
Station Layouts in the Presence of LocationConstraints(Extended Abstract)Prosenjit Bose2, Christos Kaklamanis1, Lefteris M. Kirousis1, EvangelosKranakis23, Danny Krizanc23, and David Peleg41 University of Patras, Department of Computer Engineering and Informatics, Rio26500, Patras, Greece, email: fkakl,kirousisg@ceid.upatras.gr.2 Carleton University, School of Computer Science, Ottawa, ON, K1S 5B6, Canada,email: fjit,kranakis,krizancg@scs.carleton.ca. Research supported in part by NSERC(Natural Sciences and Engineering Research Council of Canada) grant.3 Research supported in part by MITACS project CANCCOM (Complex AdaptiveNetworks for Computing and Communication).4 Weitzman Institute, Department of Applied Mathematics and Computer Science,POB 26, 76100, Israel, email: peleg@wisdom.weizman.ac.il.Abstract. In wireless communication, the signal of a typical broadcaststation is transmited from a broadcast center p and reaches objects ata distance, say, R from it. In addition there is a radius r, r < R, suchthat the signal originating from the center of the station is so strongthat human habitation within distance r from the center p should beavoided. Thus every station determines a region which is an \annulus ofpermissible habitation". We consider the following station layout (SL)problem: Cover a given (say, rectangular) planar region which includesa collection of buildings with a minimum number of stations so thatevery point in the region is within the reach of a station, while at thesame time no building is within the dangerous range of a station. Wegive algorithms for computing such station layouts in both the one- andtwo-dimensional cases.Key Words and Phrases: Approximation algorithm, Broadcast Sta-tion, Health hazards, Optimal Layout, Wireless Communication.1 IntroductionIn wireless communication we are interested in providing access to communi-cation to a region (e.g. a city, a campus, etc) within which several sites (e.g.buildings) are located. Closeness to stations may be undesirable in certain in-stances, e.g. hospital or laboratory facilities, people with heart pace-makers, etc(see Figure 1). Thus, although we are interested in providing communication ac-cess everywhere, part of the buildings may need to be away from strong electronicemissions of stations.Cellular phones are radio receivers which operate in the ultra-high frequency(UHF) band. They receive radio transmissions from a central base station (or



cell) at frequencies between 869 and 894 MHz and retransmit their radio signalback to the base station at frequencies between 824 and 850 MHz. Stations emitsignals whose strength is inversely proportional to the square of the distancefrom the station. It follows that the signal's strength degrades as we move awayfrom the center of the station. This determines a threshold (1W is the currentlyaccepted value) beyond which the signal is su�ciently safe but still strong enoughto reach its desirable destination. A comprehensive study and survey of thebiological e�ects of exposure to radio frequency resulting from the use of mobileand other personal communication services can be found in [9].In this paper we consider broadcast station layouts in wireless communicationin which we take into account health hazards resulting from the closeness ofhuman habitation to the transmission station. Given such constraints we areinterested in minimizing the number of broadcast stations used. The buildingsare located within a region R, which for the sake of simplicity we assume tobe rectangular. In the most general case the buildings may be represented bysimple polygons with or without holes.1.1 Formulation of the problem and notationThe parameters involved in transmissions for a typical station in the plane arethe transmission center p of the station, and positive real numbers r < R suchthat{ R is the reachability range of the station, i.e. the signal transmitted fromthe center p can reach any destination at distance R from the center.{ r is the dangerous range of the station, i.e. the strength of the transmit-ted signal exceeds permissible health constraints within distance r from thecenter.Let d(�; �) be the given distance function. The disc D(p; r) = fx : d(x; p) < rg isthe locus of points that are \too close" to the broadcast center p. Existing healthconstraints make it advisable that human habitation is not allowed within thediscD(p; r). At the same time the signal reception does not cause a health hazardbeyond distance r from the broadcast center of the station; moreover the signalcan reach any location at distance at most R from the center. This determinesan annulus A(p; r; R) = D(p;R) nD(p; r): Thus A(p; r; R) is the annulus formedby two squares centered at p and diameter 2r; 2R, respectively. Throughout thispaper we assume that d is the L1 or Manhattan metric.The numbers r; R represent the parameters suggested by the manufacturer.In addition, we want to produce a layout of transmitting stations in such a waythat all points of the region R are within range R of a transmitting station whileat the same time no site is within distance r from any transmitting station. Morespeci�cally, we have the following de�nition.De�nition 1. A collection of m points A = fa1; a2; : : : ; amg is called an (r; R)-cover for (R;P) if the collection fD(ai;R) : i = 1; 2; : : : ;mg of discs covers therectangular region R, but none of the discs D(ai; r); i = 1; : : : ;m have a point



Fig. 1. A rectangular region R with buildings to be covered by square-annulus sta-tions. Notice that the interior square of the station cannot intersect the interior of anybuilding.interior to any building in P. If r = 0 then an (0; R)-cover is also called anR-cover.We consider the following problem.Problem 1 (General problem).Input: A rectangular region R and a collection P of simple polygons (or build-ings) inside the region and two real numbers 0 � r < R.Output: An (r; R)-cover A = fa1; a2; : : : ; amg for (R;P) or a report that nosuch cover exists.The important parameter to be optimized is the number m of transmittingstations. In general we are interested in an algorithm that will report an optimalor even near-optimal number of stations. A cover is said to be optimal i� it usesa minimum number of stations.If P is the collection of buildings then we use the notation A(P ; r; R) toabbreviate the square annulus version of the problem.We stipulate that every point in the region R must be within the reach of astation. At the same time although a point lying in a building cannot be withinthe dangerous zone of a station, this is not a priori prohibited if the point doesnot lie inside a building. In addition, it is permissible that a point (in a bulding)may lie within the range of more than one station.An important observation that will be used in the sequel is that Problem 1is computationally equivalent to the following problem:Problem 2 (Reduced general problem).Input: A rectangular region R and a collection P of simple polygons (or build-ings) inside the region and a real number 0 < R.Output: An R-cover A = fa1; a2; : : : ; amg for (R;P) or a report that no suchcover exists.Clearly, Problem 1 is more general than Problem 2. To prove the reverse reduc-tion we surround each building with a strip of width r and merge the resulting



orthogonal polygons into the new buildings. Details of the proof of this are leftto the reader.1.2 Results of the paperIn the sequel we consider �rst the one-dimensional case of the problem. In thetwo-dimensional case, �rst we consider an algorithm for testing the existence of asolution. Subsequently, we show how to reduce the problem to a discrete problemin which the centers of the stations are to be located at predetermined pointswithin the regionR. This is used later on to provide (1) a linear time, logarithmicapproximation algorithm by reduction to SET-COVER, (2) a polynomial time,constant approximation algorithm, and (3) for \thin" buildings, a linear timeconstant approximation algorithm.1.3 On the number of stationsWe observe that the size of an (r; R)-cover for (R;P), i.e., the number of pointsneeded to cover a rectangular region R, is not only proportional to Area(R)=R2but also to the number of vertices of the given polygons P bounded by therectangular region. This is indicated by the example below.The example is depicted in Figure 2. The rectangular region is the 3R� 3Rsquare delimited by the two vertices A;D and the corresponding dashed linesthrough these points. The sides of the building are delimited by the verticesA;B;C;D;E; F and the two step-lines; there are also n \corner vertices" ineach of the step-lines between vertices B;C and E;F . It is easy to verify thata transmitting station must be placed on each of the corner vertices of the steplines. Thus we have the following theorem.Theorem 1. There is a ractangular region R of area O(R2) with a single poly-gon in P, such that any (r; R)-cover for it must be of size 
(n) where n is thenumber of vertices in the given polygon in P.As a consequence, the complexities of the given algorithms are best ex-pressed as a function of the input size of the problem. This is de�ned to beN = Area(R)R2 + n; where n is the total number of vertices of the polygonalbuildings and Area(R) is the area of the given region R.2 Algorithm on the LineThis section considers the one-dimensional analogue of the station layout prob-lem, problem 1-SL. In this case, the transmitting station is modeled by theone-dimensional analogue of the annulus, i.e., the set I(p; r; R) of points x on aline such that r � jx � pj < R. The region is a line segment I0, and the set ofbuildings is I = fI1; : : : ; Ing, where each building Ij , 1 � j � n is an intervalIj = [pj ; qj ] in the line segment I0. In this version, an (r; R)-cover for the in-stance at hand is a collection of m points A = fa1; a2; : : : ; amg none of which
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Fig. 2. A ractangular region R of area O(R2) such that the number of squares neededto cover it is 
(n) where n is the number of vertices of the given polygon P boundedby the rectangular region.is at a distance less than r from any interval in I, such that the collection ofintervals I(ai; 0; R); i = 1; : : : ;m covers the segment I0.Problem 3 (One-dimensional problem).Input: A line segment I0 and a collection of (possibly ovelapping) intervalsI = fI1; : : : ; Ing inside the segment, and two real numbers 0 � r < R.Output: an (r; R)-cover A = fa1; a2; : : : ; amg for (I0; I) or a report that nosuch cover exists.We use the notation I(I; r; R) to abbreviate the one-dimensional annulus versionof the problem. The goal is to optimize the number m of transmitting stations.As noted before we may assume without loss of generality that r = 0. By mergingoverlapping intervals we can assume that no two intervals overlap. By sortingtheir endpoinds we can also assume that the sequence of endpoints is o1 < o2 <o2 < o4 < � � � < o2k�1 < o2n; where oi is the left (resp. right) endpoint of aninterval (building) for i odd (resp. even). Let ` be the maximum length of abuilding, i.e., ` = maxf`(Ii) : i = 1; : : : ; ng, where `(Ii) = o2i�1 � o2i.Lemma 1. An instance I(I; 0; R) of the 1-SL problem has a solution if and onlyif ` � 2R. Hence there exists a linear time algorithm for determining solvabilityof 1-SL.Now we can prove the main theorem of this section.Theorem 2. There exists an O(N logN) time algorithm for computing a min-imum size R-cover for an instance I of the 1-SL problem.



3 Algorithms on the PlaneIn this section we study the case of orthogonal buildings and stations which aresquare annuli.3.1 Testing for a solutionRecall our previous reduction of Problem 1 to Problem 2. Hence without loss ofgenerality, we may assume r = 0.Theorem 3. A solution exists if and only if there is no point p interior to apolygon (i.e., building) such that D(p;R) lies entirely inside the interior of thepolygon. In particular, there exists an O(maxfN;n2g) time algorithm to deter-mine whether or not a solution exists.3.2 Reduction to a discrete problem without buildingsNow we reduce Problem 2 to a discrete problem without any buildings (seeProblem 4). First we de�ne a collection L of points inside the rectangular regionas the union of two sets L0 and L1, to be de�ned below.1. To obtain the points in L0 we partition the rectangular regionR into paralleland horizontal strips at distance R apart and let L0 be the collection of pointsof intersection of these lines which lie outside any building in P .2. The points in L1 lie on the perimeter of buildings in P . These points are oftwo types: (a) all vertices of these polygons, (b) for any polygon in P , andstarting from an arbitrary vertex of the polygon, walk along the perimeterand place points on the perimeter at distance R apart.We refer to squares whose centers are points in L as L-squares. A discrete (r; R)-cover for the region R is a cover by L-squares. The basic lemma is the following.Lemma 2. An (r; R)-cover to the square version of problem 1 exists if andonly if a discrete (r; R)-cover exists. Moreover, the size of an optimal discretecover is at most four times that of an optimal cover and the (r; R)-cover can beconstructed in time O(N).Proof Consider an optimal (r; R)-cover C� for the rectangular region R. Wewill show how to replace an arbitrary square S in C with at most four L-squaresS1; S2; S3; S4 that cover it. To see this we consider two cases (depicted in Figure3).Case (A) A quadrant intersects a polygon in P .There are four quadrants Q1; Q2; Q3; Q4 subdividing the square S. Consider aquadrant Qi. If a perimeter of a polygon intersects the quadrant then in thiscase we walk along the perimeter of the polygons and �nd a point L that lieswithin the quadrant. We then place an L-square centered at that point. If thequadrant does not intersect any polygonal perimeter then it must lie outside allbuildings, in which case we can �nd a point in L which lies inside the quadrant.
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(A) (B)Fig. 3. Replacing an arbitrary square with four L-squares covering it. Each square isdivided into four quadrants of size R�R.Case (B) A quadrant does not intersect any polygon in P .In this case the square cannot intersect the interior of any polygon. Thereforeinside the square there are four lattice points determined by the intersection ofvertical and horizontal strips. The desired four L-squares are centerd at thesepoints. This completes the proof of the lemma.The previous lemma reduces Problem 1 to the following one.Problem 4 (General discrete problem).Input: A rectangular regionR, a set L of points inside the region, and a positivenumber R.Output: A subset S of minimal size of the set L such that the set of squares ofradius R centered at points of S cover the entire rectangular region.Conversely, it is easy to see that Problem 4 can be reduced to Problem 1. Tosee this consider an instance of Problem 4. For each point p 2 L place a squareD(p;R) n fpg. Append these squares as part of the input set of polygons. It isclear that in the resulting instance of Problem 1 stations can only be placed atpoints p 2 L.3.3 Logarithmic approximation algorithmIn the sequel we give an O(logN)-approximation algorithm for Problem 4 byreducing it to the well-known problem SET-COVER, where N is the size of theinput. Consider an input as in Problem 4. For each point p 2 L consider the



square with radius R centered at p. The collection of these squares forms a planarsubdivision of the rectangular regionR. Consider the bipartite graph (A;L) suchthat A is the set of planar rectangular subdomains thus formed. Moreover, fora 2 A and p 2 L, fa; pg is an edge if and only if the subdomain a lies entirelyinside the square of radius R centered at p. Now observe that any solution ofSET-COVER for the graph (A;L) corresponds to a solution of Problem 4 andvice versa. In view of the fact that there are O(logN) approximation algorithmsfor SET-COVER (e.g. the greedy algorithm [4]) we obtain the following theorem.Theorem 4. There is a linear time, logarithmic approximation algorthm forProblem 1.3.4 Constant approximation algorithmIn this subsection we provide a polynomial time constant approximation algo-rithm for solving Problem 4. From now on and for the rest of the paper that theradius of the stations is R = 1. Our solution is via a reduction to the followingproblem.Problem 5 (Discrete rectangle problem).Input: A rectangle R with both height and width of length � 1, and a collectionZ = fp1; p2; : : : ; png of n points not necessarily all inside the rectangle.Output: The minimum number of unit squares with centers lying at the givenpoints whose union covers the rectangle R.In particular, we will prove the following theorem.Theorem 5. There is a polynomial time, constant approximation algorithm forProblem 5.Before proving this theorem we indicate how it can be used to �nd a solutionto the General discrete problem, i.e., Problem 4. We can prove the followingtheorem.Theorem 6. There is a polynomial time constant approximation algorithm forProblem 4, where N is the size of the input. The constant is at most four.Outline of the Proof of Theorem 5We divide up the description of the proof into a classi�cation of stations depend-ing on how the stations cover the rectangle. The resulting algorithm is recursiveand is based on dynamic programming. The idea is as follows. We consider the\stations" centered at the given points. For a given rectangle R we consider allpossible coverings of this rectangle by stations. We classify the square stationsaccording to how they cover R, e.g. a square station may either cover R com-pletely, or the left-, right-, down-, up-side of R, or the left-down-, left-up-side,etc. It follows that the number of stations in an optimal solution is determinedfrom solutions to other subrectangles. By scanning the solutions we can selectthe optimal solution to the rectangle R.



Classi�cation of the min size coverLet R[x; x0; y; y0] be the axis parallel rectangle depicted in Figure 4 with lowerleft corner (x; y) and upper right corner (x0; y0). Let the given points be Z =fp1; p2; : : : ; png and suppose that Ri denote the unit square centered at pi. Weuse the notation Ri = R[xLi ; xRi ; yDi ; yUi ] for the station with lower left corner(xLi ; yDi ) and upper right corner (xRi ; yUi ). We want to �nd the minimum sizesubset P � Z such that the collection R(P ) = fRi : pi 2 Pg of squares coversthe rectangle R. HRVR(x; y)
(x0; y0)R

Fig. 4. Rectangle R[x; x0; y; y0] with sides VR and HR: the height is VR = y0 � y andthe width is HR = x0 � x.We now de�ne the R-Classi�cation of stations. Given a rectangle R :=R[x; x0; y; y0] we classifyR(fp1; p2; : : : ; png) as follows using the notation C;L;R; U;Dfor Contains, Left, Right, Up, and Down, respectively. We also use the notationLD for the set L \D, i.e.,C = fRi : Ri contains RgL = fRi : yUi � y0; yDi � y; x < xRi < x0; xLi � xgLD = fRi : y < yUi < y0; yDi < y; xLi < x; x < xRi < x0gThe other classes R;U;D and LU;RD;RU are de�ned similarly. The sets L andLD are depicted in Figure 5. Note that these sets are disjoint and their union isequal to R(Z). RRi RRiFig. 5. R-Classi�cation: In the left picture Ri 2 L and in the right picture Ri 2 LD.Given R and R let C�(R; R) denote the minimum size cover of R by stationsfrom R. We consider the following cases. Each case assumes that the previous



case does not hold. With this in mind it is clear that the classi�cation is complete,in the sense that C�(R; R) must belong to one of the cases below.Case 1. C 6= ;.In this case jC�(R; R)j = 1.Case 2L. L 6= ;.In this case C�(R; R) contains exactly one Ri 2 L (namely the one farthest tothe right which dominates all the other rectangles in L) (See Figure 6.)Cases 2R, 2U, 2D. Similar.Next we consider the classes LD;LU;RD;RU . We study only Case 3LD. Theother three cases are similar.R R R
Fig. 6. Leftmost �gure depicts Case 2L; middle �gure depicts Case 3LD, and rightmost�gure depicts Case 4.Case 3LD. C�(R; R) contains at least two rectangles from LD.Let the squares of C�(R; R) \ LD be Ri1 ; Ri2 ; : : : ; Rik ordered by ascending x-coordinate. Without loss of generality we may assume that they are also orderedby descending y-coordinate. Indeed, otherwise one of them, say Rij is dominatedby the following square Rij+1 in terms of its contribution to covering R, andhence it can be discarded. Let Ri1 and Ri2 be the two rectangles of LD inC�(R; R), and let � be the upper right intersection point between Ri1 and Ri2 ,� = (x̂; ŷ) = (xRi1 ; yUi2) (see Figure 7).R

Ri2Ri1 � R
Rij+1Rij RRi1Ri2 RkFig. 7. Clasi�cation of C�(R; R).



We note that the same observation as for Case 3LD, holds also for Cases3LU, 3RD, 3RU. The last case left is the following.Case 4. C�(R; R) contains exactly one rectangle from each of the sets LU;LD;RU;RD.Dynamic programming algorithmWe are now in a position to use the above R-Classi�cation of squares in orderto provide a dynamic programming algorithm computing the minimal numberof squares in a covering. An optimal solution is constructed by recursion. Thepurpose of the previous classi�cation is to establish the fact that all possiblecases for the structure of C� were examined by the algorithm, and no possibilitywas omitted. De�ne the setsX = fxL0 � xLi ; xRi < xR0 : 1 � i � ng [ fxL0 ; xR0 g ;Y = fyD0 � yDi ; yUi � xU0 : 1 � i � ng [ fyD0 ; xU0 g;where xL0 ; xR0 ; yD0 ; yU0 are the coordinates of the original rectangle. For any x; x0 2X and y; y0 2 Y , let T (x; x0; y; y0) be the size of the minimum cover of therectangle R[x; x0; y; y0] by squares in R(Z). The procedure is the following.RRi1Ri2 Rk R
� RkFig. 8. R-Classi�cation of C�(R; R).Procedure:Calculate T (x; x0; y; y0) for every x; x0 2 X and y; y0 2 Y by �rst order, i.e.,calculating T (x; x0; y; y0) only after �nishing all rectangles T (a; a0; b; b0) with bothja � a0j � jx � x0j and jb � b0j � jy � y0j. In order to calculate T (x; x0; y; y0)for R = R[x; x0; y; y0] and R, check systematically through all possibilities forC�(R; R).Case 1. If we are in Case 1, then there should be some Ri that contains R. Thisis checkable in time O(n).Case 2L. In this case suppose L 6= ;. Go through each Ri 2 L. For each ofthese, consult the table concerning the value ti = T (xRi ; x0; y; y0), which is theminimum coverage for R[xRi ; x0; y; y0]. If such an Ri exists then return ti +1. Of



course it su�ces to take the \most dominant" Ri 2 L, i.e., the one with greatestxRi (see Figure 9).1
RRi xRi x0Fig. 9. The most dominant rectangle Ri 2 L.Cases 2R, 2U, 2D are similar, while Case 4 is easy.Case 3LD. From the observation we know that in this case we have Rk as in therightmost picture depicted in Figure 7. Cycle through all choices of Ri1 ; Ri2 2LD and Rk 2 RU . If not in \right shape" ignore. Else (see Figure 10)t0  T (R0)t00  T (R00)Reply(i1; i2; k) t0 + t00 + 3Choose the best of O(n3) replies Reply(i1; i2; k).Cases 3LU, 3RD, 3RU are similar, while Case 4 is easy. Combining all thesecases we obtain the general procedure for computing T (x; x0; y; y0) by selectingthe best of all replies. This completes the proof of Theorem 5.3.5 Conditional, constant approximation algorithmIn this section we provide a linear time, constant approximation algorithm whenthe buildings satisfy certain width contraints.1 Now assume that the optimum cover for R n Ri uses some combination of squaresthat covers also the entire R, say the optimal solution for R n Ri has two elementsof the type LU and LD resp., that cover all of the square Ri, and therefore coverthe entire R. In this case there is a cover, say C0(R), that uses ti squares altogether.However, our algorithm will not neglect this correct possibility and will examine itexplicitely as part of Cases 3LD, 3LU and 4. Therefore the correct cover will bediscovered in due course. In the end the algorithm will take the best cover amongall the combinations that were examoned, so the best solution wins.
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Fig. 10. R0; R00 are de�ned by the collection X � Y .Theorem 7. If there is no point p interior to a polygon such that D(p;R=2)lies entirely inside the interior of the polygon then there is a linear time approx-imation algorithm for covering the region R whose number of squares is at mostfour times the optimal.We can improve on the constant four above as follows. The horizontal h(respectively, vertical v) width of an orthogonal polygon is the maximum lengthhorizontal (respectively, vertical) line segment that lies inside the polygon.Theorem 8. If either h � 2R or v � 2R then there is a linear time algorithmfor �nding a solution to Problem 2 such that the number of stations is at mosttwo times the optimal.Proof of Theorem 8. As with Lemma 1 we can prove the following result.Lemma 3. Problem 2 has a solution if either h � 2R or v � 2R.First we consider the special case where the polygonal buildings lie between twohorizotal lines at distance R and provide an optimal algorithm for solving theproblem in this case. Then we show how to extend the algorithm to the moregeneral case.Lemma 4. If h � 2R then there is a linear time algorithm for computing theminimum number of stations covering a set P of orthogonal buildings which liesbetween two parallel horizotal lines at distance R.The rest of the proof of Theorem 8 can be completed as in Hochbaum andMass [7] using Lemma 4. Details will appear in the complete paper.3.6 ConclusionWe have considered the problem of covering a rectangular region containing \or-thogonal" buildings with stations in the presence of location constraints. We
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