environment where thousands of unit tests must be run, 

this increase in build and run time may not be acceptable, which could potentially limit the 

usefulness of the tool. However in [20] it was discussed that the runtime overhead introduced by 

aspect code may be disproportionately large in small code, making this overhead appear larger in 

the experiment than it actually would be in practice. 

 
            Table 1: Compilation Overhead                                                   Table 2: Execution Overhead 

 
 

execution time suffered an 89.1 factor slowdown. While the total compile and run times with 

StaticMock still appear to be overall within reasonable parameters (seconds, not minutes) unit 

tests should be first of all be fast, both to execute as well as to build. In an environment where 

thousands of unit tests must be run, this increase in build and run time may not be acceptable, 

which could potentially limit the usefulness of the tool. However in [20] it was discussed that the 

runtime overhead introduced by aspect code may be disproportionately large in small code, 

making this overhead appear larger in the experiment than it actually would be in practice. 

Furthermore, the point cuts defined for introducing advice in the implementation of StaticMock 

are very aggressive: they catch all method calls, whether necessary to the unit test or not. The tool 

could be optimized to only catch method calls for the objects surrounding the CUT. This would 

limit the interference of the mocking framework, reducing overhead. In a way, the results here 

provide a ’worst-case’ analysis of the tool’s use, where every class provided to StaticMock will 

need to be capable of becoming a mock object in the unit test. 
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5. THREATS TO VALIDITY 
 
While StaticMock was implemented with only one type of compiled language (C++), it should be 

generally applicable to other purely compiled languages. Similarly, while only one type of aspect 

oriented compiler was chosen for experimentation, the feature set across aspect oriented 

languages is similar enough that the core ideas will be transferable. 

 

It may also be noted that the experiments chosen to demonstrate our tool were small; however 

each experiment shows the complete spectrum of possibilities that the tool can achieve. 

Expectations and seams with return values configured were demonstrated to be achievable. Mock 

objects with their attendant expectation validation and method forbiddence abilities are shown. 

And finally, argument values can be stored, retrieved, and validated. With these capabilities, 

StaticMock is established as a viable toolkit for creating unit tests. 

 

6. RELATED WORK  
 
There are many mock object frameworks already in existence. For interpreted languages, there 

are a wealth of choices available [7, 3, 10, 6, 11]. These frameworks rely on dynamic features of 

interpreted languages, which are not available in compiled languages. 

 

For compiled languages, the selection is slimmer [16, 25, 5]. These frameworks either depend on 

inheritance or compiler manipulation to achieve their goals. Our solution does neither: instead it 

intercepts method calls at runtime through an aspect advice woven in at compile time through an 

AOP compiler. 

 

The concrete implementation of the StaticMock tool is closely related to the Virtual Mock Object 

technique proposed in [18], which uses a central class to function as repository and method call 

logger. It similarly uses AOP to intercept method calls. No concrete mock objects are created 

with this tool, however. Instead, individual methods on particular objects are registered and 

intercepted in an ad-hoc basis. Our implementation differs in that an actual mock object can be 

instantiated, with the entire interface of that object acting as a mock object. This leads to a 

natural, intuitive, and readable unit test. A second, critical, difference is that StaticMock is 

focused on bringing a mock object framework to compiled languages, while the Virtual Mock 

Object technique was implemented for Java using AspectJ [2]. 

 

GenuTest [24] makes use of the Virtual Mock Object technique described above in the automatic 

generation of its unit tests. 

Discussion of the applicability of mock objects and frameworks can be found in [23]. The genesis 

of using mock objects in unit tests was discussed in [22]. 

 

Object, link, and and preprocessor seams was explored in [13]. A fourth technique for introducing 

seams into an object, compile seams, was introduced in [26]. 
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7. CONCLUSION AND FUTURE WORK  
 

StaticMock is a unique approach to the problem of creating a mock object framework for 

compiled languages. Other approaches rely on code modification, inheritance, compiler 

directives, or linker manipulation to achieve their ends. When dealing with legacy code, these 

approaches have significant drawbacks that limit their applicability. StaticMock instead uses 

Aspect Oriented Programming and source-to-source compilation to deliver that framework. Unit 

tests can now be created with StaticMock without making changes to legacy code or by 

introducing unnecessary runtime overhead. Our tool shows slow both the compilation and 

runtime of unit tests where it is used. It would be helpful to explore ways to reduce the time 

overhead of the tool. StaticMock could be extend toward thread safety and protecting access to a 

mock object’s member data. 
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8. APPENDIX 
 

 
Figure 6: Typical Data Structure Classes Stack and List 
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Figure 7: Stack and List, Synchronized 
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Figure 8: Stack and List with Aspect 


