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Abstract. In wireless communication, the signal of a typical broadcast
station is transmited from a broadcast center p and reaches objects at
a distance, say, R from it. In addition there is a radius r, » < R, such
that the signal originating from the center of the station is so strong
that human habitation within distance r from the center p should be
avoided. Thus every station determines a region which is an “annulus of
permissible habitation”. We consider the following station layout (SI)
problem: Cover a given (say, rectangular) planar region which includes
a collection of buildings with a minimum number of stations so that
every point in the region is within the reach of a station, while at the
same time no building is within the dangerous range of a station. We
give algorithms for computing such station layouts in both the one- and
two-dimensional cases.
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1 Introduction

In wireless communication we are interested in providing access to communi-
cation to a region (e.g. a city, a campus, etc) within which several sites (e.g.
buildings) are located. Closeness to stations may be undesirable in certain in-
stances, e.g. hospital or laboratory facilities, people with heart pace-makers, etc
(see Figure 1). Thus, although we are interested in providing communication ac-
cess everywhere, part of the buildings may need to be away from strong electronic
emissions of stations.

Cellular phones are radio receivers which operate in the ultra-high frequency
(UHF) band. They receive radio transmissions from a central base station (or



cell) at frequencies between 869 and 894 MHz and retransmit their radio signal
back to the base station at frequencies between 824 and 850 MHz. Stations emit
signals whose strength is inversely proportional to the square of the distance
from the station. It follows that the signal’s strength degrades as we move away
from the center of the station. This determines a threshold (1W is the currently
accepted value) beyond which the signal is sufficiently safe but still strong enough
to reach its desirable destination. A comprehensive study and survey of the
biological effects of exposure to radio frequency resulting from the use of mobile
and other personal communication services can be found in [9].

In this paper we consider broadcast station layouts in wireless communication
in which we take into account health hazards resulting from the closeness of
human habitation to the transmission station. Given such constraints we are
interested in minimizing the number of broadcast stations used. The buildings
are located within a region R, which for the sake of simplicity we assume to
be rectangular. In the most general case the buildings may be represented by
simple polygons with or without holes.

1.1 Formulation of the problem and notation

The parameters involved in transmissions for a typical station in the plane are
the transmission center p of the station, and positive real numbers r < R such
that

— R is the reachability range of the station, i.e. the signal transmitted from
the center p can reach any destination at distance R from the center.

— r is the dangerous range of the station, i.e. the strength of the transmit-
ted signal exceeds permissible health constraints within distance r from the
center.

Let d(-,-) be the given distance function. The disc D(p;r) = {z : d(z,p) < 7} is
the locus of points that are “too close” to the broadcast center p. Existing health
constraints make it advisable that human habitation is not allowed within the
disc D(p; ). At the same time the signal reception does not cause a health hazard
beyond distance r from the broadcast center of the station; moreover the signal
can reach any location at distance at most R from the center. This determines
an annulus A(p;7, R) = D(p; R) \ D(p,r). Thus A(p;r, R) is the annulus formed
by two squares centered at p and diameter 2r, 2R, respectively. Throughout this
paper we assume that d is the L; or Manhattan metric.

The numbers r, R represent the parameters suggested by the manufacturer.
In addition, we want to produce a layout of transmitting stations in such a way
that all points of the region R are within range R of a transmitting station while
at the same time no site is within distance r from any transmitting station. More
specifically, we have the following definition.

Definition 1. A collection of m points A = {a1,as,...,am} is called an (r, R)-
cover for (R, P) if the collection {D(a;; R) : i =1,2,...,m} of discs covers the
rectangular region R, but none of the discs D(a;,7),1 = 1,...,m have a point



Fig. 1. A rectangular region R with buildings to be covered by square-annulus sta-
tions. Notice that the interior square of the station cannot intersect the interior of any
building.

interior to any building in P. If r = 0 then an (0, R)-cover is also called an
R-cover.

We consider the following problem.

Problem 1 (General problem,).

Input: A rectangular region R and a collection P of simple polygons (or build-
ings) inside the region and two real numbers 0 < r < R.

Output: An (r, R)-cover A = {ay,as,...,a,} for (R,P) or a report that no
such cover exists.

The important parameter to be optimized is the number m of transmitting
stations. In general we are interested in an algorithm that will report an optimal
or even near-optimal number of stations. A cover is said to be optimal iff it uses
a minimum number of stations.

If P is the collection of buildings then we use the notation A(P;r, R) to
abbreviate the square annulus version of the problem.

We stipulate that every point in the region R must be within the reach of a
station. At the same time although a point lying in a building cannot be within
the dangerous zone of a station, this is not a priori prohibited if the point does
not lie inside a building. In addition, it is permissible that a point (in a bulding)
may lie within the range of more than one station.

An important observation that will be used in the sequel is that Problem 1
is computationally equivalent to the following problem:

Problem 2 (Reduced general problem,).

Input: A rectangular region R and a collection P of simple polygons (or build-
ings) inside the region and a real number 0 < R.

Output: An R-cover A = {ay,as,...,a,,} for (R,P) or a report that no such
cover exists.

Clearly, Problem 1 is more general than Problem 2. To prove the reverse reduc-
tion we surround each building with a strip of width r and merge the resulting



orthogonal polygons into the new buildings. Details of the proof of this are left
to the reader.

1.2 Results of the paper

In the sequel we consider first the one-dimensional case of the problem. In the
two-dimensional case, first we consider an algorithm for testing the existence of a
solution. Subsequently, we show how to reduce the problem to a discrete problem
in which the centers of the stations are to be located at predetermined points
within the region R. This is used later on to provide (1) a linear time, logarithmic
approximation algorithm by reduction to SET-COVER, (2) a polynomial time,
coustant approximation algorithm, and (3) for “thin” buildings, a linear time
constant approximation algorithm.

1.3 On the number of stations

We observe that the size of an (r, R)-cover for (R, P), i.e., the number of points
needed to cover a rectangular region R, is not only proportional to Area(R)/R?
but also to the number of vertices of the given polygons P bounded by the
rectangular region. This is indicated by the example below.

The example is depicted in Figure 2. The rectangular region is the 3R x 3R
square delimited by the two vertices A, D and the corresponding dashed lines
through these points. The sides of the building are delimited by the vertices
A,B,C,D,E,F and the two step-lines; there are also n “corner vertices” in
each of the step-lines between vertices B,C and E, F. It is easy to verify that
a transmitting station must be placed on each of the corner vertices of the step
lines. Thus we have the following theorem.

Theorem 1. There is a ractangular region R of area O(R?) with a single poly-
gon in P, such that any (r, R)-cover for it must be of size 2(n) where n is the
number of vertices in the given polygon in P.

As a consequence, the complexities of the given algorithms are best ex-

pressed as a function of the input size of the problem. This is defined to be

N = Ar%pz) + n, where n is the total number of vertices of the polygonal

buildings and Area(R) is the area of the given region R.

2 Algorithm on the Line

This section considers the one-dimensional analogue of the station layout prob-
lem, problem 1-SL. In this case, the transmitting station is modeled by the
one-dimensional analogue of the annulus, i.e., the set I(p;r, R) of points = on a
line such that r < |z — p| < R. The region is a line segment Ij, and the set of
buildings is Z = {I,...,I,}, where each building I;, 1 < j < n is an interval
I; = [p;,q;] in the line segment Iy. In this version, an (r, R)-cover for the in-
stance at hand is a collection of m points A = {ay,as,...,a,,} none of which
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Fig. 2. A ractangular region R of area O(R?) such that the number of squares needed
to cover it is £2(n) where n is the number of vertices of the given polygon P bounded
by the rectangular region.

is at a distance less than r from any interval in 7, such that the collection of
intervals I(a;;0,R),i=1,...,m covers the segment I.

Problem 8 (One-dimensional problem).
Input: A line segment Iy and a collection of (possibly ovelapping) intervals
I =A{I,...,1,} inside the segment, and two real numbers 0 <r < R.

Output: an (r, R)-cover A = {aj,as,...,a,} for (I5,Z) or a report that no
such cover exists.

We use the notation I(Z,r, R) to abbreviate the one-dimensional annulus version
of the problem. The goal is to optimize the number m of transmitting stations.
As noted before we may assume without loss of generality that » = 0. By merging
overlapping intervals we can assume that no two intervals overlap. By sorting
their endpoinds we can also assume that the sequence of endpoints is 0; < 03 <
09 < 04 < -+ < 091 < 09y, where o; is the left (resp. right) endpoint of an
interval (building) for ¢ odd (resp. even). Let ¢ be the maximum length of a
building, i.e., ¢ = max{((l;):i=1,...,n}, where {(I;) = 02,—1 — 09;.

Lemma 1. An instance I(Z,0, R) of the 1-SL problem has a solution if and only
if £ <2R. Hence there exists a linear time algorithm for determining solvability
of 1-SL.

Now we can prove the main theorem of this section.

Theorem 2. There exists an O(N log N) time algorithm for computing a min-
imum size R-cover for an instance T of the 1-SL problem.



3 Algorithms on the Plane

In this section we study the case of orthogonal buildings and stations which are
square annuli.

3.1 Testing for a solution

Recall our previous reduction of Problem 1 to Problem 2. Hence without loss of
generality, we may assume r = 0.

Theorem 3. A solution exists if and only if there is no point p interior to a
polygon (i.e., building) such that D(p; R) lies entirely inside the interior of the
polygon. In particular, there exists an O(max{N,n?}) time algorithm to deter-
mine whether or not a solution ezists.

3.2 Reduction to a discrete problem without buildings

Now we reduce Problem 2 to a discrete problem without any buildings (see
Problem 4). First we define a collection L of points inside the rectangular region
as the union of two sets Ly and Ly, to be defined below.

1. To obtain the points in Ly we partition the rectangular region R into parallel
and horizontal strips at distance R apart and let Ly be the collection of points
of intersection of these lines which lie outside any building in P.

2. The points in L; lie on the perimeter of buildings in P. These points are of
two types: (a) all vertices of these polygons, (b) for any polygon in P, and
starting from an arbitrary vertex of the polygon, walk along the perimeter
and place points on the perimeter at distance R apart.

We refer to squares whose centers are points in L as L-squares. A discrete (r, R)-
cover for the region R is a cover by L-squares. The basic lemma is the following.

Lemma 2. An (r, R)-cover to the square wversion of problem 1 exists if and
only if a discrete (r, R)-cover exists. Moreover, the size of an optimal discrete
cover is at most four times that of an optimal cover and the (r, R)-cover can be
constructed in time O(N).

Proor Cousider an optimal (r, R)-cover C* for the rectangular region R. We
will show how to replace an arbitrary square S in C with at most four L-squares
S1,89, 53,54 that cover it. To see this we consider two cases (depicted in Figure
Case (A) A quadrant intersects a polygon in P.

There are four quadrants @1, @2, @3, Q4 subdividing the square S. Consider a
quadrant @;. If a perimeter of a polygon intersects the quadrant then in this
case we walk along the perimeter of the polygons and find a point L that lies
within the quadrant. We then place an L-square centered at that point. If the
quadrant does not intersect any polygonal perimeter then it must lie outside all
buildings, in which case we can find a point in L which lies inside the quadrant.
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Fig. 3. Replacing an arbitrary square with four L-squares covering it. Kach square is
divided into four quadrants of size R x R.

Case (B) A quadrant does not intersect any polygon in P.

In this case the square cannot intersect the interior of any polygon. Therefore

inside the square there are four lattice points determined by the intersection of

vertical and horizontal strips. The desired four L-squares are centerd at these

points. This completes the proof of the lemma. [ |
The previous lemma reduces Problem 1 to the following one.

Problem 4 (General discrete problem,).

Input: A rectangular region R, a set L of points inside the region, and a positive
number R.

Output: A subset S of minimal size of the set L such that the set of squares of
radius R centered at points of S cover the entire rectangular region.

Conversely, it is easy to see that Problem 4 can be reduced to Problem 1. To
see this consider an instance of Problem 4. For each point p € L place a square
D(p; R) \ {p}. Append these squares as part of the input set of polygons. It is
clear that in the resulting instance of Problem 1 stations can only be placed at
points p € L.

3.3 Logarithmic approximation algorithm

In the sequel we give an O(log N)-approximation algorithm for Problem 4 by
reducing it to the well-known problem SET-COVER, where N is the size of the
input. Consider an input as in Problem 4. For each point p € L consider the



square with radius R centered at p. The collection of these squares forms a planar
subdivision of the rectangular region R. Cousider the bipartite graph (A, L) such
that A is the set of planar rectangular subdomains thus formed. Moreover, for
a € Aand pe€ L, {a,p} is an edge if and only if the subdomain a lies entirely
inside the square of radius R centered at p. Now observe that any solution of
SET-COVER for the graph (A, L) corresponds to a solution of Problem 4 and
vice versa. In view of the fact that there are O(log N) approximation algorithms
for SET-COVER (e.g. the greedy algorithm [4]) we obtain the following theorem.

Theorem 4. There is a linear time, logarithmic approzimation algorthm for
Problem 1.

3.4 Constant approximation algorithm

In this subsection we provide a polynomial time constant approximation algo-
rithm for solving Problem 4. From now on and for the rest of the paper that the
radius of the stations is R = 1. Our solution is via a reduction to the following
problem.

Problem 5 (Discrete rectangle problem,).

Input: A rectangle R with both height and width of length < 1, and a collection
Z ={p1,p2,-..,pa} of n points not necessarily all inside the rectangle.
Output: The minimum number of unit squares with centers lying at the given
points whose union covers the rectangle R.

In particular, we will prove the following theorem.

Theorem 5. There is a polynomial time, constant approzimation algorithm for
Problem 5.

Before proving this theorem we indicate how it can be used to find a solution
to the General discrete problem, i.e., Problem 4. We can prove the following
theorem.

Theorem 6. There is a polynomial time constant approzimation algorithm for
Problem 4, where N is the size of the input. The constant is at most four.

Outline of the Proof of Theorem 5

We divide up the description of the proof into a classification of stations depend-
ing on how the stations cover the rectangle. The resulting algorithm is recursive
and is based on dynamic programming. The idea is as follows. We consider the
“stations” centered at the given points. For a given rectangle R we consider all
possible coverings of this rectangle by stations. We classify the square stations
according to how they cover R, e.g. a square station may either cover R com-
pletely, or the left-, right-, down-, up-side of R, or the left-down-, left-up-side,
etc. It follows that the number of stations in an optimal solution is determined
from solutions to other subrectangles. By scanning the solutions we can select
the optimal solution to the rectangle R.



Classification of the min size cover

Let Rlz,2',y,y'] be the axis parallel rectangle depicted in Figure 4 with lower
left corner (z,y) and upper right corner (z',y’). Let the given points be Z =
{p1,p2,...,pn} and suppose that R; denote the unit square centered at p,. We
use the notation R; = R[zF 28 yP yY] for the station with lower left corner
(xF,yP) and upper right corner (z%,yY). We want to find the minimum size
subset P C Z such that the collection R(P) = {R; : p; € P} of squares covers

the rectangle R.
5 Hg ('T’a yl)

Vr R

(z,y)

Fig. 4. Rectangle R[z,z',y,y'] with sides Vg and Hg: the height is Vg = y' — y and
the width is Hg = 2’ — .

We now define the R-Classification of stations. Given a rectangle R :=
Rlz, 2’ y,y'] we classify R({p1,p2,-..,Pn}) as follows using the notation C, L, R, U, D
for Contains, Left, Right, Up, and Down, respectively. We also use the notation
LD for the set LN D, i.e.,

C ={R;: R; contains R}
L ={Ri:y! >y yP <yx<af <o zf <z}
LD ={R;:y<y! <y ,yP <y, ol <z, <2l <2}

The other classes R, U, D and LU, RD, RU are defined similarly. The sets L and
LD are depicted in Figure 5. Note that these sets are disjoint and their union is
equal to R(Z).

R;

Fig. 5. R-Classification: In the left picture R; € L and in the right picture R; € LD.

Given R and R let C*(R, R) denote the minimum size cover of R by stations
from R. We consider the following cases. Each case assumes that the previous



case does not hold. With this in mind it is clear that the classification is complete,
in the sense that C*(R, R) must belong to one of the cases below.
Case 1. C # 0.
In this case |C*(R,R)| = 1.
Case 2L. L # 0.
In this case C*(R, R) contains exactly one R; € L (namely the one farthest to
the right which dominates all the other rectangles in L) (See Figure 6.)
Cases 2R, 2U, 2D. Similar.

Next we consider the classes LD, LU, RD, RU. We study only Case 3LD. The
other three cases are similar.

Fig. 6. Leftmost figure depicts Case 2L; middle figure depicts Case 3LD, and rightmost
figure depicts Case 4.

Case 3LD. C*(R, R) contains at least two rectangles from LD.

Let the squares of C*(R,R)N LD be R;,,R;,, ..., R;, ordered by ascending z-
coordinate. Without loss of generality we may assume that they are also ordered
by descending y-coordinate. Indeed, otherwise one of them, say R;; is dominated
by the following square R;, , in terms of its contribution to covering R, and
hence it can be discarded. Let R;, and R;, be the two rectangles of LD in
C*(R,R), and let p be the upper right intersection point between R;, and R,,,
p=(29)=(zf y) (see Figure 7).

R R R

Ry

Fig. 7. Clasification of C*(R, R).



We note that the same observation as for Case 3LD, holds also for Cases
3LU, 3RD, 3RU. The last case left is the following.
Case 4. C* (R, R) contains exactly one rectangle from each of the sets LU, LD, RU, RD.

Dynamic programming algorithm

We are now in a position to use the above R-Classification of squares in order
to provide a dynamic programming algorithm computing the minimal number
of squares in a covering. An optimal solution is constructed by recursion. The
purpose of the previous classification is to establish the fact that all possible
cases for the structure of C* were examined by the algorithm, and no possibility
was omitted. Define the sets

X ={al <al 2B <2t 1<i<n}u{al zlt},
YV ={y <ylyl <ag :1<i<n}ufyd,a},

where 2k, 28, yl?, yY are the coordinates of the original rectangle. For any z, 2’ €
X and y,y’ € Y, let T(z,2',y,y") be the size of the minimum cover of the
rectangle R[x,z',y,y'] by squares in R(Z). The procedure is the following.

R R
Ri,
Ry
P R
R;,
Fig. 8. R-Classification of C*(R, R).
Procedure:

Calculate T'(z,2',y,y') for every x,2' € X and y,y’ € Y by first order, i.e.,
calculating T'(z, 2', y,y") only after finishing all rectangles T'(a,a’, b, b") with both
la —a'| < |z —2a'| and [b — | < |y — ¢'|. In order to calculate T'(z,2',y,y’)
for R = Rlz,2',y,y'] and R, check systematically through all possibilities for
C*(R,R).

Case 1. If we are in Case 1, then there should be some R; that contains R. This
is checkable in time O(n).

Case 2L. In this case suppose L # §. Go through each R; € L. For each of
these, consult the table concerning the value t; = T'(xf,2',y,y'), which is the

minimum coverage for R[z® 2 y,y']. If such an R; exists then return #; + 1. Of



course it suffices to take the “most dominant” R; € L, i.e., the one with greatest

ol (see Figure 9).!

!

Fig. 9. The most dominant rectangle R; € L.

Cases 2R, 2U, 2D are similar, while Case 4 is easy.

Case 3LD. From the observation we know that in this case we have Ry as in the
rightmost picture depicted in Figure 7. Cycle through all choices of R;,, R;, €
LD and Ry € RU. If not in “right shape” ignore. Else (see Figure 10)

t' —T(R)
t” — T(R”)
Reply(iy,ia, k) — t' +t" +3

Choose the best of O(n?) replies Reply(iy, iz, k).

Cases 3LU, 3RD, 3RU are similar, while Case 4 is easy. Combining all these
cases we obtain the general procedure for computing T'(x,z,y,y’) by selecting
the best of all replies. This completes the proof of Theorem 5. [ |

3.5 Conditional, constant approximation algorithm

In this section we provide a linear time, constant approximation algorithm when
the buildings satisfy certain width contraints.

! Now assume that the optimum cover for R \ Ri uses some combination of squares
that covers also the entire R, say the optimal solution for R\ R; has two elements
of the type LU and LD resp., that cover all of the square R;, and therefore cover
the entire R. In this case there is a cover, say C'(R), that uses t; squares altogether.
However, our algorithm will not neglect this correct possibility and will examine it
explicitely as part of Cases 3LD, 3LU and 4. Therefore the correct cover will be
discovered in due course. In the end the algorithm will take the best cover among
all the combinations that were examoned, so the best solution wins.



RI

R”

Fig.10. R', R" are defined by the collection X x Y.

Theorem 7. If there is no point p interior to a polygon such that D(p; R/2)
lies entirely inside the interior of the polygon then there is a linear time approz-
imation algorithm for covering the region R whose number of squares is at most
four times the optimal.

We can improve on the constant four above as follows. The horizontal h
(respectively, vertical v) width of an orthogonal polygon is the maximum length
horizontal (respectively, vertical) line segment that lies inside the polygon.

Theorem 8. If either h < 2R or v < 2R then there is a linear time algorithm
for finding a solution to Problem 2 such that the number of stations is at most
two times the optimal.

PROOF of Theorem 8. As with Lemma 1 we can prove the following result.
Lemma 3. Problem 2 has a solution if either h < 2R or v < 2R.

First we consider the special case where the polygonal buildings lie between two
horizotal lines at distance R and provide an optimal algorithm for solving the
problem in this case. Then we show how to extend the algorithm to the more
general case.

Lemma 4. If h < 2R then there is a linear time algorithm for computing the
minimum number of stations covering a set P of orthogonal buildings which lies
between two parallel horizotal lines at distance R.

The rest of the proof of Theorem 8 can be completed as in Hochbaum and
Mass [7] using Lemma 4. Details will appear in the complete paper. [ |
3.6 Conclusion

We have considered the problem of covering a rectangular region containing “or-
thogonal” buildings with stations in the presence of location constraints. We



have given constant as well as logarithmic approximation polynomial time al-
gorithms for solving the problem. However, it is an open problem to determine
whether or not finding an optimal solution can be dome in polynomial time.
An interesting open problem arises when we consider an upper bound on the
number of stations permitted to cover a given point in the region. (As Theorem
1 indicates, such a coverage may not always exist.)

We note that the results of the paper are stated only for the Manhattan or L,
metric. Similar algorithms and results are possible for the more realistic “hexag-
onal” metric. The only modification necessary is that the resulting constants in
approximation algorithms are now derived using stations with hexagonal trans-
mission range. Details will appear in the final version of the paper,
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