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Microbiome community typing analyses have recently identified the Bacteroides2 (Bact2) 

enterotype, an intestinal microbiota configuration that is associated with systemic 

inflammation and has a high prevalence in loose stools1,2. Bact2 is characterized by a high 

proportion of Bacteroides, a low proportion of Faecalibacterium and low microbial cell 

densities1,2, and its prevalence varies from 13% in a general population cohort to as high 

as 78% in patients with inflammatory bowel disease2. Reported changes in stool 

consistency3 and inflammation status4 during the progression towards obesity and 

metabolic comorbidities led us to propose that these developments might similarly 

correlate with an increased prevalence of the potentially dysbiotic Bact2 enterotype. 

Here, by exploring obesity-associated microbiota alterations in the quantitative faecal 

metagenomes of the cross-sectional MetaCardis Body Mass Index Spectrum cohort 

(n = 888), we identify statin therapy as a key covariate of microbiome diversification. By 

focusing on a subcohort of participants that are not medicated with statins, we find that 

the prevalence of Bact2 correlates with body mass index, increasing from 3.90% in lean 

or overweight participants to 17.73% in obese participants. Systemic inflammation levels 

in Bact2-enterotyped individuals are higher than predicted on the basis of their obesity 

status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe that 

obesity-associated microbiota dysbiosis is negatively associated with statin treatment, 

resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese participants. 

This finding is validated in both the accompanying MetaCardis cardiovascular disease 

dataset (n = 282) and the independent Flemish Gut Flora Project population cohort 

(n = 2,345). The potential benefits of statins in this context will require further evaluation 

in a prospective clinical trial to ascertain whether the effect is reproducible in a 

randomized population and before considering their application as microbiota-

modulating therapeutics. 

Indications that alterations in the faecal microbiome are linked to the development of obesity5 

have resulted in intense research efforts since the early days of metagenomics. However, 

developing a comprehensive blueprint of an obesity-associated microbiota constellation has 

proved challenging6. Although compositional observations still remain inconclusive7, obesity 

and obesity-related comorbidities have clearly been associated with alterations in the intestinal 

microbiota, including lowered faecal-community richness and reduced proportional 

abundances of butyrate producing bacteria7–9. 
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Cross-sectional microbiome-association studies are inherently limited regarding the 

inference of causality, and are potentially biased by unaccounted confounders. However, they 

remain highly suitable for explorative analyses, as they enable the scale requirements imposed 

by the moderate effect-sizes10 to be met with relative ease. As part of the European Union 

MetaCardis project, a large-scale observational cohort study was set up to investigate the role 

of gut microorganisms in the progression of cardio-metabolic diseases through a combination 

of metagenomic, metabolomic and clinical approaches (http://www.metacardis.net). 

Recruitment efforts resulted in the enrolment of more than 2,000 participants (Supplementary 

Fig. 1) and involved, amongst others, the assembly of a transnational n = 888 Body Mass Index 

Spectrum cohort (BMIS; median BMI = 31.5 kg m−2, range = 18.0–73.3; Supplementary 

Tables 1, 2). Faecal samples were analysed using a quantitative microbiome profiling pipeline1 

adapted for shotgun metagenomics data and were subsequently annotated with customized 

metabolic modules11 (Supplementary Table 3). Because more than 42% of BMIS participants 

reported taking at least one type of medication at the time of sampling, we assessed the potential 

confounding effect of the most frequently disclosed therapeutics (those consumed by more than 

10% of participants; Extended Data Fig. 1a, Supplementary Table 1) on the association 

between microbiota and obesity; this was achieved by evaluating their explanatory power on 

relative genus-level microbiome variation as compared with the effect-sizes of obesity 

parameters and host variables constituting the International Diabetes Federation consensus 

definition of metabolic syndrome12 (Supplementary Table 4). Statins were identified as the 

drugs with largest explanatory power, contributing to genus-level microbiome variation 

beyond the effect of obesity-related parameters and metabolic syndrome features (n = 869, 

stepwise distance-based redundancy analysis (dbRDA), R2 = 0.24%, adjusted P value 

(Padj) = 0.032; Extended Data Fig. 1b, c). Statin-medicated participants (n = 106) were most 

commonly prescribed simvastatin (48%; 31% atorvastatin, 21% other statins), which had an 

effect on microbiome variation similar to that of general statin intake (Extended Data Fig. 1d, 

Supplementary Table 4). To enable an—in terms of medication—least-confounded evaluation 

of BMI–microbiome associations, statin-medicated participants were excluded from the 

explorative analyses presented below. 

In accordance with the premise of the analysis, within the n = 782 non-statin-medicated 

BMIS cohort (Supplementary Table 1), we found that BMI correlated both with changes in 

stool consistency (higher BMI values were associated with looser stools, as assessed using the 

Bristol Stool Scale; n = 772, Spearman’s ρ = 0.16, Padj = 9.13  10−6) and with host 

http://www.metacardis.net/
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inflammation markers (for example, serum levels of highly sensitive C-reactive protein 

(hsCRP), n = 763, Spearman’s ρ = 0.70, Padj = 1.60  10−113; Fig. 1a, Supplementary Table 5). 

Regarding metadata variables that define obesity or metabolic syndrome, only BMI, fat mass 

percentage and serum fasting triglycerides were found to explain a both significant and non-

redundant fraction of compositional microbiome variation (n = 764, stepwise dbRDA, 

R2 = 6.22% (Padj = 1.0  10−4), 1.15% (1.0  10−4) and 0.39% (0.009), respectively; Fig. 1b, c, 

Supplementary Table 6). All three covariates correlated with microbiome gene richness 

(n = 771, Spearman’s ρ = −0.45 to −0.26, Padj = 4.0  10−39 to 1.6  10−13), a proxy for 

microbial biodiversity proposed as a marker of metabolic health in obese individuals8, and with 

faecal microbial load (n = 771, Spearman’s ρ = −0.17 to −0.13, Padj = 4.1  10−6 to 3.1  10−4; 

Extended Data Fig. 2, Supplementary Table 7). Additionally, BMI, fat mass percentage and 

triglycerides could all be linked to quantitative variation in specific microbiome features, in 

terms of composition as well as metabolic potential (Supplementary Table 8, Supplementary 

Fig. 2). Notable associations included the decrease in Akkermansia13—which is associated with 

metabolic health—with increasing BMI (n = 432, Spearman’s ρ = −0.23, Padj = 6.8  10−9), 

alongside an increase in, for example, Acidaminococcus spp. (n = 163, Spearman’s ρ = 0.23, 

Padj = 5.8  10−9), a genus that has previously been linked to body mass in a large Korean 

cohort14. The abundance of Faecalibacterium—a genus with potential anti-inflammatory 

properties15—was negatively correlated with all three parameters assessed, but was most 

closely associated with serum triglyceride levels (n = 753, Spearman’s ρ = −0.16, Padj = 2.5  

10−4). Covariation patterns between BMI, fat mass percentage or triglyceride levels and gut-

microbial metabolic modules consisted nearly exclusively of negative correlations 

(Supplementary Table 8), reflecting the accompanying overall decrease in total microbial load 

(Supplementary Table 7). Among the features that decrease with all three variables, we 

highlight that the variation in the butyryl-CoA–acetate CoA-transferase pathway16—the most 

common butyrate production pathway in colon bacteria (n = 771, Spearman’s ρ = −0.27 to 

−0.20, Padj = 3.1  10−13 to 6.0  10−8; Extended Data Fig. 3a–c)—is in line with previous 

reports linking this pathway with metabolic health8. The metabolism of microbiota-derived 

butyrate by colonocytes is essential for the maintenance of hypoxic conditions within the colon 

environment17; and the disruption of microbial butyrate production has been suggested to 

induce low-diversity gut microbiota dysbiosis18. 

To investigate a potential association between BMI and the prevalence of faecal 

microbiome community constellations, we enterotyped the BMIS cohort using Dirichlet 
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multinomial mixtures on genus-level molecular operational taxonomic unit (mOTU) profiles. 

By applying probabilistic models to group samples that potentially originate from the same 

community, stratification based on Dirichlet multinomial mixtures reproducibly identifies 

microbiome constellations across datasets without making any claims regarding the putative 

discrete nature of the strata detected. Our analyses confirmed previous reports of microbiome 

variation centred around four enterotypes1,2,19 (Fig. 1b, Extended Data Fig. 4a, b), hereafter 

termed Ruminococcaceae (Rum), Bacteroides1 (Bact1), Bacteroides2 (Bact2) and Prevotella 

(Prev) on the basis of their respective genus-level proportional abundance profiles (Extended 

Data Fig. 4c). Cell counts differed between enterotypes1, with the low-richness Bact2 samples 

(n = 782, Kruskal–Wallis, χ2 = 325.65, Padj = 5.5  10−70) also exhibiting the lowest microbial 

loads (n = 771, Kruskal–Wallis, χ2 = 80.14, Padj = 2.9  10−17; Fig. 2a, Supplementary Table 

9). 

A quantitative compositional and functional analysis of the differences between 

enterotypes aligned with previous reports11 (Supplementary Table 10). Further to the findings 

highlighted above, we found that Bact2 communities displayed the lowest abundances of 

Akkermansia (n = 771, Kruskal–Wallis, χ2 = 141.12, Padj = 2.0  10−29) and of 

Faecalibacterium (n = 771, Kruskal–Wallis, χ2 = 112.73, Padj = 1.7  10−23), as well as a 

decreased butyrate production potential (n = 771, Kruskal–Wallis, χ2 = 167.12, Padj = 4.7  

10−35; Extended Data Fig. 3d). Whereas no significant differences in Acidaminococcus levels 

could be noted between enterotypes (n = 771, Kruskal–Wallis, χ2 = 6.47, Padj = 0.12), taxa 

such as Eggerthella—a genus that is considered part of a normal microbiota but is also linked 

to gastrointestinal infections as well as bacteraemia20—was found to occur in higher absolute 

numbers against the background of overall reduced microbial load, as observed in Bact2 

communities (n = 771, Kruskal–Wallis, χ2 = 224.95, Padj = 4.1  10−47; Extended Data Fig. 5a, 

b, Supplementary Table 10). Co-abundance gene group analyses additionally indicated 

enterotype differentiation at the species level (Supplementary Table 11). For example, in 

Bact2-enterotyped communities, the Bacteroides fraction was observed to be proportionally 

depleted in Bacteroides caccae (n = 768, Kruskal–Wallis, χ2 = 78.40, Padj = 1.3  10−15) and 

Bacteroides cellulosilyticus (n = 768, Kruskal–Wallis, χ2 = 64.79, Padj = 5.3  10−13) when 

compared with Rum, Prev and Bact1 samples. By contrast, it seemed to be enriched in 

Bacteroides fragilis (n = 768, Kruskal–Wallis, χ2 = 65.26, Padj = 3.5  10−11; Extended Data 

Fig. 6, Supplementary Table 11), which is considered to be among the most pathogenic and 

immunomodulatory of the Bacteroides species21,22. 
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The prevalence of enterotypes along a gene-richness axis in the non-statin-medicated 

cohort confirmed previous observations of a bimodal distribution8; however, the Bact2 

community type enabled further refinement of richness stratifications through the 

deconvolution of overlapping peaks (Fig. 2b). The prevalence of Bact2 was found to increase 

with BMI, from 3.90% among lean or overweight participants (BMI < 30) to 17.73% among 

obese participants (BMI ≥ 30) (n = 782, binomial logistic regression, relative risk = 1.05, 

P = 1.2  10−7, where relative risk can be interpreted as the scale factor necessary to obtain the 

prevalence of the Bact2 enterotype after a unit increase in BMI; Fig. 2c; Supplementary Table 

12). Notwithstanding methodological differences, this finding was validated in the 

independent, amplicon-sequenced Flemish Gut Flora Project10 dataset (FGFP, n = 2,051; 

excluding statin-medicated participants; binomial logistic regression, relative risk = 1.03, 

P = 9.3  10−3; Fig. 2c). In line with previous findings from the FGFP2, Bact2 hosts from the 

BMIS cohort displayed more pronounced systemic inflammation levels when compared to 

non-Bact2 participants, here assessed through serum hsCRP concentrations (Kruskal–Wallis, 

χ2 = 48.61, P = 1.37  10−10; Extended Data Fig. 7a; Supplementary Table 13). Notably, the 

inflammatory tone of Bact2 hosts exceeded the levels anticipated on the basis of their obesity 

status (n = 86, one-sample location test on residuals of non-statin-medicated BMIS linear 

regression between hsCRP and BMI, Cohen’s d = 0.27, Padj = 0.018; Fig. 2e, Extended Data 

Fig. 7b, Supplementary Table 14). In a multivariate model, the BMI and the Bact2 carrier status 

of the participants both provided a non-redundant contribution to increased systemic 

inflammation levels, corresponding to a 1.04 (n = 763, linear multivariate model, Padj = 2.2  

10−16) and a 1.16 (Padj = 0.004) unit increase risk in serum hsCRP levels, respectively 

(Supplementary Table 15). These observations support the qualification of the Bact2 

microbiota configuration as an (low-grade) inflammation-associated, potentially dysbiotic 

enterotype1,2. 

Whether initiating or sustaining pro-inflammatory processes and metabolic derailment, 

countering dysbiosis of the gut ecosystem has been suggested to contribute to the maintenance 

of host health and the containment of obesity-related comorbidities. However, no effective 

microbiome modulation strategy has yet been established. Here, within the limitations of the 

cross-sectional study design, we identify statin treatment as a potential lever in the management 

of dysbiosis. In contrast to the findings from the non-statin-medicated participants, we 

observed that Bact2 prevalence no longer significantly increased with BMI in statin-medicated 

individuals (n = 106, binomial logistic regression, relative risk = 1.03, P = 0.60). Among 
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obese individuals, only 5.88% of statin-medicated individuals were enterotyped as Bact2, 

compared with 17.73% of non-statin-medicated participants (Fisher’s two-tail exact test, log 

likelihood = −2.88, P = 0.028; Fig. 3a, Supplementary Table 16). When exploring whether 

accounted clinical parameters, anticipated treatment responses, co-medication or key 

microbiome covariates10 could be associated with the observed differences in Bact2 

prevalence, we noted that statin-medicated obese participants displayed ameliorated lipid 

metabolism (low-density lipoprotein (LDL)-cholesterol, n = 473, Mann–Whitney U-test, 

r = −0.17, Padj = 0.002) and inflammation status (hsCRP, n = 462, Mann–Whitney U-test, 

r = −0.23, Padj = 8.4  10−6; Supplementary Table 17)—both expected outcomes of statin 

therapy23. Besides minor differences in the incidence of concomitant drug intake (notably 

aspirin intake being more prevalent among statin-medicated participants; n = 474, Fisher’s 

two-tailed exact test, log likelihood = −17.36, Padj = 2.2  10−7) and glucose metabolism (lower 

HbA1c levels among non-statin-medicated participants, n = 474, Mann–Whitney U-test, 

r = 0.17, Padj = 0.001)—the latter being a known side effect of statin treatment24—the statin-

medicated subcohort was characterized as older (median age statin-medicated versus non-

statin-medicated, 61 versus 47; n = 474, Mann–Whitney U-test, r = 0.34, Padj = 1.4  10−11) 

and less obese (BMI 33.5 versus 40.8; n = 474, Mann–Whitney U-test, r = −0.25, Padj = 2.1  

10−6). However, among these significant covariates, and excluding variables that reflect 

pleiotropic effects of statins—that is, levels of LDL-cholesterol and inflammation markers—

only statin intake and blood HbA1c levels were shown to have a significant, non-redundant 

explanatory power for Bact2 prevalence (Supplementary Table 18), with the latter being 

associated with an increased probability of Bact2 carrier status (n = 472, multivariate binomial 

logistic regression, statin intake relative risk = 0.31, Padj = 0.013; HbA1c relative risk = 2.00, 

Padj = 0.009). Although 41% of BMIS participants reported taking non-statin drugs, (co-

)medication status did not affect the outcome of Bact2 prevalence analyses in obese 

participants (Extended Data Fig. 8). Low prevalence of the Bact2 enterotype among statin-

medicated individuals was validated in the accompanying MetaCardis cardiovascular disease 

dataset (non-diabetic patients with cardiovascular disease (CVD); Bact2 prevalence among 

statin-medicated versus non-statin-medicated participants, 4.72% versus 16.33%; n = 282, 

Fisher’s two-tailed exact test, log likelihood = −3.47, P = 0.008; Fig. 3b, Supplementary Table 

16). Here—and in accordance with observations in non-CVD disease cohorts1,2—increased 

Bact2 prevalence was not limited to obese non-statin-medicated patients with CVD, but could 

also be noted within the non-statin-medicated lean and overweight subgroup. In the 
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independent FGFP dataset—which targets an average representation of a Western population, 

and therefore covers a narrower BMI spectrum (n = 2,345; median BMI = 24.2, range = 16–

40)—we confirmed lowered Bact2 prevalence among statin-medicated individuals given their 

BMI (n = 2,345, multivariate binomial logistic regression, Statin | BMI, relative risk = 0.72, 

Padj = 0.045; Extended Data Fig. 9, Supplementary Table 16). Additional evidence—which is 

indicative of causality in statin-associated microbiota variation—is provided by a recent small-

scale intervention study in a rat model, which demonstrates reversion of microbiota alterations 

induced by a high-fat diet and hypercholesterolemia upon treatment with atorvastatin, resulting 

in an increased microbiome richness25. Although caution should be applied when extrapolating 

findings from the rodent microbiome to a human context, these results do demonstrate 

directionality in statin–microbiota associations, although the effect of atorvastatin (31% of 

statin-medicated participants) in the present BMIS cohort did not reach statistical significance 

(Extended Data Fig. 1, Supplementary Table 4). 

The cross-sectional nature of the MetaCardis dataset did not enable us to establish a 

causal chain of events that lead to a lower prevalence of the Bact2 enterotype among statin-

medicated individuals. Given the putatively independent effects of statin therapy on levels of 

serum hsCRP and LDL-cholesterol23, we modelled the association of both variables with Bact2 

prevalence for obese participants in the BMIS cohort. Although no significant effect of LDL-

cholesterol concentrations was found (n = 473, univariate binomial logistic regression, LDL-

cholesterol relative risk = 1.16, Padj = 0.15), lower hsCRP levels were associated with a lower 

prevalence of the Bact2 enterotype (n = 462, univariate binomial logistic regression, hsCRP 

relative risk = 2.11, Padj = 0.003; Supplementary Table 19). A multivariate model for the 

prediction of Bact2 prevalence—which covers treatment (statin intake), treatment outcome 

(hsCRP levels), as well as side effects of treatment (HbA1c concentrations)—indicated a 

significant additive contribution of statin therapy to the reduction of dysbiosis risk (n = 462, 

multivariate binomial logistic regression, Statin | (hsCRP and HbA1c) relative risk = 0.36, 

Padj = 0.039; Fig. 3c, Extended Data Fig. 10, Supplementary Table 19); this suggests that the 

effect of statins is greater than solely the attenuating effect on the inflammation status of the 

host. Nevertheless, the pleiotropic effect of statins on microbiome community constellations 

seemed to be closely associated with a concomitant effect on host inflammation levels. At this 

point, at least two mechanistic interpretations of our observations—or a combination of both—

remain possible (Fig. 3d). On one hand, aligning with the microbiota–inflammation hypothesis, 

statins could counteract the microbial contribution to inflammatory and metabolic obesity 
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comorbidities through (in)direct modulation of the microbiota. Consistent with this, in vitro 

studies have demonstrated that statins affect the growth of several gut microorganisms26. 

Conversely, the demonstrated anti-inflammatory effects of statins could alleviate gut host–

microbial interactions and enable the subsequent development of enterotypes that are not 

associated with inflammation. However, it should be stressed that the cross-sectional design of 

our study does not allow us to rule out potential confounding by indication (lower Bact2 

prevalence resulting from the specific condition that prompted statin prescription) or by 

unaccounted diagnosis-associated diet or lifestyle alterations (participants adopting health-

promoting and/or microbiota-modulating activities complementary to statin therapy). 

For many years, strategies for the modulation of microbiota have revolved around 

(next-generation) probiotics and prebiotics—introducing or promoting the growth of beneficial 

bacteria or bacterial consortia. It is only recently that a revived interest in the effect of small 

molecules and drugs on the colon ecosystem, as well as individual faecal isolates, has been 

noted26,27. Although we cannot rule out a potential effect of unaccounted confounders, nor can 

we infer causality from the associations observed, our analyses reveal that statin therapy is 

linked with a lowered prevalence of a pro-inflammatory microbial community type in obese 

individuals. Our results align well with previous, sparse reports of a beneficial effect of statins 

in pathologies in which a role of the gut microbiota has been postulated28—including 

interventional29 as well as epidemiological30 evidence in Crohn’s disease, a condition that has 

previously been linked to a high prevalence of Bact21,2. Within the limitations of the cross-

sectional nature of the cohorts analysed—and emphasizing the need for interventional follow-

up research using a randomized, double-blind, placebo-control study design to exclude 

potential confounding by indication—our findings suggest statins as a possible target for the 

development of future drug-based strategies for the modulation of the intestinal microbiota. 

Online content Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; details of author 

contributions and competing interests; and statements of data and code availability are available at 
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Fig. 1 | Microbiome variation in the non-statin-medicated BMIS cohort. a, Correlations 

between BMI and inflammation levels (top; serum hsCRP, n = 763 biologically independent 

samples, Spearman’s ρ = 0.70, Padj = 1.60  10−113) and faeces consistency (bottom; Bristol 

Stool Scale (BSS), n = 772 biologically independent samples, Spearman’s ρ = 0.16, 

Padj = 9.13  10−6). Adjustment for multiple testing (Padj) was performed using the Benjamini–

Hochberg method. b, Principal coordinates analysis of inter-individual differences (genus level 

Bray–Curtis dissimilarity) in the microbiome profiles of the non-statin-medicated BMIS cohort 

(open circles, coloured by enterotype; Extended Data Fig. 4), with the rest of the MetaCardis 

dataset in the background (n = 1,240 biologically independent samples, grey dots). Arrows 

represent the effect sizes of a post hoc fit of significant microbiome covariates identified in the 

multivariate model in c. c, Variables correlating most to microbiome compositional variation 

in the non-statin-medicated BMIS cohort (dbRDA, genus-level Bray–Curtis dissimilarity), 

either independently (univariate effect sizes in black) or in a multivariate model (cumulative 

effect sizes in grey). The cut-off for significant non-redundant contribution to the multivariate 

model is represented by the red dashed line. In a, b, the body of the box plot represents the first 

and third quartiles of the distribution, the line represents the median, and the whiskers extend 

from the quartiles to the last data point within 1.5× IQR, with outliers beyond. 
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Fig. 2 | Characterization of enterotypes and variation in prevalence with BMI in the non-

statin-medicated BMIS cohort. a, Distribution of faecal microbial loads across enterotypes, 

showing decreased microbial density in the Bact2 enterotype (n = 771 biologically independent 

samples, Kruskal–Wallis with post hoc Dunn test, ***Padj < 0.001; **Padj < 0.01; 

Supplementary Table 9). b, Distribution of gene richness between enterotypes, with low 

richness samples corresponding to the Bact2 community constellation (n = 782 biologically 

independent samples). c, Variation in the prevalence of enterotypes with the BMI of 

individuals, showing the significant increase in Bact2 prevalence with obesity (n = 782 

biologically independent samples, binomial logistic regression, Bact2 relative risk = 1.05, 

P = 1.2 10−7). Coloured areas represent the stacked enterotype prevalence along the BMI 

gradient, with lines provided by multivariate logistic regression of enterotypes by BMI, and 

data points (light grey) jittered at the corresponding BMI. d, Validation of the association 

between BMI and Bact2 prevalence in the independent FGFP dataset (n = 2,051 participants, 

excluding statin-medicated individuals; binomial logistic regression, relative risk = 1.03, 

P = 9.4  10−3). e, Inflammatory levels are higher in Bact2 carriers than would be expected on 

the basis of BMI, as shown by the distribution of residuals of the linear regression between 

serum CRP and BMI (n = 763 biologically independent samples, one-sample location test 

(dotted line, null hypothesis; mean = 0), Cohen’s d = 0.27, *Padj = 0.018). In a, e, the body of 

the box plot represents the first and third quartiles of the distribution, the line represents the 

median, and the whiskers extend from the quartiles to the last data point within 1.5× IQR, with 

outliers beyond. 
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Fig. 3 | Association between the prevalence of the Bact2 enterotype, obesity and statin 

intake. a, Bact2 prevalence in obese (BMI ≥ 30) compared with lean and overweight 

(BMI < 30) individuals in the BMIS cohort (n = 888), stratified according to statin medication 

status. Statin-medicated obese individuals display a significantly lower prevalence of Bact2 as 

compared with non-statin-medicated individuals (bar plots; statin-medicated versus non-statin-

medicated, 5.88% versus 17.73%, n = 888 biologically independent samples, Fisher’s two-tail 

exact test, log likelihood = −2.88, *P = 0.028). b, The lower Bact2 prevalence among statin-

medicated compared with non-statin-medicated individuals is validated in the MetaCardis 

cardiovascular disease cohort, comprising n = 282 non-diabetic patients with cardiovascular 

disease (CVD; statin-medicated versus non-statin-medicated, 4.72% versus 16.33%, n = 282 

biologically independent samples, Fisher’s two-tail exact test, log likelihood = −3.47, 

**P = 0.008). c, Relative risk of obese BMIS individuals (n = 474 participants) harbouring a 

Bact2 enterotype as a function of statin intake and serum biomarkers for potential (side) effects 

of statins (lipidemic control (LDL-cholesterol), inflammatory modulation (hsCRP) and glucose 

regulation (HbA1c)). Variables were modelled independently or together in univariate or 

multivariate models, respectively (Supplementary Table 19). The latter suggests that statin 

intake remains associated with a reduction in dysbiosis risk after partialing-out hsCRP and 

HbA1c (n = 462 biologically independent samples, multivariate binomial logistic regression, 

Statin | (hsCRP and HbA1c) relative risk = 0.36, Padj = 0.039). Adjustment for multiple testing 

(Padj) was performed on univariate tests using the Benjamini–Hochberg method (represented 

by black lines when significant (Padj < 0.05), or otherwise a dashed grey line (Padj = 0.15)). d, 

Graphical summary of the main results regarding the prevalence of the Bact2 enterotype, BMI 

and statin intake. In the present BMIS cohort, we identify Bact2 as an inflammation-associated 

microbiome community constellation, with increasing prevalence along a BMI gradient in non-
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statin-medicated individuals. Statin therapy is associated with attenuated inflammation and a 

Bact2 prevalence comparable to that observed among lean and overweight subjects. Circles 

represent individual host configurations in terms of body mass, microbiota community type, 

and inflammation status. 
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METHODS 

Sample collection 

Ethical compliance 

Ethical approval was obtained from the Ethics Committee CPP Ile-de France, Ethics 

Committee at the Medical Faculty at the University of Leipzig, and the Ethical Committees 

of the Capital Region of Denmark. The study protocol (also comprising an interventional arm 

which is not part of the analysis presented) was registered at https://clinicaltrials.gov (study 

number NCT02059538). The study design (observational cohort study) complied with all 

relevant ethical regulations, aligning with the Helsinki Declaration and in accordance with 

European privacy legislation. All participants provided written informed consent. 

Study cohort 

The n = 888 transnational Body Mass Index spectrum (BMIS) cohort was assembled as part 

of the overall MetaCardis recruitment efforts (Supplementary Fig. 1). Participants were 

recruited between 2013 and 2015 in the clinical departments of the Pitié-Salpêtrière Hospital 

(Paris, France), the Integrated Research and Treatment Center for Adiposity Diseases 

(Leipzig, Germany), and in the Novo Nordisk Foundation Center for Basic Metabolic 

Research (Copenhagen, Denmark). Potential participants were evaluated for suitability 

according to standardized inclusion and exclusion criteria across the three recruitment 

centres. Exclusion criteria included history of abdominal cancer/radiation therapy on the 

abdomen, history of intestinal resection (except for appendectomy), acute or chronic 

inflammatory or infectious diseases (including hepatitis C virus, hepatitis B virus and HIV), 

history of organ transplantation or receiving immunosuppressive therapy, severe kidney 

failure (MDRD glomerular filtration rate < 50 ml (min 1.73m2)−1), or drug or alcohol 

addiction. All study participants had to be free of any antibiotic use in the three months 

before inclusion. The BMIS (n = 888) cohort consisted of a MetaCardis sub-cohort, defined 

by exclusion of cardiovascular patients (defined in the MetaCardis consortium study protocol 

as patient groups 4, 5, 6 and 7) and any individual with type-2 diabetes. Diagnosis of type-2 

diabetes was defined using the American Diabetes Association definition: fasting glycemia 

>6.9 mmol l−1 and/or 2 h values in the oral glucose tolerance test >11 mmol l−1 and/or 

haemoglobin A1c (HbA1c, glycated haemoglobin) ≥ 6.5% and/or use of any antidiabetic 

treatment. The MetaCardis project sample size calculation was focused on the objectives of 

https://clinicaltrials.gov/
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multi-omics integration and metagenomic-wide metabolome-wide association study 

(MW2AS) across groups of patients ranging different cardiometabolic phenotypes. On the 

basis of unpublished data from consortium partners, a sample size of 2,000 individuals was 

deemed required to detect a significant association (with and without concomitant risk 

factors). No specific sample size calculation was performed before BMIS sub-cohort 

recruitment. On the basis of the baseline prevalence of Bact2 enterotype (with baseline 

defined as lean/overweight individuals P(Bact2) = 14%) in the amplicon-sequenced FGFP 

cohort, the present study cohort size enabled us to identify a minimum difference of 7.4% in 

Bact2 prevalence between the two groups: lean or overweight (n = 414) versus obese 

(n = 474) as significant (power = 80%, alpha = 0.05). 

Validation cohorts 

MetaCardis Cardiovascular Disease (CVD, n = 282). The CVD cohort was recruited as 

described above as part of the MetaCardis cohort, and corresponds to patients with 

cardiovascular disease and without diabetes, defined in the MetaCardis consortium study 

protocol as patient groups 4, 5, 6 and 7. Flemish Gut Flora Project (FGFP, n = 2,345). The 

FGFP cohort is part of a population-level cross-sectional sampling of the Flemish population 

described in ref. 10 and re-sequenced with dual-indexed HiSeq amplicon sequencing as 

analysed in ref. 31. Ethical approval for the FGFP sampling was granted by the Commissie 

Medische Ethiek UZ-VUB (B.U.N.143201215505) and the Ethische Commissie Onderzoek 

UZ/KU Leuven (S58125). The inclusion and exclusion criteria defined for recruitment of the 

MetaCardis cohort and, more specifically, the BMIS subset, were applied to the FGFP: 

inclusion age between 18 and 75 years old, exclusion of acute or chronic inflammatory or 

infectious diseases (notably diagnosis of inflammatory bowel disease and recent 

gastroenteritis), and exclusion of patients with diabetes—defined as having a diagnosis of 

diabetes or increased glycated haemoglobin A1c levels (HbA1c ≥ 6.5%), or the use of any 

antidiabetic treatment. The disease diagnoses used for exclusion were reported by the general 

practitioners of the participants. The medical questionnaire and blood sampling for analysis 

(including HbA1c) were performed within one week of faecal sampling. 

Sample collection 

Faeces were collected according to International Human Microbiome Standards (IHMS) 

guidelines (modified SOP 04 V1 (collection without anaerobic bag)). In brief, participants 

were handed a collection kit, collected samples at home, and stored them temporarily (less 
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than 48 h) at −20 °C until they were transported frozen (on dry ice) to the collection centre 

(Pitié-Salpêtrière Hospital (France), University Hospital of Leipzig (Germany) or 

Frederiksberg Hospital (Denmark)). Blood samples were collected during the clinical 

examination visit after overnight fasting. 

Metadata collection 

Participant phenotyping was performed according to standardized operational procedures and 

included the acquisition of biological samples and the assessment of clinical parameters and 

anthropometrics including age, gender, smoking status, weight, height, BMI, blood pressure, 

body composition, and waist and hip circumference measurements. Body fat mass and fat-

free mass were determined through bioelectrical impedance analysis. Systolic and diastolic 

blood pressure were measured using a mercury sphygmomanometer (measures were taken 

three times on each arm; the mean of the last two measurements on the right arm was used 

for analyses). During the interview at the clinical visit, a detailed list of prescribed 

medications (based on direct recall or medication list when provided) as well as the medical 

history of the patient was compiled. Subjects were questioned on adherence to their 

medication plan. Five-year antibiotic intake was assessed by recall in France and Denmark, 

whereas participants in Germany were requested to provide medication anamnesis from their 

general practitioners or physicians (drugs prescribed over the past five years). All medication 

data was curated jointly by the study physicians at each centre so as to harmonize 

presentation. The metadata necessary for reproducing the results presented in the article are 

available in Supplementary Table 2. 

Sample analyses 

Blood analyses 

Blood metabolic markers were assessed in local routine laboratories. Analyses of adipokines, 

measures of glycaemia, inflammatory markers, and free fatty acids were centralized; plasma 

and serum samples were stored at the respective clinical centres at −80 °C until shipment to a 

central measuring facility. Blood cell counts (leukocytes, monocytes, neutrophils and 

immune cells) were measured using flow cytometry as described previously32. Fasting 

glucose, total cholesterol, high-density-lipoprotein cholesterol, triglycerides and HbA1c were 

measured using enzymatic methods. LDL-cholesterol concentrations were measured 

enzymatically for German participants; values for French and Danish subjects were 

calculated using the Friedwald equation. Kinetic assays based on coupled enzyme systems 
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were used to measure alanine aminotransferase, aspartate aminotransferase and γ-

glutamyltransferase levels. Free fatty acid concentrations were assessed by photometrics 

(Diasys Diagnostic Systems). A chemiluminescence assay (Insulin Architect, Abbott) was 

used to measure serum insulin and C-peptide levels in a fasting state and at 30 and 120 min 

during an oral glucose tolerance test. Serum leptin was determined using the Human Leptin 

Quantikine ELISA Kit (R&D Systems); adiponectin was measured using an ELISA sandwich 

assay (HMW & Total Adiponectin ELISA Kit, ALPCO). Levels of hsCRP were determined 

by an IMMAGE automatic immunoassay system (Beckman-Coulter). Blood concentrations 

of high-sensitivity interleukin 6 (hsIL6) and CD14 were measured using the Human IL-6 

Quantikine HS and the Human Quantikine ELISA Kit (R&D Systems), respectively. A 

Luminex assay (ProcartaPlex Mix&Match Human 13-plex, eBioscience) was set up to 

measure the following cytokines: interferon gamma-induced protein 10 (IP-10), C-X-C motif 

chemokine ligand 5 (CXCL5), CC-Chemokin ligand 2 (CCL2), Eotaxine, Interleukine 7 (IL-

7), macrophage migration inhibitory factor (MIF), macrophage inflammatory protein 1β 

(MIP 1β), stromal cell-derived factor 1 (SDF1) and vascular endothelial growth factor A 

(VEGFA). 

Metagenomic analyses of faecal samples 

Total faecal DNA was extracted following the International Human Microbiome Standards 

(IHMS) guidelines (SOP 07 V2 H) and sequenced using an Ion proton system (Thermo 

Fisher Scientific) resulting in 23.3 ± 4.0 million (mean ± s.d.) 150-bp single-end reads per 

sample on average. Reads were cleaned using AlienTrimmer (v0.2.4)33 to remove resilient 

sequencing adapters and to trim low quality nucleotides at the 3′ side (quality and length cut-

off of 20 and 45 bp, respectively). Cleaned reads were subsequently filtered from human and 

potential food contaminant DNA (using human genome RCh37-p10, Bos taurus and 

Arabidopsis thaliana with an identity score threshold of 97%). Gene abundance profiling was 

performed using the 9.9-million-gene integrated reference catalogue of the human 

microbiome34. Filtered high-quality reads were mapped with an identity threshold of 95% to 

the 9.9-million-gene catalogue using BowTie (v.2.2.6) included in the METEOR software35. 

A gene abundance table was generated by means of a two-step procedure using METEOR. 

First, the uniquely mapping reads (reads mapping to a single gene in the catalogue) were 

attributed to their corresponding genes. Second, shared reads (reads that mapped with the 

same alignment score to multiple genes) were attributed according to the ratio of their unique 

mapping counts. The gene abundance table was processed for rarefaction and normalization 
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and further analysis using the R package MetaOMineR36. To decrease technical bias due to 

different sequencing depth and avoid any artefacts of sample size on low-abundance genes, 

read counts were rarefied. The gene abundance table was rarefied to 10 million reads per 

sample by random sampling of 10 million mapped reads without replacement. The resulting 

rarefied gene abundance table was normalized according to the FPKM (fragments per 

kilobase of transcript per million mapped reads) strategy (normalization by the gene size and 

the number of total mapped reads reported in frequency) to give the gene abundance profile 

table and binned by functional and phylogenetic categories as carried out within the 

MOCAT2 framework37. 1,436 metagenomic species (MGS; co-abundant gene groups with 

more than 500 genes corresponding to microbial species) were clustered from 1,267 human 

gut metagenomes used to construct the 9.9-million-gene catalogue34, as described 

previously38. MGS abundances were estimated as the mean abundance of the 50 genes 

defining a robust centroid of the cluster (if more than 10% these genes gave positive signals). 

MGS taxonomical annotation was performed using all genes by sequence similarity using 

NCBI blast N; a species-level assignment was given if more than 50% of the genes matched 

the same reference genome of the NCBI database (November 2016 version) at a threshold of 

95% of identity and 90% of gene length coverage. The remaining MGS were assigned to a 

given taxonomical level from genus to superkingdom if more than 50% of their genes had the 

same level of assignment. Microbial gene richness (gene count) was calculated by counting 

the number of genes that were detected at least once in a given sample, using the average 

number of genes counted in ten independent rarefaction experiments. 

Determination of faecal microbial load 

Microbial loads of faecal samples of were determined as described previously1,2. In brief, 0.2 

g frozen (−80 °C) aliquots were dissolved in physiological solution (9 g l−1 NaCl; Baxter 

S.A.) to a total volume of 100 ml. Subsequently, the slurry was diluted 1,000 times. Samples 

were filtered using a sterile syringe filter (pore size 5 μm; Sartorius Stedim Biotech). Next, 

1 ml of the microbial cell suspension obtained was stained with 1 μl SYBR Green I (1:100 

dilution in DMSO; shaded 15 min incubation at 37 °C; 10,000 concentrate, Thermo Fisher 

Scientific). The flow cytometry analysis was performed using a C6 Accuri flow cytometer 

(BD Biosciences)39. Fluorescence events were monitored using the FL1 533/30 nm and 

FL3 > 670 nm optical detectors. In addition, forward and sideward-scattered light was also 

collected. The BD Accuri CFlow (v.1.0.264.21) software was used to gate and separate the 

microbial fluorescence events on the FL1/FL3 density plot from the faecal sample 
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background. A threshold value of 2,000 was applied on the FL1 channel. The gated 

fluorescence events were evaluated on the forward/sideward density plot, so as to exclude 

remaining background events. Instrument and gating settings were kept identical for all 

samples (fixed staining/gating strategy39; Supplementary Fig. 2). On the basis of the exact 

weight of the aliquots analysed, cell counts were converted to microbial loads per gram of 

faecal material. 

Analyses of faecal metagenomes 

Quantitative microbiome profiling 

Phylogenetic quantitative microbiome profiles were built using a modified version of the 

pipeline described in ref. 1. In short, sample abundance profiles were downsized to even 

sampling depth, defined as the ratio between sampling size (average mOTU marker genes 

coverage40) and microbial load (average total cell count per gram of frozen faecal material). 

The sequencing depth of each sample was rarefied to the level necessary to equate the 

minimum observed sampling depth in the cohort. The rarefied mOTU abundance matrix was 

converted into numbers of cells per gram and quantitative microbiome profiling matrices 

created for phylum to species levels. Functional quantitative microbiome profiles and 

quantitative co-abundance gene groups38 profiles were constructed by multiplication of 

relative proportions to an indexing factor proportional to the microbial cell densities of the 

samples (load), defined as the sample load divided by the median load over the entire 

MetaCardis cohort. The processed microbiome profiles can be downloaded at 

http://raeslab.org/software/BMIS/. 

Customized module analyses 

Customized module sets included previously described gut metabolic modules11 covering 

bacterial and archaeal metabolism specific to the human gut environment with a focus on 

anaerobic fermentation processes, expanded with a specific set of six modules focusing on 

bacterial trimethylamine metabolism41. Additionally, following a previously published 

strategy to build manually curated gut-specific metabolic modules11,31, we constructed a new 

set of modules to describe and map microbial phenylpropanoid metabolism (phenylpropanoid 

metabolism modules, PPM) from shotgun metagenomic data. This set of 20 modules, 

following KEGG syntax, is provided in the Supplementary Information, including references 

to the original publications in which the pathways were described (Supplementary Table 3). 

Abundances of customized modules were derived from the orthologue abundance tables 

http://raeslab.org/software/BMIS/
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using Omixer-RPM v1.0 (https://github.com/raeslab/omixer-rpm)11,42. The coverage of each 

metabolic variant encoded in a module was calculated as the number of steps for which at 

least one of the orthologous groups was found in a metagenome, divided by the total number 

of steps constituting the variant. The presence or absence of a module was identified with a 

detection threshold of more than 66% coverage to provide tolerance to misannotations and 

missing data in metagenomes. Module abundance was calculated as the median of ortholog 

abundances in the pathway with maximum coverage. 

Statistical analyses 

Statistical analyses were performed in R using the following packages: vegan43 v.2.5-3, 

phyloseq44 v.1.26.0, FSA45 v.0.8.24, coin46 v.1.2-2, DirichletMultinomial47 v.1.24.0, Hmisc48 

v.4.1-1, car49 v.3.0-2, sjstats50 v.0.17.5, and nnet51 v.7.3-12. All statistical tests used were 

two-sided. All P values were corrected for multiple testing when appropriate using the 

Benjamini–Hochberg method (Padj), only Padj < 0.05 were reported as significant. 

Faecal microbiome derived features and visualization 

Observed richness was calculated using phyloseq44. Microbiome inter-individual variation 

was visualized by principal coordinates analysis using Bray–Curtis dissimilarity on the 

genus-level relative abundance matrix with Hellinger transformation. 

Partitioning of microbiome variation across clinical explanatory variables 

The estimation of the explanatory power of clinical features regarding relative, genus-level, 

microbiome profiles variation was performed using univariate or multivariate stepwise 

distance-based redundancy analysis as implemented in the R package vegan43. 

Microbiome community typing 

Enterotyping (or community typing) of the genus-level abundance microbial profiles with 

Hellinger transformation was performed on the basis of the Dirichlet multinomial mixtures 

(DMM) approach implemented in the R package DirichletMultinomial, as described in ref. 52 

on the whole of the n = 2,022 MetaCardis cohort. Although the dissimilarity/distance-based 

approaches were applied to screen for covariate-associated microbiome trends throughout the 

whole of the BMIS cohort, DMM-based stratification allows identification of covariates not 

only associated with the strata, but also linked to fluctuations in the prevalence of one (or 

more) particular microbiota constellation(s). This makes enterotyping a valuable strategy 

when assessing microbiome variation in pathologies that are not expected to be characterized 

https://github.com/raeslab/omixer-rpm


Publisher: NPG; Journal: Nature: Nature; Article Type: Biology Article 
 

Page 25 of 29 

by generalized dysbiosis with varying severity according to diagnosis53, but—by contrast—

by the increased occurrence of a single dysbiotic community type with prevalence depending 

on the condition studied1,2,31, as proposed here for obesity. 

Microbiome features and clinical features associations 

Taxa unclassified at the genus level or present in fewer than 20% of samples were excluded 

from the statistical analyses. Pearson or Spearman correlations were used, respectively, for 

linear or rank-order correlations between continuous variables, including genera abundances 

and metadata. The Mann–Whitney U-test was used to test median differences of continuous 

variables between two different groups. For more than two groups, the Kruskal–Wallis test 

with post-hoc Dunn test were used. Statistical differences in the prevalence of enterotypes 

between groups were evaluated using pairwise Fisher’s exact tests. Modelling the association 

between the prevalence of enterotypes (Bact1, Bact2, Prev, Rum) or Bact2 prevalence 

(Bact2 = Yes/No) and single (univariate) or multiple (multivariate) dependent variables 

(clinical metadata features) was performed using generalized linear models, namely 

multinomial or binomial logistic regression (for enterotypes or Bact2 prevalences, 

respectively) with significance evaluated by likelihood ratio tests using the R package car. 

Risk ratio estimates (and their confidence intervals) were retrieved using the R package 

sjstats, by conversion of the odds ratios of the generalized linear models54, the latter 

corresponding to exponential transformation of the model coefficients. 

Reporting summary 

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper. 

Data availability 

Raw amplicon sequencing data used in this study have been deposited in the EMBL-EBI 

European Nucleotide Archive (ENA) under accession number PRJEB37249. The metadata 

and processed microbiome data required for the reanalysis of results presented in the 

manuscript are respectively provided as Supplementary Table 2 and available for download 

at http://raeslab.org/software/BMIS/. For clinical cohort-related questions, contact K.C. 

  

http://www.ebi.ac.uk/ena/data/search?query=PRJEB37249
http://raeslab.org/software/BMIS/
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