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Résumé. 2014 L’état final d’équilibre, ainsi que la dynamique d’étalement vers l’équilibre, ont été étudiés pour le
cas d’une goutte posée sur un solide mince. En ce qui conceme l’équilibre, les deux configurations
correspondant à la symétrie axiale et à la symétrie cylindrique ont été considérées. La tension superficielle du
liquide peut provoquer une courbure importante du solide, initialement plan, surtout dans le deuxième cas. La

dynamique d’étalement est accélérée sur un substrat mince. Des contributions à la fois de l’énergie élastique
restituée et des effets capillaires compensent la résistance visqueuse à l’écoulement.

Abstract. 2014 The final equilibrium state and the spreading dynamics approaching equilibrium have been
studied for a sessile drop posed on a thin solid. For the case of equilibrium, both axisymmetric and cylindrically
symmetrical geometries have been considered. In both situations, but particularly the latter, liquid surface
tension can markedly curve the initially planar solid. The dynamics of spreading can be speeded up by the
presence of a thin substrate. Released elastic energy contributes to capillary effects in overcoming viscous
resistance to flow.
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Introduction.

Interest in the configuration of liquid surfaces in

contact with solids has been shown for nearly two
centuries. The two classic contributions are due to

Laplace [1] and to Young [2] ; the former elucidating
the equation giving the equilibrium shape of the
liquid/surrounding fluid interface and the latter

giving the relationship between the three sur-

face/interfacial tensions, yij, and the equilibrium
contact angle, 0, at the triple line liquid/fluid/solid
(although in fact, the mathematical formulation of
this was never given in the much cited reference [2]).

Both Laplace and Young made use of force

arguments but it can be shown, using variational
arguments, that the general conclusions are correct
(e.g. [3-7]), despite criticisms put forward at various
times [8-10]. By treating the 03B3ij as free energy terms,
a minimum of the total free energy of the system is

sought. Force and energy considerations lead to the
same conclusions and, provided the solid is perfectly
rigid and the contact angle is not too small (otherwise
a non-negligible influence of van der Waals forces
may be felt-see, for example, references [11-13]),

these results are valid for the majority of exper-
imental cases.

Capillary forces may be regarded as small and the
aforementioned assumption of solid rigidity is thus a
very good approximation for macroscopic situations
concerning high modulus solids. Any slight strain in
the solid is negligible. However, if the solid is

relatively soft and/or very thin, such as can be found
in organic contexts (cell walls, membranes), then
solid deformation cannot necessarily be ignored.
Significant strain of the solid caused by capillary
effects may markedly influence the overall behaviour
of the liquid/fluid/solid system. In the case of a soft
bulk material, a wetting ridge may form at the triple
line [14] and under certain conditions, this may
influence contact angle equilibrium [15]. For a

substrate consisting of an initially planar thin solid,
membrane or plate, an important degree of curva-
ture may result [16, 17]. In the present paper, we
shall consider the latter case, that of a thin elastic

plate. Initially we shall investigate the overall confor-
mation of a liquid drop on such a solid. However,
the interest of such a system is potentially its

applicability to living biological situations when the
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dynamics of evolution towards the equilibrium state
is fundamental. Although the comprehension of

spreading and rolling dynamics is still in its infancy
relatively speaking [13, 18], we shall attempt to

understand the evolution towards equilibrium, or
spreading dynamics, when a liquid drop is placed on
a thin elastic plate.

Axisymmetric equilibrium configuration.

In figure 1 is represented the side view of an

axisymmetric sessile drop of radius re of liquid, L,
resting on a disc of radius a of solid, S, in the

presence of the surrounding fluid, which we shall
suppose is vapour, V. The solid disc, to be modelled

by thin plate theory, is planar before deposition of
the liquid drop and the curvature shown schemati-
cally is due to an attempt by the system to minimise

where EE represents the strain energy density [19] :

Equation (2) is valid for r * re. A similar expression
with 03B6 replacing 0 applies to r  re . In the above

expressions, y = 03B3LV, D and v are respectively the
flexural rigidity and Poisson’s ratio of the plate
[D = Ee3/12(1 - v2) where E is Young’s modulus
and e is the plate thickness]. The two solid profiles
denoted ~ and e, and that of the liquid/vapour
interface, X, are functions of the cylindrical coordi-
nate r as shown in figure 1.
At equilibrium, ET must be a minimum with the

constraint of constant drop volume, V :

This amounts to a variational problem in which we
minimise the function J [ = (ET - Ap.V)/2 7T
where Ap is a Lagrange multiplier and equals the
Laplacian liquid/vapour pressure difference]. The
variational treatment is excluded here since it is
somewhat lengthy, but the essential results may be
found in reference [16]. Three identities conceming
equilibrium at the triple line and a differential

equation describing each profile, ~, 03B6 and x, are
obtained. After some algebra, the identities reduce
to two expressions :

Fig. 1. - Side view of axisymmetric drop on thin disc.

its surface (interfacial) free energy whilst having the
elastic constraint of strain energy associated with the
solid deformation. There is an interfacial free en-

ergy, yij, applicable to each contact zone where i
and j may be L, S or V. Gravitational energy will
here be neglected (small drops or similar L and V
densities).
For axisymmetry, we may thus write the overall

free energy of the system, ET :

where 03B8e and 03B1e represent the equilibrium angles
shown in figure 1, and R(1) and R(2) represent the
radii of curvature of the solid at re when approaching
respectively from inside and from outside the drop.
Equation (4) amounts fo Young’s equation since the
equilibrium contact angle is given by 0 = (03B8e + 03B1e).
Equation (5) can in a sense be considered as

representing the force balance perpendicular to the
plate at re where the component of surface tension y
is balanced by an elastic deformation term in the
solid involving the flexural rigidity and local curva-
ture. Nevertheless, a full appraisal of this aspect
should involve a discussion of the wetting ridge
described elsewhere [14, 15].
Of the three differential equations obtained, that

for the liquid/vapour interface, X, is simply the
standard axisymmetric capillary equation which, in
the absence of gravity, has the simple solution of a
circular arc. Both solid profile equations turn out to
be rather complex involving the 4th derivatives of 0
and (with respect to r. Nevertheless certain simplify-
ing assumptions may be made and it is found that the
solid profile may be approximated by a circular arc
under the drop and a logarithmic function outside
[16]. We may thus write :
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where R and P are the lower and upper drop surface
curvatures respectively. These equations have been
employed to study the effect of plate rigidity on the
overall configuration of the liquid/vapour/solid sys-
tem. The approximations of a &#x3E; re and R ~ re are
made and an expression for J may be obtained. This
expression may be treated by standard methods of
the differential calculus. Setting the three differen-
tials of J with respect to P, R and re to zero and using
the constancy of drop volume, a system of equations
is obtained. Allowing re to remain constant and
assuming 03B1e relatively small such that sin a e -

03B1e, we may solve to obtain an approximate ex-

pression for a e (a quadratic equation in 03B12e). This
expression has been used to consider the variation of
a e with plate thickness. (Basic details may be found
in reference [17]).

Figure 2 gives two examples of a e versus e, plate
thickness. The angle 03B8e may be obtained simply by
difference given that (03B8e + 03B1e) = 0398 is a constant for
a given set of surface/interfacial tensions (cf. Eq.
(4)).

In the examples chosen, we have taken ysL =

ysv = 30 mJ.m-2 (0 = 90°), E = 108 N.m-2,
v = 1/3 and re = lo- 3 m. Curves shown correspond
to y = 10 and y = 20 mJ. m- 2. At very low values of
e, the approximations used are likely to fail ; a cut-
off is therefore shown below about 5 ktm. It can be

seen that for e less than about 20 03BCm, the curvature

of the plate can become quite marked with 03B1e being
over 1° and increasing with decreasing plate thickness
to the order of 10° or more. Be shows a corresponding

drop. However, above a value of about 30 03BCm for e,
plate deformation becomes feeble and a e tends

asymptotically to zero as would be expected on a
rigid solid. It can thus be seen that whilst the

intrinsic contact angle of a drop placed on a thin
plate is constant (ignoring effects of the wetting
ridge mentioned earlier) and governed by Young’s
equation (4), the apparent contact angle as seen

from the side and with respect to the horizontal can
be significantly reduced by effects of solid curvature.
As may be seen in figure 2, this curvature is directly
related to liquid surface tension. Although the

approximate analysis adopted here would be insuffi-
cient for an accurate assessment, the effects of a

drop of a very high surface tension liquid (such as
mercury) on thin plate curvature could be very

significant (provided, of course, that 0 is not too
close to zero or 180°).

Cylindrical equilibrium.

In a previous paper [17] it was shown that although
in most situations the axisymmetric equilibrium state
described above will prevail, there may well be cases
in which departures from this configuration occur.
Three-dimensional problems are also generally more
complex to handle than those in two dimensions. For
these reasons, we shall consider the dynamics of
spreading of a liquid drop on a thin solid in its two-
dimensional context, i. e. that corresponding to the
vertical section of a long cylindrical drop. However,
before describing the dynamics, let us consider the

Fig. 2. - Plate inclination angle, a,,, vs. plate thickness, e, for y = 10 and 20 mJ.m-l (see text for details).
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equilibrium statics of the system and compare with
the axisymmetric case. The situation is considerably
simpler to treat in two dimensions and simple force
analysis may be employed rather than resorting to
variational calculus and energy minimisation.

Consider figure 3 which represents one half of a
vertical section taken through a cylindrical drop, we
may treat just one half because of symmetry consid-
erations. There exists an excess (Laplace) pressure

Fig. 3. - Side view of half cylindrical drop.

within the drop which results form the liquid surface
tension and the curvature of the liquid/vapour inter-
face. Ignoring gravity, this pressure is everywhere
constant, àp, and for equilibrium of the thin plate,
op acting downwards over the half drop width
xe will be balanced by y sin (J e acting upwards (per
unit length of triple line). We can thus evaluate
Ap = y sin 03B8e/xe. Although the forces balance,
there will be a net bending moment, M, tending to
curve the solid. At a given value of x this is given by :

where x is the distance from the drop centre and t

represents x before integration. If we assume that

the degree of bending of the plate is relatively small
(~x ~ 1), we may apply simple plate (beam) theory
(20) :

Simple integration and use of the facts that 0 (0) =
~x(0) = 0 lead to :

Assuming angle 03B8e to be fairly small :

and using the constancy of 0398 = (03B8e + 03B1e) and

definition of D :

Equation (13) has been used to get an idea of the
variation of a e with plate thickness, e. Figure 4
represents calculated results for a hypothetical sys-
tem in which 0398=30°, y = 30 mJ.m-2, ysL =

20 mJ.m-2, ysv = 46 mJ.m-2 (this last value being
imposed by the value of 0), E =108 N . m- 2,
v = 1/3 and xe = 10-3 m.
The corresponding curve for the three-dimension-

al case having the same characteristics and calculated
as discussed in the last section (xe = re) is also given.
In both cases, a cut-off has been given at about 5 pm
since below this thickness, the calculated values of

a e become sufficiently large for the initial assump-
tions of the simple analyses to become doubtful. It
can be seen that in both cases, the inclination of the

Fig. 4. - Angle a e vs. e for cylindrical and axisymmetric drops (see text for details).
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thin plate at the triple line becomes quite marked for
low values of e but that in particular this is true for
the cylindrical drop. This is a consequence of the

bending mode. Cylindrical bending is relatively easy
to effect whereas spherical bending invokes side

effects since two orthogonal bending directions (and
radii of curvature) are involved (cf. Eq. (2)). In

addition, the exterior part of the plate has an effect
in the axisymmetric case which is absent for the

cylindrical geometry.

Spreading dynamics.

Having established that the wetting equilibrium of a
cylindrical drop on a thin plate can involve an
important degree of solid curvature, let us consider
the evolution of such a system after the initial pose
of a drop of liquid until the final equilibrium is

attained. In general the initial contact angle
(03B8 + a ), will be greater than its equilibrium value,
0, and the half drop width, xo, will be less than
xe. Nevertheless, vertical (in the sense of Fig. 3)
equilibrium for a given value of xo will be rapidly
achieved (we assume, at least) and the rate-deter-
mining step in the evolution towards final, overall
equilibrium will be the horizontal spreading and
growth of xo. In this case, equation (11) will describe
the plate profile (with xo replacing xe and 0 replacing
Be) and the liquid/vapour interface will be circular :

The volume of the drop (per unit length of triple
line) is a constant :

As before we assume here 6 small and a very small.

The free energy of the system may then be

expressed :

Equation (16) can be compared to equations (1)
and (2). It is simpler since we assume l/Jx « 1 and the
elastic term involves only one radius of curvature
under the drop. The plate remains undeformed

outside. Evaluation of equation (16) will be done for
two limiting cases. In the first, we assume 0 finite
and D large such that we may neglect terms of
0(D-2).

In the second case we shall be interested in 0 zero
and therefore consider xo large since xe ~ oo .

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N. 6, JUIN 1988

1. FINITE EQUILIBRIUM CONTACT ANGLE. - Taking
initially the case of large D, equations (11, 14, 15,
16) lead to :

During spreading, ET will decrease towards equilib-
rium at a rate given by U. dET/dxo where U is the
advancing speed of the triple line, dx0/dt,

This decrease in ET will be consumed during
spreading, essentially as dissipation due to liquid
viscosity, q. Viscous dissipation has already been
studied for the case of spreading on a rigid substrate
[13, 21] and we shall use the results quoted, but
modifying for the fact that in the present case, the
effective contact angle is (03B8 + a ) :

The dissipation (per unit length of triple line),

TS, depends on 1 = In XO - xmin xmax] where xm; and
xmax are respectively near the origin and the triple
line, although their exact positions are here unde-
fined. Since 1 is a logarithmic function, little error

will be introduced considering it as constant.
Since TS + U. dET/dx0 ~ 0, we obtain from equa-

tions (12, 15, 18, 19), a differential equation for the
spreading speed, dxo/ dt :

where V * is the characteristic capillary speed
(= 03B3/~).
Solving equation (20) for x0 ~ xe, we find approxi-

mately exponential behaviour (Ref. [21]) such that
the time constant, T is given by :

Taking y - 30 mJ.m-2, xe ~ 10-3 m and

D ~ 10-7 Nm (corresponding to a solid of

E ~ 108 Nm-2, e ~ 20 03BCm, for example), we find the
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time constant decreased by about 30 % and corres-
pondingly the relative dynamics towards final equili-
brium is that much faster than on a rigid solid. (N.B.
absolute comparison of dynamics between flexible
and rigid cases is of little use since the final

equilibrium states are different.)
Equation (21) may be applied to the case of an

elastomer. Strictly speaking, in this case the flexural
rigidity, D, should involve the complex modulus,
E*, of the solid and thus energy dissipation due to
mechanical hysteresis would appear in equation (20)
(a separate study considers this effect in the case of
the wetting ridge [22]). Nevertheless we assume here
that spreading dynamics is sufficiently rapid for the
loss component to be negligible. In this case, the
elastic modulus of the material is given by :

where N equals the number of monomers of volume
v between crosslinks, kT represents the usual

Boltzmann constant times absolute temperature and
m is a numerical factor, about 1 [23]. The diameter
of an elastomeric monomer, d, is given approxi-
mately by yv/kT and thus, provided the plate
thickness, e, is not too feeble, the time constant, T,

for the exponential approach to equilibrium wetting
may be written :

and we see that the spreading dynamics is directly
related to the degree of crosslinking of the elastomer.

2. ZERO EQUILIBRIUM CONTACT ANGLE. - For the

case of 0 zero, we consider the final stages of

spreading, i.e. taking 03B3x20/D to be large. Equation
(16) then becomes :

Using the same procedure of equating rate of loss
of ET to dissipative viscous flow leads to the follow-
ing differential equation :

where r = ( y sv - 03B3SL - 03B3).
Now r will be positive or zero. If it is zero,

Antonov’s equality is satisfied. In this case, which

seems to be usual [24], equation (25) gives :

The scaling law thus shows an increase in spread-
ing distance xo which depends on t"9. What,. how-
ever, is more interesting is that the spreading is

virtually independent of the value of y, since this
only occurs in lower order terms. At long times
approaching spreading equilibrium, the rate of in-
crease of xo is essentially conditioned by competition
between elastic effects favouring wetting and viscous
dissipation braking the phenomenon.

If we assume r to be positive, the term in

XÕ 6 can be considered (relatively) negligible and we
obtain :

Distance xo then depends on tll3. Competition
here exists between the spreading tendancy charac-
terised by T and the viscous slowing down. The solid
has become sufficiently planar for elastic effects to
become unimportant.

Conclusions.

Wetting phenomena are important in many branches
of science and technology. In the majority of cases
treated on a macroscopic scale, to a very good
degree of approximation, a solid phase in contact
with a liquid may be considered to be rigid. However
in certain microscopic contexts, especially those

involving biological systems, the assumption of rigi-
dity will leave something to be desired. Such things
as cell walls are quite flexible and prone to defor-
mation by capillary forces. We have therefore con-
sidered aspects of wetting in which solid strain is

provoked by interfacial tensions. The solid has been
modelled, albeit somewhat idealistically, by thin

plate theory. Static, equilibrium configurations have
been analysed using both variational techniques and
simple mechanical arguments. An initially planar
thin solid may become appreciably curved by the
presence of a liquid drop, particularly in a system
showing cylindrical symmetry. Static equilibrium is
obtained after spreading. It is shown that the

dynamics of spreading may be speeded up on a thin
solid by strain effects. Elastic energy released may
contribute to capillary effects in order to overcome
viscous resistance to flow. Under certain conditions,
the final stages of approach to wetting equilibrium
are controlled essentially by solid elasticity and

liquid viscosity, the actual liquid surface tension

playing a minor role.



1037

References

[1] LAPLACE, P. S., Mécanique Céleste, Suppl. au Xe
livre (Coureier, Paris) 1805.

[2] YOUNG, T., Phil. Trans. R. Soc. London 95 (1805)
65.

[3] JOHNSON, R. E., J. Phys. Chem. 63 (1959) 1655.
[4] COLLINS, R. E., COOKE, C. E., Trans. Faraday Soc.

55 (1959) 1602.
[5] GOODRICH, F. C., Surface and Colloid Science, Ed.

E. Matijevi0107 (Wiley, New York) 1, 1969,
chapitre 1.

[6] FORTES, M. A., Phys. Chem. Liq. 9 (1980) 285.
[7] SHANAHAN, M. E. R., Adhesion 6, Ed. K. W. Allen

(Appl. Sci. Pub., London) 1982, chapitre 5.
[8] BIKERMAN, J. J., J. Phys. Chem. 63 (1959) 1658.
[9] Idem, Physical Surfaces (Academic Press, London)

1970, chapitre 6.
[10] PETHICA, B. A., PETHICA, T. J. P., Proc. Intern.

Congr. Surf. Activity (2nd, London) 3 (1957)
131.

[11] JOANNY, J. F., DE GENNES, P. G., C. R. Acad. Sci.
Paris 299 II (1984) 279.

[12] Idem, ibid. 303 II (1986) 337.
[13] DE GENNES, P. G., Rev. Mod. Phys. 57 (1985) 827.
[14] SHANAHAN, M. E. R., DE GENNES, P. G.,

Adhes.11, Ed. K. W. Allen (Elsevier Appl. Sci.
Pub., London) 1987, chapitre 5.

[15] SHANAHAN, M. E. R., J. Phys. D 20 (1987) 945.
[16] Idem, J. Adhes. 18 (1985) 247.
[17] Idem, ibid. 20 (1987) 261.
[18] DussAN V, E. B., Ann. Rev. Fluid. Mech. 11 (1979)

371.

[19] TIMOSHENKO, S. P., GOODIER, J. N., Theory of

Elasticity, 3rd Ed. (Mc Graw-Hill, New York)
1970, p. 246.

[20] Idem, ibid., p. 288.

[21] DE GENNES, P. G., C. R. Acad. Sci. Paris 298 II

(1984) 111.
[22] SHANAHAN, M. E. R., ibid. 306 II (1988) 113.
[23] TRELOAR, L. R. G., The Physics of Rubber Elasticity

(Clarendon, Oxford) 1949, p. 66.
[24] CAHN, J. W., J. Chem. Phys. 66 (1977) 3667.


