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Communicated by Michel Théra
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1 Introduction

This research is mainly motivated by applications to problems of infinite and semi-infinite programming, i.e.,

optimization problems with infinitely many constraints which have attracted in recent years considerable attention;

see, e.g., [1–23].

In numerous publications, the authors develop numerical methods and investigate various stability and regu-

larity issues. Several articles are devoted to optimality conditions [7, 9, 12,16,17,19,20,22,23].

Out of the convex scenario, a general optimization problem involving extended-real-valued lower semicon-

tinuous functions, is approached in [20] by applying some tangential extremal principles and related calculus

rules for infinite intersections. Assuming that the functions involved in the setting of the problem are locally

Lipschitz continuous around a local solution and certain constraint qualifications (CHIP and SQC) are satisfied,

asymptotic-type KKT conditions are derived in [20, Theorem 4.5] for both the upper and lower subdifferen-

tial of the objective function. Ordinary (non-asymptotic) KKT conditions are also obtained under an additional

constraint qualification (called SCC).

Another approach to this topic based on variational analysis is suggested in [23]. In this paper, the authors

consider a finite-dimensional infinitely-constrained optimization problem with a compact index set. A general

Lagrange multiplier rule in terms of the Clarke subdifferentials and coderivatives is derived. This rule does not

require any constraint qualification, but when the authors introduce the so-called GCQ constraint qualification

(extending to the nonsmooth setting the standard Mangasarian-Fromovitz constraint qualification), they obtain

Lagrange multiplier rules in standard form, as well as standard KKT-type conditions if the constraints are addi-

tionally assumed convex.

This article continues the investigation of stationarity and regularity properties of infinite collections of sets

in a Banach space started in [24] and is mainly focused on the application of the criteria from [24] to infinitely

constrained optimization problems. We consider several settings of optimization problems which involve (explicitly

or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in

terms of dual space elements – normals or subdifferentials.

The plan of the paper is as follows. After introducing in Section 2 some basic notation we summarize in

Section 3 the definitions and criteria of stationarity and regularity for infinite collections of sets from [24]. Two

groups of definitions are presented: with and without a gauge function which restricts the size of finite subcollec-

tions involved in the definitions. All the properties in the second group (without a gauge function) can be defined

in terms of certain constants characterizing the mutual arrangement of the sets in space. The main result is

given by Theorem 3.1, which establishes the relationship between primal and dual space approximate stationarity

properties. It can be considered as an extension of the Extremal principle [25–27].

In Section 4, we recall several intersection rules for Fréchet normals to infinite intersections in Asplund spaces

developed in [24]. Besides the general form of the intersection rule, we formulate also its normal form under the

assumption of Fréchet normal regularity of the collection of sets from Section 3.
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In Section 5, the intersection rules from Section 4 are applied to developing maximum rules for Fréchet

subdifferentials. We consider the supremum function and prove several representations of its Fréchet subgradients

in terms of Fréchet subgradients of the elementary functions involved in the definition.

The final Section 6 is devoted to necessary conditions of stationarity. We consider minimax problems with

possibly infinite index set and two types of constrained optimization problems with infinitely many constraints

given by either arbitrary sets or inequalities. Several kinds of primal space stationarity properties are defined

and characterized in terms of Fréchet normals and subdifferentials. The Fréchet normal constraint qualification is

introduced.

In the nonsmooth context, different alternatives to the Fréchet normal constraint qualification can be found

in the literature, mainly in the convex setting. For instance, in [7], necessary optimality conditions are established

for broad classes of semi-infinite programs where the cost function is a lower semicontinuous function on a Banach

space, the feasible set is given by a parameterized system of infinitely many linear inequalities, and the parameter

is a bounded function which defines a perturbation of the right-hand side term. Besides the calculus rules of the

involved subdifferentials of the cost function, a crucial role in deriving these optimality conditions is played by

the coderivative of the feasible set mapping, which was characterized in [6] entirely in terms of the initial data.

The optimality conditions in this paper are established in asymptotic form, involving the weak∗ closure of the

so-called second moment cone, while they are presented in an extended Karush-Kuhn-Tucker (KKT) form under

some closedness conditions (Farkas-Minkowski type constraint qualification).

2 Preliminaries

Our basic notation is standard; see [26,28]. Throughout the paper, X is a Banach space (although the definitions

are valid in a normed linear space). Its topological dual is denoted X∗, while ⟨·, ·⟩ denotes the bilinear form

defining the pairing between X and X∗. The closed unit balls in a normed space and its dual are denoted by B

and B∗, respectively. Bδ(x) denotes the closed ball with radius δ and center x.

We say that a set Ω ⊂ X is locally closed near x̄ ∈ Ω iff Ω ∩U is closed in X for some closed neighborhood U

of x̄. Given a set I of indices, its cardinality (the number of elements in I) is denoted |I|. Functions fi (i ∈ I) are

said to be uniformly Lipschitz near x̄ iff they are Lipschitz continuous in some common neighborhood of x̄ with

the same modulus.

If f : X → R∞ := R ∪ {+∞}, x ∈ X, and f(x) < ∞, then

∂F f(x) :=

{
x∗ ∈ X∗∣∣ lim inf

u→x

f(u)− f(x)− ⟨x∗, u− x⟩
∥u− x∥ ≥ 0

}
(1)

is the Fréchet subdifferential of f at x. Similarly, if x ∈ Ω ⊂ X, then

NF
Ω (x) :=

x∗ ∈ X∗∣∣ lim sup

u
Ω→x

⟨x∗, u− x⟩
∥u− x∥ ≤ 0

 (2)

is the Fréchet normal cone to Ω at x. The denotation u
Ω→ x in the last formula means that u → x with u ∈ Ω.

In the convex case, sets (1) and (2) reduce to the subdifferential and normal cone in the sense of convex analysis.
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3 Infinite Collections of Sets

In this section, we recall the definitions and characterizations of stationarity and regularity properties for a

collection of sets Ω := {Ωi}i∈I ⊂ X, where I is an arbitrary index set, possibly infinite, |I| > 1. The sets are

considered near a point x̄ ∈
∩

i∈I Ωi.

For full definitions, proofs of the results given in this section and some discussions we address the reader

to [24, Section 3].

When defining the mentioned properties, we analyze families of subcollections of Ω corresponding to finite

subsets J ⊂ I and impose restrictions on the cardinality |J | using a given gauge function Φ : R+ → R+ ∪ {+∞},

which determines the “growth rate” of the cardinality |J | of finite subsets J ⊂ I. Choosing a smaller gauge

function leads to a more (less) restrictive stationarity (regularity) property.

To simplify the definitions, we use the following notations:

J := {J ⊂ I| 1 < |J | < ∞},

Jα := {J ⊂ I| 1 < |J | < Φ(α)} (α > 0).

Obviously Jα ⊂ J and Jα = J if Φ(α) = ∞.

Definition 3.1 The collection of sets Ω is

(ASΦ) approximately Φ-stationary at x̄ iff, for any ε > 0, there exist ρ ∈]0, ε[; α ∈]0, ε[; J ∈ Jα; ωi ∈ Ωi∩Bε(x̄)

and ai ∈ X (i ∈ J) such that maxi∈J ∥ai∥ < αρ and

∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) = ∅;

(URΦ) uniformly Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that

∩
i∈J

(Ωi − ωi − ai)
∩

(ρB) ̸= ∅

for any α ∈]0, α0[; ρ ∈]0, ε[; J ∈ Jα; ωi ∈ Ωi∩Bε(x̄), and ai ∈ X (i ∈ J) satisfying maxi∈J ∥ai∥ ≤ αρ;

(FNASΦ) Fréchet normally approximately Φ-stationary at x̄ iff, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jα;

xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < α
∑
i∈J

∥x∗i ∥;

(FNURΦ) Fréchet normally uniformly Φ-regular at x̄ iff there exists an α0 > 0 and an ε > 0 such that∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈J

∥x∗i ∥

for any α ∈]0, α0[; J ∈ Jα; xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J).



5

Note that the Φ-regularity properties (URΦ) and (FNURΦ) in Definition 3.1 are negations of the corresponding

Φ-stationarity properties (ASΦ) and (FNASΦ), respectively.

The next theorem establishes the relationship between the approximate Φ-stationarity (uniform Φ-regularity)

properties. It combines Corollaries 4.5.1 and 4.5.3 in [24].

Theorem 3.1 Let x̄ ∈
∩

i∈I Ωi, |I| > 1. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near

x̄. The collection of sets Ω is approximately Φ-stationary (uniformly Φ-regular) at x̄ if and only if it is Fréchet

normally approximately Φ-stationary (Fréchet normally uniformly Φ-regular) at x̄.

Moreover, for any ε > 0, conditions (ASΦ) and (FNASΦ) ((URΦ) and (FNURΦ)) are satisfied with the same

number α and set of indices J .

Remark 3.1 The Fréchet normal approximate Φ-stationarity property (FNASΦ) can be interpreted as a kind of

separation property for a collection of sets. Thanks to Theorem 3.1, this separation property is necessary and

sufficient for the collection of sets to be approximately Φ-stationary.

Remark 3.2 Defined above Φ-stationarity and Φ-regularity properties depend on the choice of the gauge func-

tion Φ. Since Theorem 3.1 establishes the equivalence of the corresponding stationarity or regularity properties

with the same gauge function, it guarantees the same “growth rate” of |J | as α ↓ 0 in primal and dual space

conditions. When applying Theorem 3.1 for characterizing stationarity (regularity) of a specific collection of sets,

it is important to find the smallest (largest) function such that the property in question still holds true. Then

the theorem provides the strongest conclusion. Possible choices of Φ that could be of interest in applications are

discussed in [24, Remark 4.6]. In a particular case when Φ satisfies conditions of the type αΦ(α) → 0 as α ↓ 0,

property (ASΦ) recaptures the concept of “R-perturbed extremal system” while the stationarity part of Theorem 3.1

strengthens the “rated extremal principles” from [19].

Remark 3.3 When dealing with infinite systems, it seems reasonable to consider gauge functions Φ such that

Φ(α) → ∞ as α ↓ 0. However, the above definitions of Φ-stationarity and Φ-regularity properties as well as their

characterization in the Theorem 3.1 are valid without this requirement.

If I is a finite set, then one can take a constant function Φ(α) = |I| + 1 for all α > 0. The stationarity and

regularity properties in the above definitions will coincide with the corresponding conventional properties considered

in [29–31].

Remark 3.4 The normal stationarity and regularity properties (FNASΦ) and (FNURΦ) can be extended to gen-

eral (not necessarily Fréchet) normal cone operators satisfying certain natural properties while preserving their

relationship with the properties (ASΦ) and (URΦ) stated in Theorem 3.1. We refer the readers to [24] for the

exact definitions and characterizations.

In the special case Φ ≡ +∞, we will omit Φ in the names and notations of the corresponding properties. It is

easy to check that, in this case, one can omit condition α ∈]0, ε[ in the definitions of stationarity properties and
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condition α ∈]0, α0[ in the definitions of regularity properties, replacing α in the rest of these properties by ε and

α0, respectively. See [24, Definition 4.1] for the exact formulations.

Such properties can be equivalently defined in terms of certain nonnegative (possibly infinite) constants.

Given a ρ ∈]0,∞] and a J ∈ J , we first define the next constant characterizing the mutual arrangement of

the finite collection of sets {Ωi}i∈J in space:

θρ[{Ωi}i∈J ](x̄) := sup
{
r ≥ 0

∣∣ ∩
i∈J

(Ωi − ai)
∩

Bρ(x̄) ̸= ∅, ∀ai ∈ rB
}
.

Then we can define the following constants for the original collection Ω:

θ̂[Ω](x̄) := sup
ε>0

inf
ρ∈]0,ε[, J∈J

ωi∈Bε(x̄)∩Ωi (i∈J)

θρ[{Ωi − ωi}i∈J ](0)

ρ
, (3)

η̂F [Ω](x̄) := sup
ε>0

inf
J∈J

xi∈Ωi∩Bε(x̄), x
∗
i ∈NF

Ωi
(xi) (i∈J)∑

i∈J∥x
∗
i ∥=1

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ . (4)

If I is a finite set, then constants (3) and (4) reduce to those considered in [29–31].

Proposition 3.1 The collection of sets Ω is

(AS) approximately stationary at x̄ if and only if θ̂[Ω](x̄) = 0,

(UR) uniformly regular at x̄ if and only if θ̂[Ω](x̄) > 0,

(FNAS) Fréchet normally approximately stationary at x̄ if and only if η̂F [Ω](x̄) = 0,

(FNUR) Fréchet normally uniformly regular at x̄ if and only if η̂F [Ω](x̄) > 0.

When positive, constants (3) and (4) provide quantitative characterizations of the corresponding regularity

properties.

The next theorem establishes the relationship between constants (3) and (4), and consequently between the

pairs of primal space properties (AS) and (UR), on the one hand, and dual space ones (FNAS) and (FNUR), on

the other hand. It is a consequence of Theorem 3.1.

Theorem 3.2 Let x̄ ∈
∩

i∈I Ωi, |I| > 1. Suppose X is Asplund and the sets Ωi (i ∈ I) are locally closed near x̄.

Then θ̂[Ω](x̄) = η̂F [Ω](x̄).

Corollary 3.1 Under the conditions of Theorem 3.2, the collection of sets Ω is approximately stationary (uni-

formly regular) at x̄ if and only if it is Fréchet normally approximately stationary (Fréchet normally uniformly

regular) at x̄.

When |I| < ∞, the stationarity part of Corollary 3.1 represents the Extended extremal principle [32,33]. (Some

earlier formulations of this result can be found in [34–36].) It strengthens the Extremal principle [25,27] which is

generally recognized as one of the corner-stones of the contemporary variational analysis ( [26]).
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4 Normals to Infinite Intersections

In this section, we recall a group of results from [24, Section 5] on intersection rules: representing Fréchet normals

to intersections of infinite collections of sets via normals to particular sets. Their proofs are based on the application

of Theorem 3.1.

In this and subsequent sections, we assume that X is an Asplund space and I is a nonempty set of indices,

possibly infinite. From now on, we drop the assumption that |J | > 1 in the definitions of J and Jα:

J := {J ⊂ I| 0 < |J | < ∞},

Jα := {J ⊂ I| 0 < |J | < Φ(α)}.

Recalling that Φ-stationarity properties, introduced in Definition 3.1, in fact reduce consideration of an infinite

collection of sets to that of a family of its finite subcollections, it is clear that techniques based on Theorem 3.1

can be applicable not to arbitrary Fréchet normals to the intersection, but only to those which are “approximately

normal” to the intersections of certain finite subsystems.

In the definition below, a gauge function Φ : R+ → R+ ∪ {+∞} is used again. Such functions were discussed

in the previous section.

Definition 4.1 An element x∗ ∈ X∗ is

– Fréchet Φ-normal to the intersection Ω =
∩

i∈I Ωi at x̄ ∈ Ω iff, for any ε > 0, there exist ρ > 0, α ∈]0, ε[, and

J ∈ Jα such that

⟨x∗, x− x̄⟩ < α∥x− x̄∥ ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄};

– Fréchet finitely normal to the intersection Ω =
∩

i∈I Ωi at x̄ ∈ Ω iff, for any ε > 0, there exists a ρ > 0 and

a subset J ∈ J such that

⟨x∗, x− x̄⟩ < ε∥x− x̄∥ ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄}.

It is immediate from the definition that every Fréchet Φ-normal element to the intersection Ω =
∩

i∈I Ωi is

Fréchet finitely normal to this intersection, while every Fréchet finitely normal element is Fréchet normal to Ω

in the sense of definition (2). If the collection is finite and Φ(α) > |I| for all α > 0, then every Fréchet normal

element to Ω is automatically Fréchet Φ-normal to the intersection Ω =
∩

i∈I Ωi.

The next theorem established in [24] (see [24, Theorem 5.2]) provides a general intersection rule for Fréchet

Φ-normal elements to an infinite intersection of sets.

Theorem 4.1 Let x̄ ∈ Ω =
∩

i∈I Ωi and the sets Ωi (i ∈ I) are locally closed near x̄. If x∗ ∈ X∗ is Fréchet

Φ-normal to the intersection
∩

i∈I Ωi at x̄, then, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩ Bε(x̄),

x∗i ∈ NF
Ωi

(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ∥x∗∥+ 2λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < α. (5)
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Remark 4.1 Given a neighborhood U of x̄, it is sufficient to require in Theorem 4.1 that only sets Ωi not

containing U are closed.

The main feature of the first condition in (5) is that the elements x∗i (i ∈ J) and number λ cannot be zero

simultaneously. This point is formulated clearer in the conclusion of the next corollary (see [24, Corollary 5.3.1]).

Corollary 4.1 Under the assumptions of Theorem 4.1, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩

Bε(x̄), x
∗
i ∈ NF

Ωi
(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < cα, (6)

where c := ∥x∗∥+ 2.

The number α and set of indices J in conditions in (5) and (6) are related by the growth condition |J | < Φ(α).

If the growth condition is not important, the intersection rule can be formulated in a more conventional way

(see [24, Corollary 5.3.2]).

Corollary 4.2 Let x̄ ∈ Ω =
∩

i∈I Ωi and the sets Ωi (i ∈ I) are locally closed near x̄. If x∗ ∈ X∗ is Fréchet

finitely normal to the intersection
∩

i∈I Ωi at x̄, then, for any ε > 0, there exist J ∈ J ; xi ∈ Ωi ∩ Bε(x̄),

x∗i ∈ NF
Ωi

(xi) (i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥x∗i ∥+ λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε. (7)

The last corollary generalizes the intersection rules for finite collections of sets (see, e.g., [26, Lemma 3.1], [37,

Theorem 2.4]). It also generalizes and strengthens the recent “fuzzy intersection rule for R-normals” in [19,

Theorem 5.5].

Note that, strictly speaking, conditions (5), (6), and (7) do not provide representation formulas for x∗ in

terms of x∗i , i ∈ J . It is important to have normal versions of these conditions, that is, with λ ̸= 0. To this end,

regularity conditions need to be imposed on the collection of sets Ω. The next corollary (see [24, Corollaries 5.3.3

and 5.4.1]) shows that regularity condition (FNUR) acts as a constraint qualification.

Corollary 4.3 Let x̄ ∈ Ω =
∩

i∈I Ωi, the sets Ωi (i ∈ I) are locally closed near x̄ and the collection Ω is Fréchet

normally uniformly regular at x̄.

(i) If x∗ ∈ X∗ is Fréchet Φ-normal to the intersection
∩

i∈I Ωi at x̄, then, for any ε > 0 and γ ∈]0, 1[, there exist

α ∈]0, ε[; J ∈ Jα; and xi ∈ Ωi ∩Bε(x̄), x
∗
i ∈ NF

Ωi
(xi) (i ∈ J) such that

∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < cα,

where c := ∥x∗∥((γη̂F [Ω](x̄))−1 + 1) + 2.
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(ii) If x∗ ∈ X∗ is Fréchet finitely normal to the intersection
∩

i∈I Ωi at x̄, then, for any ε > 0, there exist J ∈ J ;

xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NF
Ωi

(xi) (i ∈ J) such that∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε. (8)

Thanks to Theorem 3.2, the assumption of Fréchet normal uniform regularity of the collection Ω in Corol-

lary 4.3 can be replaced by the corresponding primal space regularity condition.

5 Maximum Rule

An immediate application of the intersection rules formulated above is to developing maximum rules for Fréchet

subdifferentials. We are going to consider next the supremum function

f(x) := sup
i∈I

fi(x), x ∈ X, (9)

where I is a (possibly infinite) nonempty set of indices and fi (i ∈ I) are functions from an Asplund space X to

the extended real line R∞.

Recall that the Fréchet subdifferential (1) of f at x (f(x) < ∞) admits an equivalent representation:

∂F f(x) =
{
x∗ ∈ X∗∣∣ (x∗,−1) ∈ NF

epi f (x, f(x))
}
, (10)

where epi f = {(u, µ) ∈ X ×R
∣∣ f(u) ≤ µ} is the epigraph of f . It is assumed here that X ×R is equipped with a

norm providing the product topology.

If (x∗, λ) ∈ NF
epi f (x, µ) for some µ ≥ f(x), then necessarily λ ≤ 0 and (x∗, λ) ∈ NF

epi f (x, f(x)). If µ > f(x),

then λ = 0.

The set

∂∞f(x) :=
{
x∗ ∈ X∗∣∣ (x∗, 0) ∈ NF

epi f (x, f(x))
}

(11)

is called the singular Fréchet subdifferential of f at x. The two sets (10) and (11) provide complete description of

Fréchet normals to epi f at (x, f(x)). If (x∗, λ) ∈ NF
epi f (x, f(x)), then either λ < 0 and x∗/|λ| ∈ ∂F f(x), or λ = 0

and x∗ ∈ ∂∞f(x). If f(u) ≤ f(x) + c∥u − x∥ for some c > 0 and all u ∈ X near x (particularly if f is Lipschitz

continuous near x), then ∂f∞(x) = {0}.

Fix a point x̄ ∈ X with f(x̄) < ∞ and an ε > 0. Next, we define the set of ε-active indices at x̄:

Iε(x̄) :=

{
i ∈ I

∣∣∣∣∣ sup
x∈Bε(x̄)

fi(x) ≥ f(x̄)− ε

}
. (12)

The smaller the number ε is, the smaller the set Iε(x̄) will be.

Let a gauge function Φ : R+ → R+ be given. Similarly to the case of the intersection rule, we need to limit

ourselves to considering ‘finitely generated’ Fréchet subgradients of f .

Definition 5.1 An element x∗ ∈ X∗ is a
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(i) Fréchet Φ-subgradient of the supremum function (9) at x̄ iff, for any ε > 0, there exist ρ > 0, α ∈]0, ε[ and

J ∈ Jα such that

sup
i∈J

fi(x)− f(x̄)− ⟨x∗, x− x̄⟩+ α∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄};

(ii) Fréchet finitely generated subgradient of the supremum function (9) at x̄ iff, for any ε > 0, there exists a ρ > 0

and a subset J ∈ J such that

sup
i∈J

fi(x)− f(x̄)− ⟨x∗, x− x̄⟩+ ε∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄};

(iii) singular Fréchet Φ-subgradient of the supremum function (9) at x̄ iff (x∗, 0) is Fréchet Φ-normal to the

intersection
∩

i∈I epi fi at (x̄, f(x̄));

(iv) singular Fréchet finitely generated subgradient of the supremum function (9) at x̄ iff (x∗, 0) is Fréchet finitely

normal to the intersection
∩

i∈I epi fi at (x̄, f(x̄)).

Obviously, every (singular) Fréchet Φ-subgradient of the supremum function (9) is a (singular) Fréchet finitely

generated subgradient of this function, while every (singular) Fréchet finitely generated subgradient is a (singular)

Fréchet subgradient, that is, it belongs to the (singular) Fréchet subdifferential of f . On the other hand, if the

index set I is finite and Φ(α) > |I| for all α > 0, then every (singular) Fréchet subgradient of f is automatically

a (singular) Fréchet Φ-subgradient of the supremum function (9).

The two ‘nonsingular’ types of subgradients defined in parts (i) and (ii) of Definition 5.1 correspond to

‘nonhorizontal’ normals to the intersection of epigraphs, namely, (i) (respectively, (ii)) is equivalent to (x∗,−1)

being Fréchet Φ-normal (respectively, Fréchet finitely normal) to the intersection
∩

i∈I epi fi at (x̄, f(x̄)).

To simplify the statements, we are going to introduce two more notations:

Jε,α(x̄) := {J ⊂ Iε(x̄)| 0 < |J | < Φ(α)},

Jε(x̄) := {J ⊂ Iε(x̄)| 0 < |J | < ∞}.

It is easy to check that, in the above definition, sets Jα and J can be replaced by Jε,α(x̄) and Jε(x̄), respectively.

In the rest of the section, we assume thatX×R is equipped with the maximum norm: ∥(x, µ)∥ = max{∥x∥, |µ|}.

Then the dual norm is of the sum type: ∥(x∗, λ)∥ = ∥x∗∥+ |λ|.

Theorem 5.1 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are lower semicontinuous

near x̄.

(i) If x∗ ∈ X∗ is a Fréchet Φ-subgradient of the supremum function (9) at x̄, then, for any ε > 0, there exist

α ∈]0, ε[; J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J); and a λ ≥ 0 such that

fi(xi) ≤ f(x̄) + ε, x∗i ∈ λi∂
F fi(xi) if λi > 0 and x∗i ∈ ∂∞fi(xi) if λi = 0 (13)

and

∑
i∈J

(∥x∗i ∥+ λi) + λ∥x∗∥+ 3λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J

λi

∣∣∣∣∣∣ < α. (14)
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(ii) If x∗ ∈ X∗ is a singular Fréchet Φ-subgradient of the supremum function (9) at x̄, then, for any ε > 0, there

exist α ∈]0, ε[; J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

(∥x∗i ∥+ λi) + λ∥x∗∥+ 2λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi < α. (15)

Proof The assertion is a direct consequence of Theorem 4.1. It is sufficient to observe that epi f =
∩

i∈I epi fi.

The sets epi fi, i ∈ Iε0(x̄), are locally closed near (x̄, f(x̄)). For i /∈ Iε0(x̄), the sets epi fi do not have to be locally

closed (Remark 4.1). Such sets can be ignored since the corresponding Fréchet normal elements will be zero.

If x∗ ∈ X∗ is a Fréchet Φ-subgradient of the supremum function (9) at x̄, then (x∗,−1) is Fréchet Φ-normal

to the intersection
∩

i∈I epi fi at (x̄, f(x̄)). Let ε > 0 be given. Without any loss of generality, we will assume that

ε < ε0. By Theorem 4.1, there exist α ∈]0, ε[; J ∈ Jα; (xi, µi) ∈ epi fi ∩ Bε(x̄, f(x̄)), (x
∗
i ,−λi) ∈ NF

epi fi
(xi, µi)

(i ∈ J); and a λ ≥ 0 such that

∑
i∈J

∥(x∗i ,−λi)∥+ λ∥(x∗,−1)∥+ 2λ = 1 and

∥∥∥∥∥∥λ(x∗,−1)−
∑
i∈J

(x∗i ,−λi)

∥∥∥∥∥∥ < α.

Then f(xi) ≤ f(x̄) + ε, λi ≥ 0, and (x∗i ,−λi) ∈ NF
epi fi

(xi, f(xi)). If i /∈ Iε0(x̄), then (xi, µi) ∈ int epi fi, and,

consequently, ∥x∗i ∥ = λi = 0. If λi > 0, then x∗i /λi ∈ ∂F fi(xi). Otherwise, x∗i ∈ ∂∞fi(xi). Conditions (14) follow

after observing that ∥(x∗,−1)∥ = ∥x∗∥+ 1, ∥(x∗i ,−λi)∥ = ∥x∗i ∥+ λi, and∥∥∥∥∥∥λ(x∗,−1)−
∑
i∈J

(x∗i ,−λi)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
λx∗ −

∑
i∈J

x∗i ,−λ+
∑
i∈J

λi

∥∥∥∥∥∥ =

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J

λi

∣∣∣∣∣∣ .
Similarly, if x∗ ∈ X∗ is a singular Fréchet Φ-subgradient of the supremum function (9) at x̄, then, for any

ε > 0, there exist α ∈]0, ε[; J ∈ Jα; xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

∥(x∗i ,−λi)∥+ λ∥x∗∥+ 2λ = 1 and

∥∥∥∥∥∥λ(x∗, 0)−
∑
i∈J

(x∗i ,−λi)

∥∥∥∥∥∥ < α.

This is equivalent to (15). ⊓⊔

The next two corollaries are analogues of Corollaries 4.1 and 4.2, respectively.

Corollary 5.1 In the conclusions of Theorem 5.1, conditions (14) and (15) can be replaced by

∑
i∈J

(∥x∗i ∥+ λi) + λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J

λi

∣∣∣∣∣∣ < c1α, (16)

and

∑
i∈J

(∥x∗i ∥+ λi) + λ = 1 and

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi < c2α, (17)

respectively, where c1 := ∥x∗∥+ 3 and c2 := ∥x∗∥+ 2.

Corollary 5.2 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are lower semicontinuous

near x̄.
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(i) If x∗ ∈ X∗ is a Fréchet finitely generated subgradient of the supremum function (9) at x̄, then, for any ε > 0,

there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

(∥x∗i ∥+ λi) + λ = 1,

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and

∣∣∣∣∣∣λ−
∑
i∈J

λi

∣∣∣∣∣∣ < ε. (18)

(ii) If x∗ ∈ X∗ is a singular Fréchet finitely generated subgradient of the supremum function (9) at x̄, then, for

any ε > 0, there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

(∥x∗i ∥+ λi) + λ = 1,

∥∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi < ε. (19)

Normal versions (that is, with λ ̸= 0) of conditions (14)–(19) can be formulated under certain regularity

requirements imposed on the collection of functions F := {fi}i∈I . All stationarity and regularity properties of

collections of sets in Definition 3.1 produce corresponding properties of collections of functions when applied

to associated collections of their epigraphs. Here, we need a single regularity property related to the following

constant which represents an analogue of constant (4):

η̂F [F ](x̄) := sup
ε>0

inf
J∈Jε(x̄)

(xi,µi)∈epi fi∩Bε(x̄,f(x̄)),

(x∗
i ,−λi)∈NF

epi fi
(xi,µi) (i∈J)∑

i∈J ∥x∗
i ∥=1

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi

 . (20)

Definition 5.2 The collection of functions F is Fréchet normally uniformly regular at x̄ iff η̂[F ](x̄) > 0, that is,

there exists an α > 0 and an ε > 0 such that∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi ≥ α
∑
i∈J

∥x∗i ∥ (21)

for any J ∈ Jε(x̄); (xi, µi) ∈ epi fi ∩Bε(x̄, f(x̄)) and (x∗i ,−λi) ∈ NF
epi fi

(xi, µi) (i ∈ J).

This condition is automatically satisfied if the functions fi, i ∈ Iε(x̄), are uniformly Lipschitz near x̄. Indeed, if,

for each i ∈ Iε(x̄), fi is Lipschitz continuous in Bε(x̄) with modulus l, then NF
epi fi

(xi, µi) = {0, 0} if µi > fi(xi)

and ∥x∗i ∥ ≤ lλi if (x∗i ,−λi) ∈ NF
epi fi

(xi, fi(xi)). Thus, for any J ⊂ Iε(x̄); (xi, µi) ∈ epi fi ∩ Bε(x̄, f(x̄)) and

(x∗i ,−λi) ∈ NF
epi fi

(xi, µi) (i ∈ J), it holds

∑
i∈J

∥x∗i ∥ ≤ l
∑
i∈J

λi ≤ l

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi

 .

Hence, (21) holds true with α := l−1.

Condition (21) is also satisfied if a stronger inequality holds true with some α ∈]0, 1]:∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈J

∥x∗i ∥.

The next corollary is an analogues of Corollary 4.3. Its conclusions do not contain λ and provide characteri-

zations of x∗ in terms of Fréchet normals to the epigraphs of the functions fi.

Corollary 5.3 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are lower semicontinuous

near x̄, and the collection F is Fréchet normally uniformly regular at x̄.
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(i) If x∗ ∈ X∗ is a Fréchet Φ-subgradient of the supremum function (9) at x̄, then, for any ε > 0 and γ ∈]0, 1[,

there exist α ∈]0, ε[; J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that∥∥∥∥∥∥x∗ −

∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣1−

∑
i∈J

λi

∣∣∣∣∣∣ < cα,

where c := (∥x∗∥+ 1)(γη̂F [F ](x̄))−1 + ∥x∗∥+ 3.

(ii) If x∗ ∈ X∗ is a singular Fréchet Φ-subgradient of the supremum function (9) at x̄, then, for any ε > 0 and

γ ∈]0, 1[, there exist α ∈]0, ε[; J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such

that ∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∑
i∈J

λi < cα,

where c := ∥x∗∥(γη̂F [F ](x̄))−1 + ∥x∗∥+ 2.

(iii) If x∗ ∈ X∗ is a Fréchet finitely generated subgradient of the supremum function (9) at x̄, then, for any ε > 0,

there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that∥∥∥∥∥∥x∗ −

∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi = 1. (22)

(iv) If x∗ ∈ X∗ is a singular Fréchet finitely generated subgradient of the supremum function (9) at x̄, then, for

any ε > 0, there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that∥∥∥∥∥∥x∗ −

∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi < ε.

Proof The first two assertions are pretty straightforward. Assertion (iv) follows directly from (ii). Next we are

going to prove (iii). If x∗ ∈ X∗ is a Fréchet finitely generated subgradient of the supremum function (9) at x̄,

then direct application of (i) produces the following assertion: for any ξ > 0, there exist J ∈ Jξ(x̄); xi ∈ Bξ(x̄),

x∗i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣1−

∑
i∈J

λi

∣∣∣∣∣∣ < ξ. (23)

Given an ε > 0, take a sufficiently small ξ ∈]0, 1[ such that ξ(∥x∗∥+ 1)/(1− ξ) < ε. It follows from (23) that∥∥∥∥∥∥x∗ −
∑
i∈J

x∗i

∥∥∥∥∥∥ < ξ,

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < ∥x∗∥+ ξ,

∣∣∣∣∣∣1−
∑
i∈J

λi

∣∣∣∣∣∣ < ξ,
∑
i∈J

λi > 1− ξ.

Denote γ :=
∑

i∈J λi; λ̃i := λi/γ, x̃
∗
i := x∗i /γ (i ∈ J). Then

∑
i∈J λ̃i = 1 and∥∥∥∥∥∥x∗ −

∑
i∈J

x̃∗i

∥∥∥∥∥∥ < |γ−1 − 1|

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥+ ξ <
ξ(∥x∗∥+ ξ)

γ
+ ξ <

ξ(∥x∗∥+ 1)

1− ξ
< ε.

Hence, replacing λ̃∗i and x̃∗i with λ∗i and x∗i (i ∈ J), we conclude that conditions (13) and (22) are satisfied. ⊓⊔

In the Lipschitz case, Corollary 5.3 (iii) takes a simpler form.
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Corollary 5.4 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are uniformly Lipschitz near

x̄. If x∗ ∈ X∗ is a Fréchet finitely generated subgradient of the supremum function (9) at x̄, then, for any ε > 0,

there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ ∂F fi(xi), and λi ≥ 0 (i ∈ J) such that∥∥∥∥∥∥x∗ −

∑
i∈J

λix
∗
i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi = 1.

Remark 5.1 When the space is Banach and the functions are convex, a similar result in terms of Fenchel

subdifferentials can be established using [38, Theorem 1] and the Brøndsted-Rockafellar theorem.

6 Optimality Conditions

Another possible application of the theory developed in the preceding sections is to deducing necessary optimal-

ity/stationarity conditions. In this section X is assumed Asplund.

6.1 Minimax problems

First, we consider a minimax problem: minimizing the supremum function (9).

Minimize f(x) := sup
i∈I

fi(x). (24)

Recall that the supremum in (24) is over a possibly infinite nonempty index set I.

Let a point x̄ ∈ X with f(x̄) < ∞ and a gauge function Φ : R+ → R+ be given.

Definition 6.1 A point x̄ ∈ X is

(i) Fréchet Φ-stationary for problem (24) iff, for any ε > 0, there exist ρ > 0; α ∈]0, ε[; J ∈ Jα such that

sup
i∈J

fi(x)− f(x̄) + α∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄};

(ii) Fréchet finitely stationary for problem (24) iff, for any ε > 0, there exists a ρ > 0 and a subset J ∈ J such

that

sup
i∈J

fi(x)− f(x̄) + ε∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄}. (25)

Obviously, every Fréchet Φ-stationary point is Fréchet finitely stationary, while every Fréchet finitely stationary

point x̄ is stationary for f in the sense that

lim inf
x→x̄

f(x)− f(x̄)

∥x− x̄∥ ≥ 0

(or, equivalently, that 0 ∈ ∂F f(x̄).) If the index set I is finite and Φ(α) > |I| for all α > 0, then every stationary

point of f , in particular, every locally minimal point, is Fréchet Φ-stationary. If |I| = ∞, then a minimal point

does not have to be finitely stationary, unless some additional assumptions are imposed.
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Example 6.1 Let fi(x) = −
√

|x|/i where x ∈ R and i ∈ I = {1, 2, . . .}. Then f(x) = supi∈I fi(x) = 0 for any

x ∈ R. Hence, x̄ = 0 is a point of minimum of f . Take any nonempty subset J ∈ J and denote by i0 the maximal

number in J . Then, for any ρ > 0, taking an x ∈]0,min{i−2
0 , ρ}[, we have

sup
i∈J

fi(x) + |x| = −
√
x(i−1

0 −
√
x) < 0,

which is a violation of (25) with ε = 1. Hence, x̄ = 0 is not finitely stationary.

The two stationarity concepts for problem (24) are defined above as purely primal space concepts. At the same

time, comparing Definitions 6.1 and 5.1, one can easily see that they admit simple dual space characterizations.

Proposition 6.1 A point x̄ ∈ X is Fréchet Φ-stationary (finitely stationary) for problem (24) if and only if 0X∗

is a Fréchet Φ-subgradient (finitely generated subgradient) of the supremum function (9) at x̄.

In the next theorem, which is a direct consequence of Theorem 5.1 (i), Corollary 5.2 (i), and Proposition 6.1,

Iε(x̄) denotes the set (12) of ε-active indices at x̄.

Theorem 6.1 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are lower semicontinuous

near x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (24), then, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jε,α(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

(∥x∗i ∥+ λi) + 3λ = 1 and

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J

λi

∣∣∣∣∣∣ < α.

(ii) If x̄ is a Fréchet finitely stationary point for problem (24), then, for any ε > 0, there exist J ∈ Jε(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J) satisfying (13); and a λ ≥ 0 such that

∑
i∈J

(∥x∗i ∥+ λi) + λ = 1,

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and

∣∣∣∣∣∣λ−
∑
i∈J

λi

∣∣∣∣∣∣ < ε.

The next statement provides necessary stationarity conditions in the normal form. It is a consequence of

Corollaries 5.3 (i),(iii) and 5.4.

Corollary 6.1 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄), are lower semicontinuous

near x̄, and the collection F is Fréchet normally uniformly regular at x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (24), then, for any ε > 0 and γ ∈]0, 1[, there exist α ∈]0, ε[;

J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that∥∥∥∥∥∥

∑
i∈J

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣1−

∑
i∈J

λi

∣∣∣∣∣∣ < cα,

where c := (γη̂F [F ](x̄))−1 + 3.
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(ii) If x̄ is a Fréchet finitely stationary point for problem (24), then, for any ε > 0, there exist J ∈ Jε(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J) satisfying (13), such that

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi = 1.

Moreover, if the functions fi, i ∈ Iε0(x̄), are uniformly Lipschitz near x̄ then, for any ε > 0, there exist

J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ ∂F fi(xi), and λi ≥ 0 (i ∈ J) such that

∥∥∥∥∥∥
∑
i∈J

λix
∗
i

∥∥∥∥∥∥ < ε and
∑
i∈J

λi = 1.

6.2 Constrained optimization: set constraints

Next, we consider a constrained optimization problem with constraints given by arbitrary sets:

Minimize f(x) subject to x ∈
∩
i∈I

Ωi, (26)

where f : X → R∞, f(x̄) < ∞, x̄ ∈ Ωi ⊂ X (i ∈ I), and the index set I can be infinite.

This problem can be treated as a particular case of the minimax problem (24). Indeed, assuming without any

loss of generality that 0 /∈ I, set f̃0 = f − f(x̄), f̃i = δΩi
– the indicator function of Ωi, and Ĩ = I ∪ {0}. Then x̄

is a local solution to (26) if and only if it is a local minimum point of the function

f̃(x) := sup
i∈Ĩ

f̃i(x), x ∈ X. (27)

The next definition introduces two stationarity concepts for problem (26), which can be considered as direct

analogues of the corresponding stationarity concepts for problem (24) from Definition 6.1.

Definition 6.2 A point x̄ ∈ X is

(i) Fréchet Φ-stationary for problem (26) iff, for any ε > 0, there exist ρ > 0, α ∈]0, ε[, and J ∈ Jα such that

f(x)− f(x̄) + α∥x− x̄∥ > 0 ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄};

(ii) Fréchet finitely stationary for problem (26) iff, for any ε > 0, there exists a ρ > 0 and a subset J ∈ J such

that

f(x)− f(x̄) + ε∥x− x̄∥ > 0 ∀x ∈
∩
i∈J

Ωi

∩
Bρ(x̄) \ {x̄}.

Application of Theorem 6.1 to the problem of minimizing (27) leads to the following statement.

Theorem 6.2 Suppose f is lower semicontinuous and the sets Ωi (i ∈ I) are locally closed near x̄.
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(i) If x̄ is a Fréchet Φ-stationary point for problem (26), then, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jα;

xi ∈ Bε(x̄), x
∗
i ∈ X∗ (i ∈ J ∪ {0}); and a λ0 ≥ 0 such that

f(x0) ≤ f(x̄) + ε, x∗0 ∈ λ0∂
F f(x0) if λ0 > 0 and x∗0 ∈ ∂∞f(x0) if λ0 = 0, (28)

xi ∈ Ωi, x∗i ∈ NF
Ωi

(xi), (i ∈ J) (29)

∑
i∈J∪{0}

∥x∗i ∥+ λ0 ≤ 1 and

∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥+ 1

3

1−
∑

i∈J∪{0}
∥x∗i ∥ − 4λ0


+

< α. (30)

(ii) If x̄ is a Fréchet finitely stationary point for problem (26), then, for any ε > 0, there exist J ∈ J ; xi ∈ Bε(x̄),

x∗i ∈ X∗ (i ∈ J ∪ {0}) and a λ0 ≥ 0, satisfying (28) and (29), and such that

∑
i∈J∪{0}

∥x∗i ∥+ λ0 ≤ 1,

∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥ < ε and

1−
∑

i∈J∪{0}
∥x∗i ∥ − 2λ0


+

< ε.

Proof Let x̄ be a Fréchet Φ-stationary point for problem (26) and an ε > 0 be given. Then x̄ is a Fréchet Φ-sta-

tionary point for the problem of minimizing (27) and, by Theorem 6.1, there exist α ∈]0, ε[; J̃ ⊂ Ĩ, |J̃ | < Φ(α);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J̃); and a λ ≥ 0 such that

f̃i(xi) ≤ f̃(x̄) + ε, x∗i ∈ λi∂
Ff̃i(xi) if λi > 0 andx∗i ∈ ∂∞f̃i(xi) if λi = 0 (i ∈ J̃), (31)

∑
i∈J̃

(∥x∗i ∥+ λi) + 3λ = 1 and

∥∥∥∥∥∥
∑
i∈J̃

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J̃

λi

∣∣∣∣∣∣ < α. (32)

Put J = J̃\{0}. Obviously, |J | < Φ(α). Without any loss of generality, we can assume that 0 ∈ J̃ : otherwise, we can

always add x0 = x̄, x∗0 = 0, and λ0 = 0. If i ∈ J , then necessarily xi ∈ Ωi and ∂F f̃i(xi) = ∂∞f̃i(xi) = NF
Ωi

(xi).

Hence, J̃ = J ∪ {0} and conditions (31) take the form of (28) and (29). Conditions (32) do not impose many

restrictions on numbers λ and λi, i ∈ J . The sum
∑

i∈J λi, which is present in both conditions in (32), can be

replaced by a single nonnegative variable λ̃:

∑
i∈J̃

∥x∗i ∥+ λ0 + λ̃+ 3λ = 1 and

∥∥∥∥∥∥
∑
i∈J̃

x∗i

∥∥∥∥∥∥+ |λ− (λ0 + λ̃)| < α. (33)

If conditions (33) are also satisfied with some nonnegative λ and λ̃, then they are satisfied with particular numbers

minimizing the left-hand side of the inequality in (33) under the given equality constraint (and with fixed x∗i ,

i ∈ J̃ , and λ0):

λ = min

(
1−

∑
i∈J̃ ∥x∗i ∥ − λ0

3
,
1−

∑
i∈J̃ ∥x∗i ∥
4

)
and λ̃ =

(
1−

∑
i∈J̃ ∥x∗i ∥
4

− λ0

)
+

.

With these numbers we have

|λ− (λ0 + λ̃)| = 1

3

1−
∑
i∈J̃

∥x∗i ∥ − 4λ0


+

.

Hence, conditions (33) imply (30).

The proof of the second statement goes along the same lines, with conditions (32) replaced by the following

ones:

∑
i∈J̃

(∥x∗i ∥+ λi) + λ = 1,

∥∥∥∥∥∥
∑
i∈J̃

x∗i

∥∥∥∥∥∥ < ε and

∣∣∣∣∣∣λ−
∑
i∈J̃

λi

∣∣∣∣∣∣ < ε.

⊓⊔
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To formulate the normal version of the stationarity conditions, that is, with λ0 ̸= 0, certain combined regularity

conditions must be imposed on f and the collection of sets Ω := {Ωi}i∈I . Such conditions can be formulated

using the following analogue of constant (20):

η̂F [f,Ω](x̄) := sup
ε>0

inf
J∈J

(x0,µ0)∈epi f∩Bε(x̄,f(x̄))

(x∗
0 ,−λ0)∈NF

epi f (x0,µ0)

xi∈Ωi∩Bε(x̄), x
∗
i ∈NF

Ωi
(xi) (i∈J)∑

i∈J∪{0} ∥x∗
i ∥=1

∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥+ λ0

 .

Definition 6.3 The couple {f,Ω} is Fréchet normally uniformly regular at x̄ iff η̂[f,Ω](x̄) > 0, that is, there

exists an α > 0 and an ε > 0 such that∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥+ λ0 ≥ α
∑

i∈J∪{0}
∥x∗i ∥

for any J ∈ J ; (x0, µ0) ∈ epi f ∩ Bε(x̄, f(x̄)), (x
∗
0,−λ0) ∈ NF

epi f (x0, µ0); xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ NF
Ωi

(xi)

(i ∈ J).

Corollary 6.2 Suppose f is lower semicontinuous, the sets Ωi (i ∈ I) are locally closed near x̄, and the couple

{f,Ω} is Fréchet normally uniformly regular at x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (26), then, for any ε > 0 and γ ∈]0, 1[, there exist α ∈]0, ε[;

J ∈ Jα; xi ∈ Bε(x̄) and x∗i ∈ X∗ (i ∈ J ∪ {0}) such that

f(x0) ≤ f(x̄) + ε, x∗0 ∈ ∂F f(x0); xi ∈ Ωi, x∗i ∈ NF
Ωi

(xi) (i ∈ J) (34)

and ∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥ < cα,

where c := (2 + η̂F [f,Ω](x̄))/[γmin{η̂F [f,Ω](x̄), 1/3}].

(ii) If x̄ is a Fréchet finitely stationary point for problem (26), then, for any ε > 0, there exist J ∈ J ; xi ∈ Bε(x̄)

and x∗i ∈ X∗ (i ∈ J ∪ {0}) satisfying (34), such that∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥ < ε.

Proof Let x̄ be a Fréchet Φ-stationary point for problem (26) and let ε > 0 and γ′ ∈]γ, 1[ be given. Since the

couple {f,Ω} is Fréchet normally uniformly regular at x̄, by Definition 6.3, setting α1 := γ′ min{η̂F [f,Ω](x̄), 1/3},

there exists a δ > 0 such that ∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥+ λ0 ≥ α1

∑
i∈J∪{0}

∥x∗i ∥ (35)

for any J ∈ J ; (x0, µ0) ∈ epi f ∩ Bδ(x̄, f(x̄)), (x
∗
0,−λ0) ∈ NF

epi f (x0, µ0); xi ∈ Ωi ∩ Bδ(x̄) and x∗i ∈ NF
Ωi

(xi)

(i ∈ J).
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By Theorem 6.2, there exist α ∈]0,min{ε, (1− γ/γ′)α1}); J ∈ Jα; xi ∈ Bmin{ε,δ}(x̄), x
∗
i ∈ X∗ (i ∈ J ∪ {0})

and a λ0 ≥ 0 satisfying (28) and (29) such that (30) holds true. (30) and (35) imply the following estimates:

(2 + α1)λ0 >
1

3
−
(
1

3
− α1

) ∑
i∈J∪{0}

∥x∗i ∥+ λ0

− α ≥ α1 − α > (γ/γ′)α1

= γmin{η̂F [f,Ω](x̄), 1/3} = (2 + η̂F [f,Ω](x̄))/c ≥ (2 + α1)/c.

The conclusion of the first assertion follows after dividing the second inequality in (30) by λ0 and replacing λ−1
0 x∗i

with x∗i .

The second assertion is a consequence of the first one. ⊓⊔

The conclusions of Corollary 6.2 can be rewritten in a more conventional way.

Corollary 6.3 Suppose f is lower semicontinuous, the sets Ωi (i ∈ I) are locally closed near x̄, and the couple

{f,Ω} is Fréchet normally uniformly regular at x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (26), then, for any γ ∈]0, 1[,

0 ∈
∩
ε>0

∪{
∂F f(x0) +

∑
i∈J

NF
Ωi

(xi) + cαB∗
∣∣∣∣ x0 ∈ Bε(x̄), f(x0) ≤ f(x̄) + ε;

α ∈]0, ε[; J ∈ Jα; xi ∈ Ωi ∩Bε(x̄) (i ∈ J)

}
,

where c := (2 + η̂F [f,Ω](x̄))/[γmin{η̂F [f,Ω](x̄), 1/3}].

(ii) If x̄ is a Fréchet finitely stationary point for problem (26), then

0 ∈
∩
ε>0

∪{
∂F f(x0) +

∑
i∈J

NF
Ωi

(xi) + εB∗
∣∣∣∣ x0 ∈ Bε(x̄), f(x0) ≤ f(x̄) + ε;

J ∈ J ; xi ∈ Ωi ∩Bε(x̄) (i ∈ J)

}
.

Remark 6.1 Theorem 6.2 and its corollaries give necessary conditions of Fréchet Φ-stationarity or finite sta-

tionarity. They are not automatically applicable to arbitrary stationary or even minimal points unless |I| < ∞.

This fact reflects the intrinsic complexity of infinite programming problems which require a variety of meaningful

concepts of stationarity. To formulate necessary optimality conditions on the base of Theorem 6.2, one must en-

sure that the solution of the optimization problem under consideration satisfies one of the stationarity properties

in Definition 6.2. For instance, if x̄ is a local solution to problem (26), one can require that the following two

conditions are satisfied:

1) the approximate Fréchet zero sum rule holds true at x̄ for the sum of two functions: f and δΩ, where

Ω :=
∩

i∈I Ωi;

2) every Fréchet normal element to Ω at x̄ is Fréchet Φ-normal to the intersection
∩

i∈I Ωi at x̄.

Conditions of this type were used in [19, Theorem 5.15]. The second part of this theorem is a direct consequence

of Corollary 6.3 (ii) above. When |I| < ∞, Theorem 6.2 and its corollaries provide standard approximate (fuzzy)

optimality conditions – see the limiting form of these conditions in [39, Corollary 5.6].
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6.3 Constrained optimization: inequality constraints

In this subsection, we consider a constrained optimization problem with constrains given by inequalities:

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I, (36)

where fi : X → R∞ (i ∈ I) and the index set I can be infinite. To avoid confusion, we are assuming that 0 /∈ I.

Obviously, (36) is a particular case of problem (26) with Ωi = {x ∈ X| fi(x) ≤ 0}. However, it seems more

convenient to interpret solutions to (36) as those of a minimax problem of the type (24).

Let x̄ be a local solution to (36) with f0(x̄) < ∞. Without any loss of generality, we will assume that f0(x̄) = 0.

Then x̄ is a local minimal point of the function

f(x) := sup
i∈I∪{0}

fi(x), x ∈ X. (37)

Let a gauge function Φ : R+ → R+ be given.

Definition 6.4 A point x̄ ∈ X is

(i) Fréchet Φ-stationary for problem (36) iff, for any ε > 0, there exist ρ > 0, α ∈]0, ε[, and J ∈ Jα such that

sup
i∈J∪{0}

fi(x) + α∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄};

(ii) Fréchet finitely stationary for problem (36) iff, for any ε > 0, there exists a ρ > 0 and a subset J ∈ J such

that

sup
i∈J∪{0}

fi(x) + ε∥x− x̄∥ > 0 ∀x ∈ Bρ(x̄) \ {x̄}.

Obviously, every Fréchet Φ-stationary point is Fréchet finitely stationary, while every Fréchet finitely stationary

point x̄ is stationary for the function f given by (37).

The next two statements are realizations of Theorem 6.1 and Corollary 6.1, respectively. Iε(x̄) denotes the set

(12) of ε-active indices at x̄.

Theorem 6.3 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄)∪{0}, are lower semicontinuous

near x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (36), then, for any ε > 0, there exist α ∈]0, ε[; J ∈ Jε,α(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13); and a λ ≥ 0 such that

∑
i∈J∪{0}

(∥x∗i ∥+ λi) + 3λ = 1 and

∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣λ−

∑
i∈J∪{0}

λi

∣∣∣∣∣∣ < α.

(ii) If x̄ is a Fréchet finitely stationary point for problem (36), then, for any ε > 0, there exist J ∈ Jε(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13); and a λ ≥ 0 such that

∑
i∈J∪{0}

(∥x∗i ∥+ λi) + λ = 1,

∥∥∥∥∥∥
∑

i∈J∪{0}
x∗i

∥∥∥∥∥∥ < ε and

∣∣∣∣∣∣λ−
∑

i∈J∪{0}
λi

∣∣∣∣∣∣ < ε.
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Corollary 6.4 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄)∪ {0}, are lower semicontin-

uous near x̄, and the collection {fi}i∈I∪{0} is Fréchet normally uniformly regular at x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (36), then, for any ε > 0 and γ ∈]0, 1[, there exist α ∈]0, ε[;

J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13), such that∥∥∥∥∥∥

∑
i∈J∪{0}

x∗i

∥∥∥∥∥∥+
∣∣∣∣∣∣1−

∑
i∈J∪{0}

λi

∣∣∣∣∣∣ < cα, (38)

where c := (γη̂F [{fi}i∈I∪{0}](x̄))
−1 + 3.

(ii) If x̄ is a Fréchet finitely stationary point for problem (36), then, for any ε > 0, there exist J ∈ Jε(x̄);

xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13), such that∥∥∥∥∥∥

∑
i∈J∪{0}

x∗i

∥∥∥∥∥∥ < ε and
∑

i∈J∪{0}
λi = 1. (39)

Moreover, if the functions fi, i ∈ Iε0(x̄)∪{0}, are uniformly Lipschitz near x̄, then, for any ε > 0, there exist

J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ ∂F fi(xi), and λi ≥ 0 (i ∈ J ∪ {0}) such that∥∥∥∥∥∥

∑
i∈J∪{0}

λix
∗
i

∥∥∥∥∥∥ < ε and
∑

i∈J∪{0}
λi = 1.

When |I| < ∞, the conclusions of Corollary 6.4 (ii) are pretty standard, cf. [39, Subsection 5.1.3]. As an illus-

tration of the above results, the next corollary presents the conclusions of Corollary 6.4 (ii) in a more conventional

way.

Corollary 6.5 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄)∪ {0}, are lower semicontin-

uous near x̄, and the collection {fi}i∈I∪{0} is Fréchet normally uniformly regular at x̄. If x̄ is a Fréchet finitely

stationary point for problem (36), then

0 ∈
∩
ε>0

∪{ ∑
i∈J∪{0}

λi∂
F fi(xi) + εB∗

∣∣∣∣ J ∈ Jε;

xi ∈ Bε(x̄), fi(xi) ≤ f(x̄) + ε, λi ≥ 0 (i ∈ J ∪ {0});
∑

i∈J∪{0}
λi = 1

}

with the convention that 0 · ∂F fi(xi) = ∂∞fi(xi).

To ensure the normal form of the above stationarity conditions, certain constraint qualifications are required.

They can be defined using the next regularity constant (Recall that the set F := {fi}i∈I involves only the

functions defining the constraints of the problem):

ζ̂[F ](x̄) := sup
ε>0

inf
J∈Jε(x̄)

(xi,µi)∈epi fi∩Bε(x̄,0), (x
∗
i ,−λi)∈NF

epi fi
(xi,µi) (i∈J)∑

i∈J λi=1

∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ .

Definition 6.5 The Fréchet normal constraint qualification is satisfied for problem (36) at x̄ iff ζ̂[F ](x̄) > 0, that

is, there exists an α > 0 and an ε > 0 such that∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α
∑
i∈J

λi

for any J ∈ Jε(x̄); (xi, µi) ∈ epi fi ∩Bε(x̄, 0) and (x∗i ,−λi) ∈ NF
epi fi

(xi, µi) (i ∈ J).
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Corollary 6.6 Suppose there exists an ε0 > 0 such that the functions fi, i ∈ Iε0(x̄) ∪ {0}, are lower semicon-

tinuous near x̄, the collection {fi}i∈I∪{0} is Fréchet normally uniformly regular at x̄, and the Fréchet normal

constraint qualification is satisfied for problem (36) at x̄.

(i) If x̄ is a Fréchet Φ-stationary point for problem (36), then, for any ε > 0 and γ ∈]0, 1[, there exist α ∈]0, ε[;

J ∈ Jε,α(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13), such that (38) holds true with

c := (γη̂F [F ](x̄))−1 + 3 and

∥x∗0∥+ λ0 > γmin{ζ̂F [F ](x̄), 1}. (40)

(ii) If x̄ is a Fréchet finitely stationary point for problem (36), then, for any ε > 0 and γ ∈]0, 1[, there exist

J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ X∗, and λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13), such that (39) and (40) hold true.

Moreover, if the functions fi, i ∈ Iε0(x̄)∪{0}, are uniformly Lipschitz near x̄, then, for any ε > 0, there exist

J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ ∂F fi(xi) (i ∈ J ∪ {0}); and λi ≥ 0 (i ∈ J) such that∥∥∥∥∥∥x∗0 +

∑
i∈J

λix
∗
i

∥∥∥∥∥∥ < ε.

Proof Let x̄ be a Fréchet Φ-stationary point for problem (36) and let ε > 0 and γ ∈]0, 1[ be given. Chose a

γ′ ∈]γ, 1[. Since the Fréchet normal constraint qualification is satisfied for problem (36) at x̄, by Definition 6.5,

setting α1 := γ′ min{ζ̂F [F ](x̄), 1}, there exists a δ > 0 such that∥∥∥∥∥∥
∑
i∈J

x∗i

∥∥∥∥∥∥ ≥ α1

∑
i∈J

λi (41)

for any J ∈ Jε(x̄); (xi, µi) ∈ epi fi ∩Bδ(x̄, 0) and (x∗i ,−λi) ∈ NF
epi fi

(xi, µi) (i ∈ J).

By Corollary 6.4, setting c := (γη̂F [{fi}i∈I∪{0}](x̄))
−1 + 3, there exist α ∈]0, ε[ satisfying cα < (γ′ −

γ)min{ζ̂F [F ](x̄), 1}; J ∈ Jε,α(x̄); xi ∈ Bmin{ε,δ}(x̄), x∗i ∈ X∗, and λi ≥ 0 (i ∈ J ∪ {0}) satisfying (13),

such that (38) holds true. (38) and (41) imply the following inequality:

α1

∑
i∈J

λi +

∣∣∣∣∣∣1−
∑
i∈J

λi

∣∣∣∣∣∣ < ∥x∗0∥+ λ0 + cα,

and, consequently,

1− (1− α1)
∑
i∈J

λi < ∥x∗0∥+ λ0 + cα and α1

∑
i∈J

λi < ∥x∗0∥+ λ0 + cα.

Eliminating
∑

i∈J λi from the above system of inequalities, we obtain the next estimate:

∥x∗0∥+ λ0 > α1 − cα > γmin{ζ̂F [F ](x̄), 1}.

Estimate (40) remains valid in the case of a Fréchet finitely stationary point.

Let the functions fi, i ∈ Iε0(x̄) ∪ {0}, be uniformly Lipschitz near x̄ with modulus l and an ε > 0 be given.

By Corollary 6.4, there exist J ∈ Jε(x̄); xi ∈ Bε(x̄), x
∗
i ∈ ∂F fi(xi), and λi ≥ 0 (i ∈ J ∪ {0}) such that∥∥∥∥∥∥

∑
i∈J∪{0}

λix
∗
i

∥∥∥∥∥∥ < cε, (42)
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where c := (1/2)min{ζ̂F [F ](x̄), 1}/(l + 1). Besides, x̃∗0 := λ0x
∗
0 ∈ λ0∂

F fi(xi) and ∥x∗0∥ ≤ l. Without any loss of

generality, condition (40) holds true with x̃∗0 and γ = 1/2. Then λ0 > c. The conclusion follows after dividing (42)

by λ0 and replacing λi/λ0 by λi, i ∈ J ∪ {0}. ⊓⊔

7 Concluding Remarks

In this article, we demonstrate how the stationarity and regularity criteria of infinite collections of sets developed

in [24] can be successfully applied to problems of infinite and semi-infinite programming. We consider several

settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets. New definitions

of stationarity are introduced. Necessary conditions characterizing stationarity in terms of dual space elements –

normals and/or subdifferentials – are established. This is achieved by applying the intersection rules from Section 4

to developing maximum rules for Fréchet subdifferentials.
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