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Let X = {X(t)},,,, be a stochastic process with a ~tationary version X“. It is investigated when

it is possible to generate by simulation a version X of X with lower initial bias than X itself, in

the sense that either X is strictly stationary (has the same distribution as X’) or the

distribution of 2? is close to the distribution of X‘. Particular attention is given to regenerative

processes and Markov processes with a finite, countable, or general state space. The results are

both positme and negative, and indicate that the tad of the distribution of the cycle length ,

plays a critical role. The negative results essentially state that without some information on this

tail, no a priori computable bias reduction is possible: in particular, this is the case for the class

of all Markov processes with a countably infinite state space. On the contrary, the positive

results give algorithms for simulating X for various classes of processes with some special

structure on r. In particular, one can generate X as strictly stationary for finite state Markov

chains, Markov chains satisfying a Doeblin-type minorization, and regenerative processes with

the cycle length , bounded or having a stationary age distribution that can be generated by

simulation.

Categories and Subject Descriptors: 1.6.6 [Simulation and Modeling]: Simulation Output

Analysis: 1.6.8 [Simulation and Modeling]: Types of Simulation—Monte Carlo

General Terms: Algorithms

Additional Key Words and Phrases: Coupling, initial transient, regenerative processes, simula-

tion, stationary processes

1. INTRODUCTION

When performing a steady-state simulation, simulation analysts are often

concerned with the problem of dealing with the initial transient. The term
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Stationarity Detection . 131

“initial transient” refers to that initial segment of the simulation that is con-

taminated by bias introduced by starting the system in some state that is

not typical of the long-run behavior of the system. The observations gathered

during the initial transient are therefore not representative of the steady-state

behavior of the system and are biased. Perhaps the most popular means of

dealing with the initial transient is to discard the observations gathered

during this period. In other words, the simulation analyst lets the simulation

“warm up” before collecting any observations.

Of course, the key question is to determine how long the warm-up period

must be for a given simulation. An essentially equivalent formulation of the

problem is to identify that time at which the initial transient terminates and

steady-state behavior begins. Since steady-state behavior is characterized by

stationarity of the stochastic process, we can view the initial transient

problem as involving the determination of that time at which the simulation

is behaving like a stationary stochastic process. This paper is concerned with

the question of existence and construction of such stationarity detection times

(and suitable generalizations). The algorithms developed here are intended

primarily to establish the boundaries of what is theoretically possible, rather

than as proposals to the practical simulation analyst as to how to eliminate

initial bias in real-world simulations—in fact, most of them have a large cost

in terms of run lengths. Nevertheless, the paper seems to indicate that

sampling from stationary distributions can be done much more frequently

than usually considered possible, and thereby opens up the interesting and

important question of designing efficient algorithms.

In the set-up of the paper, we consider a stochastic process X = {X(t)},

which is available basically through simulated values. Typically, X is regen-

erative or Markovian with a finite, countably infinite, or general state space.

Note that these two settings are not intrinsically different because general

Markov processes can typically be made regenerative (see Asmussen [4]), and

conversely a regenerative process with i.i.d. cycles can be made Markovian by

adding extra variables.

In the Markov case, the problem, roughly speaking, is to determine a

random time at which the process possesses the stationary distribution. We

assume, in constructing such a random time, that the constructions depend

only on simulation of a finite time segment of the chain. In particular, we

require that the algorithm that implements the construction be independent

of the explicit transition function of the chain. We impose this requirement

because most discrete-event simulations are implemented without any need

to ever directly calculate an explicit expression for the transition function. In

addition, the development of universal algorithms that are valid over broad

classes of simulations is an important issue in writing software intended

to be of wide applicability. Finally, this assumption is necessary in order to

obtain nontrivial nonexistence results: if the algorithm is permitted to adapt

itself to the particular transition function in question, then one can design

deterministic algorithms for computing the stationary distribution numeri-

cally, so that one can then argue that the initial transient problem becomes

irrelevant.
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Similarly, in the regenerative setting the problem is to generate the

stationary delay, assuming only that the zero-delayed process is available

through simulated values.

The initial transient problem has challenged the simulation community for

many years. A few of the papers that have addressed this question are [9, 12,

32, 33], and [25]; see also Fishman [11] and Law [21]. It is probably safe to

say that no technique yet proposed satisfactorily solves this problem. It is

also worth noting that when one estimates the steady-state via multiple

replications of the process, the ability to determine the end of the initial

transient is enhanced. The basic idea is that by averaging over multiple

replicates, much of the variability in the system is damped out, so that the

convergence to steady-state is easier to determine. Among the papers that

take advantage of this idea are [20, 29, 30]. In the current paper, our interest

focuses on stationarity detection rules that are based on a single run of the

system.

We will see, in Section 2 of this paper, precisely why the initial transient

problem has been so challenging. We will prove, in a mathematically precise

sense, that without some restrictions on the class of simulations to be

considered, there can exist no universally satisfactory means for detecting

stationarity in a stochastic simulation. This negative result is probably

expected, and suggests that any successful stationarity detection rule will

need to take explicit advantage of some additional structure of the system

being simulated.

In the rest of the paper we complement the above negative result with

positive ones, which are perhaps more surprising. In Section 3 we show that

it is possible to generate a r.v. Z having the stationary distribution of a finite

Markov chain {X.}, using only simulated values and randomization, and in

Section 4 it is shown (using some recently developed ideas of [27]) that for

certain classes of regenerative stochastic processes, one can identify a ran-

dom time T such that the system is in exact stationarity at this instant.

These constructions are possible even for certain systems in which the

steady-state distribution is not analytically available and must be simulated.

The approach taken here to developing stationarity detection rules strongly

suggests that, in the regenerative setting, one must take advantage of a

priori knowledge of the tail behavior of the regenerative cycle-length random

variable.

Section 5 discusses settings in which approximate stationarity can be

achieved. In Section 6 we provide further discussion, and Section 7 concludes

the paper with some illustrative examples and applications. Unless otherwise

stated, all proofs are deferred to the Appendix.

2. STATIONARITY DETECTION: DEFINITIONS AND BASIC THEORY

We restrict our formulation and discussion in this section to the Markov

chain setting. However, the ideas described here can be easily extended to the

general discrete-event simulation context. One need only observe that if one

views the typical discrete-event simulation at transition epochs, one can
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make the process Markovian by adding supplementary variables to the state

description that include information on the time that remains before the

“clocks” corresponding to each possible event will trigger a state transition of

the system, It follows that a discrete-event system can be written as a

functional of a discrete-time Markov chain, taking values in a complicated

state space S in which both physical state and clock state is recorded. For

additional information on this way of looking at discrete-event simulations,

see Glynn [14].

Suppose that X = {Xn}n .0,1, is a Markov chain taking values in S.

We can (without any loss of generality) view X as being defined on the

probability space

Q=(sx(o,l ))x(sx(o,l))x ””” .

A typical element in Q then takes the form o = {(x., u.)}.. o,~,. . . . The

sequence X can be defined via the coordinate projections X.(a) = x., and we

further let U be the sequence of random variables defined by LT.(O) = u..

Let K be a transition kernel defined on S, so that K( x, B) represents the

probability that the chain X moves from x into B s S in one step. For each

initial distribution K on S, we can then define a probability distribution PW,K

via the formula

Hence, under the distribution P’W,~, X is a Markov chain having initial

distribution p and transition kernel K. Also, U is a sequence of i.i.d.-uniform

(O, 1) r.v.’s which is itself independent of X. We need the uniform r.v.’s in

order to define randomized algorithms for detecting stationarity. Much of our

subsequent discussion will involve such randomized detection rules.

We let tit denote the subset of transition kernels on S such that for each

K c-i?, there exists a unique stationary distribution nK.

We say that T is a random time if T is a nonnegative integer-valued r.v.

defined on 0 and let X(T + “ ) = {X(T + t)}t, o be the post-T process.

Roughly speaking, our goal is to construct a random time T such that

X(T + . ) is in steady state (is strictly stationary).

Definition 2.1. Let K =.42. The random time T is said to be a stationarity

detection time for K if for each initial distribution p

PP, K(X(T+ “) ~ “) = PnK, K(X~ ‘). (2.1)

One way to construct stationarity detection times is by means of random-

ized stopping times (recall that a random time T is a randomized stopping

time if for each n there exists a deterministic O–1 valued function ~~ such

that I(T = n) = f.(Xo, Uo,.. ., X., U.); sometimes also the term nonantici-
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pating is used for a randomized stopping time). Such randomized stopping

times have the following nice property:

PROPOSITION 2.1. Let K ● .42. If T is a randomized stopping time such that

XT has distribution WR for each initial distribution p, then T is a stationarity

detection time for K.

The proof of this follows immediately from the strong Markov property of X.

Ideally, one would like stationarity detection times to detect stationarity

immediately if the initial distribution is mK. our fh-st result shows that no

such stationarity detection time typically exists.

PROPOSITION 2.2. Let K •.,~ and assume that m is not concentrated on any

single point x E S. Then there exists no stationarity detection time T for K

such that

P~k,~(T=O) = 1. (2.2)

Thus, requirement (2,2) demands too much from random time T. If we drop

(2.2), it turns out that stationarity detection times can often be constructed:

Example 2.1. Suppose that S is finite or countably infinite and that K is

irreducible. If X is positive recurrent under K, there exists a unique station-

ary distribution nK, and (by applying inversion), we can find a deterministic

function g such that g( UO) has distribution TK, Then

T=inf{n =0, l.. .: X~=g(UO)}

is a randomized stopping time such that XT has distribution nK, and we

may apply Proposition 2.1.

However, this construction obviously “cheats” by constructing the function

g (and hence the stopping rule T) from explicit knowledge of nK. This

suggests that a more appropriate formulation for a stationarity detection

time ought to somehow forbid the simulation analyst from using explicit

knowledge of the stationary distribution to construct T.

We can accomplish this by requiring that T work uniformly well over a

suitably large class ..X of transition kernels K. Being defined only in terms of

the simulated data X and U, T cannot explicitly modify itself to reflect

knowledge of the various stationary distributions.

Definition 2.2. Let .~p L.pz”. We say that a random time T is a .~~uniform

stationarity detection time if T is a stationarity detection time for each

K =.&;

Perhaps surprisingly, it is often possible to construct such detection times.

Example 2.2. Suppose again that S is finite or countably infinite. Without

loss of generality, we can take S to be {O, 1,...}. Let .4’I be the class of

irreducible positive recurrent transition matrices K defined on S. For x ● S,

let

1.

F(X, X) = liminf~h~O1(Xh <x).
n+.
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For a fixed but arbitrary K =..%l, the strong law of large numbers for X

implies that F’( X, “ ) is almost surely equal to the distribution function of nK,

and thus,

Tl=inf{n=O,l.. .: Xn =F-l(x, i7, )}

coincides as. with the T of Example 2.1. Thus TI is a stationarity detection

time for the given K, and hence for all K =YZI.

Of course, here the difficulty is that T is constructed after observing the

entire (infinite) sample trajectory of X. Such a random time T cannot be

implemented in a practical setting. This motivates restricting attention to

stationarity detection times, which are implementable in the following sense.

Definition 2.3. A r.v. Z% is implementable, if there exists an as. finite

randomized stopping time /3 such that Z* is a deterministic function of B,

(x,, u,), . . ., (Xp, UP) alone.

We are now ready to state our main nonexistence result for strong station-

arity times. It proves that well-behaved stationarity detection times T fail to

exist even when one restricts attention to Markov chains with countably

infinite state space. In fact, let ..&z be the class of aperiodic irreducible

positive recurrent transition matrices K.

THEOREM 2.1. Assume that S is countably infinite. Then there exists no

implementable ./?z — uniform stationarity time.

In fact, an even stronger result (Theorem 2.2 below) can be proved. Recall

that the total variation distance between probability measures p and v on S

is defined by

11P- Vll = 2fisulkL(B) - V(B)I.
—

Definition 2.4. Let <1’-c.Z. (a) The family# is said to be a weak uniform-

ity class for the initial transient problem if, for each ~ > 0, there exists an

implementable r.v. Z*(e) such that

(2.3)

for any initial distribution p on S and any K =M. (b) The familyfl is said to

be a uniformity class if there exists an implementable r.v. Z* such that

P&, ~(i?” ● .) = TTK(.) for any initial distribution p on S and any K =tifl

We call the r.v.’s .2$’ (e) and Z* appearing in Definition 2.4 an e-stationary

r.v. and stationary r.v., respectively. H Z*(c) can be represented as X~c. I for

some random time T(”, we call Tf’) an c-stationarity time.

Note that (a) demands only that the marginal distribution of Z*(e) be

approximately stationary. The extension from stationarity detection times to

stationary random variables is motivated by the fact that given a stationary

detection r.v. Z*, one can simulate a strictly stationary version of the Markov

chain by starting from XO = Z*, and given a esta~ionary r.v. Z*(~),

the version {X.} of the Markov chain started from XO = Z*(e) satisfies
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ll~w,~(x. G “) – TKOII < Ebecauseof the general inequality llPA,K(tin c ) -
~.,dxn = “)11s Ilp – V1l.

THEOREM 2.2. Assume that S is countably infinite. Then Z?z is not a weak

uniformity class.

This follows from the following result:

PROPOSITION 2.3. Let S = {O, 1,2,...}, Jet K(”) = (k~~))[,j= ~ be a giuen

transition matrix in .Z’, and let ..14K’o)) be the set of transition matrices

K=(k,l),, JGs E.#’ such that there exists an integer A = A( K(o)) such that

k,j = k$) for i, j <A. Then ...z~K~O)) is not a e-uniformity class for O < E <2.

These results suggest that the class . 2“ of transition kernels needs to be

carefully chosen in order to have any chance of being able to construct a

uniformly well-behaved stationarity detection rule. The remainder of this

paper is concerned with describing the type of information that needs to be

present in.~ so as to permit such constructions.

3. SIMULATION OF STATIONARY FINITE MARKOV CHAINS

Our main result on finite Markov processes is the following.

THEOREM 3.1. The class .Z( ‘j of irreducible Markov chains with a fixed

number s of states is a uniformity class.

Thus, there exist algorithms generating an r.v. having the stationary

distribution n of a finite Markov chain using only simulated values and

randomization. We proceed to describe one such algorithm, thereby providing

a proof of Theorem 3. L

The first step is to translate the problem into one on continuous-time

Markov process {Y(t)},, o by uniformization (Poissonification). Indeed, it is a

standard fact that if VI, Vz, . . . are i.i.d. exponential (say with unit rate),

then the process {Y(t)} defined by

Y(t) =xo, Ost<vl, Y(t) =xn, Vl+”””+vn .l<t<vl+.’. +vn

is a s-state irreducible Markov process with the same stationary distribution

as {X.}. Note that {Y(t)} does not necessarily jump at VI + ..” + V., but only

if X., ~ # X.. In terms of the transition probabilities ( kl~),, ~. ~ for {X.},

{Y(t)}has intensity A,, = k ,J for jumping from i to j when i + j.

The next step is to observe that the construction of a stationary detection

r.v. for {Y(t)} is easy when s = 2 (e.g., S = {1, 2}), where

A21 A12
?7-1 =

A12 + A21 ‘ ‘2 = A12 + A21 “

Indeed, let T, be the first holding time of state i, i = 1,2. Then TI, Tz are

exponential with intensities Alz, resp. Azl, and an easy calculation shows

that

P(T1 > Ta) = A ‘;lA = rr~.
12 21

(3.4)
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Thus, we have the following algorithm:

Algorithm A. (Generating a Stationary Detection r.v. Z for a Markov Chain

{X.} with two states 1,2)

l. Letj+l, t+O

2. Generate V, an exponential random variable with unit intensity, and Xl

starting from XO = 1. Let j ~ Xl, t + t + V

3. Ifj=2,1et Z’l~t;
else return to 2

4. Repeat steps 1, 2, 3 with states 1 and 2 interchanged to generate Tz

5. If T1 > Tz, let Z+ 1;

else let Z - 2

The last step (and the most intricate one) is to treat the case s >2

recursively. We need to introduce the F-valued process {Y(~)( t)}~ ~ ~, defined

as the process {Y(t)} on F, where F g S (see, e.g., [4, pp. 13– 14]). This means

that in the path of {Y(t)} we delete all segments where Y(t) @ F and glue

together the remaining segments. Algorithmically, this can be implemented

as follows:

Algorithm B. (Generating the first holding time T(~)(i) and the next state

Y(F)(i) of {Y(F)(t)} starting from Y(F)(0) =X. = i E F)

l. Letj+i, t+O

2. Generate V, an exponential random variable with unit intensity. If j E F,

lett~t+V.

3. Generate Xl starting from XO = j. Let j + Xl.

4, If j + i and j = F, let T(F)(i) - t, Y(F)(i) -j;

else return to 2

It is well known that the stationary distribution a(~) of {Y(F ‘(t)} is

obtained by conditioning T = ~ ‘s) to F:

(3.5)

We also have the principle of local balance ([19, p. 8]): when {Y(~+ ‘)(t )} is in

stationarity, the rate of flow of mass from F to G is the same as the flow of

mass from G to F (here F, G are disjoint subsets of S). In terms of the

intensities ~~~+‘) for {Y(F+ G‘( t)} (which exist because {Y(F+ G‘(t)} is a Markov

process—the analytical form is unimportant here) thus

(3.6)

.A(F+G). We can rewrite (3.6) aswhere A~~+G) = E1=G ,1

~~+ G), T~F+Gj havingNow assume that we can generate exponential r.v.’s TF

‘F)A\~+ ‘), resp. El ● G rr~G)A~~+G),parameters ~,. F n, and stationarity detection
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r.v.’s Z(~),Z(GJ having distributions nf~), resp. n~G’. Then as in (3.4),

1

1
(F+G)

=7TF,

1 + 7Tg+Gy7T$+@

where we used (3.7) for the third equality. That is, we can use the ordering of

T~F+G) T&F+’) to decide whether Z(F+’) should be in F or G, and next Z(F)

or Z(G: to decide which value in F, G is appropriate. Thus

for i E F as desired, and similarly P(Z(F’G) = j) = T~F+’) for j = G.

To construct TjF+ ‘), note that the distribution of TJF+ G) is that of the

minimum of exponential r.v.’s W, with intensity m$~ ‘A$~+‘j for the ith state

(i ~ F). If ~~~+’) >0, we can sample a Poisson stream with intensity A\~+’)

by repeatedly starting {Y (F + G‘(t )} in state i and accumulate the time until

a transition to G occurs. We can then thin this stream by generating a

sequence of i.i.d. copies of Z(F), say Z~F), Z~F), . . . , The nth point is retained if

Z~~ ) = i, thereby obtaining a Poisson stream with intensity T~F )i\~+ G‘. The

r.:. W, is then the first epoch of the thinned Poisson process. In practice, this

construction requires a small modification, since A\~+’) may be zero for some

‘+G) > 0 for at least one i ● F, and thisi. However, by irreducibility A:G

ensures that the following algorithm is valid (roughly, the idea is to visit the

states i in F cyclically; t, indicates the amount of time in which the ith

Poisson stream has been simulated so far, TF is the current earliest occur-

rence of a transition to G, and SZ = 1( S1 > TF ) is a binary variable indicating

whether it is necessary to simulate any further; by irreducibility, TF will

assume a finite value at some stage):

~gorithm C. (Generating Z(F’ c) if it is Known HOW to Generate .2( F‘, 2(G))

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Number the states in F in some way, say F = {[.,. . . . lP- ~}

Let TF+~, t,* O,s, eO, i=O, . ..p–l

Leti+p–1

If’ all Sk = 1, go to 10;

else let z ~ (i + 1) mod p

If s, = 1, return to 4

Generate Y(F+G)(lZ), T(F+~)(l,) using Algorithm B and let j + y(F’ G)(~l),

t, + t, + r~+~)(l,).

If t, > Tz., let s, = 1 and return to 4

If j = G, generate Z(F) and let k + Z(F);

else return to 4

If j # k, return to 4;

else if t,< T~, let Tfi. ~ t,

Return to 4

Repeat steps 1, ...,9 with F and G interchanged to %enerate T~

If TF > T~, generate 2(F) and let 27F+G) - Z:F); “

else generate Z(G] and let Z(F+G) - ,Z[G)
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To generate Z = Z(s), start by noting that obviously Z(F) = i if F = {i} is a

one-point set. Using Algorithm C, one can then generate Z(F) for a partition-

ing of S into two-point sets; then Z(F) for a coarser partitioning into three- or

four-point sets, and so on.

In Section 6, we give some (rather pessimistic) estimates indicating how

the number of steps needed to generate Z may depend on the number s of

states.

Remark 3.1. As a corollary of Theorem 3.1, it follows that there exists a

stationarity detection time T for the class /#’(s) of irreducible Man%ov chains

with a fixed number s of states, Indeed, by a minor (though presumably less

eflicient) variant of the construction, we may assume that all necessary

values of X for 2(s) are generated by observing a single sample path, say UP

to time TI where 7’1 is a randomized stopping time. Then

T=inf{n > T1: X. = z(s)}

is a stationarity detection time, i.e. P(XT = i) = m,.

Remark 3.2. From a statistical point of view, a relevant concept to ask for

would be an unbiased sequential randomized estimator (u.s.r.e) of n, i.e., a

random probability vector A which is measurable w.r.t. 7. for some random-

ized stopping time m and has the property F+, = m, for all i. It seems

worthwhile to note that the existence of an u.s. r. e. of n within the statistical

model of all irreducible s-state Markov chains is equivalent to the existence of

a stationarity detection rule. Indeed, obviously, a stationarity detection rule

like Z(s) leads immediately to an u.s.r.e by letting *, = 1 when 2(s) = i, all

other fij = O. Conversely, if & is an u.s.r.e., we can choose an additional

uniform random number V and obtain a stationarity detection rule Z as

inili=l, . . ..s. fil+”””+fii >V}.

4. SIMULATION OF STATIONARY REGENERATIVE PROCESSES

Let S be a state space endowed with a metric under which S is separable

(e.g., R~). If X = {X(t)}, zo is a right-continuous stochastic process taking

values in S, we say that X is a (nondelayed) wide-sense regenerative process

if there exist random times O = T(O) < T(l) < . . . SUC~ that

@ X( Z’(n) + . ) ~ X(”) for n > 1;

(ii) T(n) is independent of X(T(n) + ~) for n >1.

Note that we are not requiring the process evolution prior to time T(n) to

be independent of that subsequent to T(n). Instead, the post-T(n) process

X(T(n) + . ) is required to be independent only of the time T(n) itself. This

extension of classical regeneration (known as wide-sense regeneration) turns

out to be useful in the study of Harris recurrent NIarkov chains; see pp.

150–158 of [4]. (Note that a discrete time sequence {X.}.. ~,~, ,. can be
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analyzed by studying the associated continuous time process {X( t)}~ ~ ~, where

x(t) = X,t,, and [t] denotes the greatest integer less than or equal to T.)

We say that X* = {X*(t)}f20 is a stationary version of X if X* is a

strictly stationary process possessing an associated random time 7’*(0) such

that

(i) X*( T*(O) + ~) 2 X(-)

(ii) 7“(0) is independent of X*(7’*(O) + “).

In the remainder of this section, we describe two settings in which X* can

be simulated, given the ability to simulate X.

Let r. = T(n) – T( n – 1)for n > 1,write r = rl for the generic cycle, and

set m = K7. The following description of the stationary version X* is given in

[27]:

PROPOSITION 4.1. Assume m < CO.Suppose that X’ = {X’(t)}t, ~ is an S-

valued stochastic process with associated random time T ‘(O) satisfying

P(T’(0) G dx) = ~P(TEdx)
m

(4.8)

and

P(X’ ● IT’(O) =x) = P(X= .IT1 = x) (4.9)

for each x ~ O. If U is a uniformly distributed r.u. on [0,1] and independent

of X‘, then X* is a stationary uersion of X where

X*(t) =X’(/7T’(0) + t), t >0.

There is an intuitive explanation for why this construction should give a

stationary version. Imagine that the process X has been running for a time

interval of length t and that we pick a point q uniformly in the interval [O, t].

Then, the post-~ process X(T + . ) converges to a stationary version X* of X

when t ~ ~. The possibility of the point q ending in a given cycle interval of

length x should be proportional to x, and the relative number of such

intervals is P(T G dx), which (together with the “normalization” / x P(T G d~ )

= m ) gives us (4.8). Given the length of the picked cycle, it should behave as

an ordinary cycle, i.e., (4.9) should hold. Finally, the picked point should lie

uniformly within its “length-biased” interval (corresponding to the U in

Proposition 4.1 ), independently of everything else.

Suppose that T has a density. In that case, (4.8) states that the ratio of the

density of T ‘(0) to that of r is x/m. Hence, if the r.v. r is as. bounded above

by the deterministic finite constant a, say, the ratio will be bounded above by

a/m. It is well known (see, for example, [21]) that the boundedness of the

ratio permits one to generate the r.v. T ‘(0) via acceptance-rejection (given an

algorithm to generate ordinary regenerative cycle lengths with the distribu-

tion of ~). A similar analysis is valid without assuming the existence of

densities, in particular when r is a discrete r.v.
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Combining this acceptance-rejection idea and Proposition 3.1 leads to the

following algorithm for generating the stationary version X* corresponding

to x:

Algorithm D. (Generating a Stationary Version X’ When the Cycle Lengths

Are Bounded, r < a < ~ as.)

l. Letn~l

2. Generate X over [2’( n – 1), T(n))

3. Generate V., a uniform r.v. on [0,1]

4. lf a v. < Tn, ~0 tO 5;

else let n + n + 1 and return to 2
5. Generate U, a uniform r.v. on [0, 1], and let X*(t) ~ X(T(n – 1) +

uTn + t), t 20.

Note that T*(O) = (1 – U)~~ and that the probability of acceptance at step

4 of the above algorithm is m/a; the expected number of times that the test

at step 4 is executed is therefore a/m.

Algorithm A implies that the class of wide-sense regenerative processes

with cycle lengths bounded above by a fixed constant form a uniformity class.

Because of the intimate relation between regenerative processes and recur-

rent Markov chains, it is also clear how to translate this into a result about

Markov chains.

Unfortunately, it is only rarely the case that the cycle lengths of a regener-

ative process are bounded (but see Example 7.2 for an interesting exception).

However, [27] provides us with the tools necessary to develop a second

interesting class of wide-sense regenerative processes for which generation of

the stationary version X* is possible.

PROPOSITION 4.2. Assume m < ~. Then X* is a stationary version of X if

there exists an associated random time /3 such that

(4.10)

and

P’(x*(t + .) G “l~=t) = P(x(t + .) G “l’J1 > t) (4.11)

for each x, t >0.

Note that (4. 10) states that ~ has the stationary age distribution (or the

stationary excess life distribution) for the wide-sense regenerative process X;

see p. 116 of [41. Thus, (4.11) basically asserts that the stationary version X*

can be obtained by conditioning the original process X in such a way that the

cycle currently in progress has the appropriate stationary age distribution.

The key to applying Proposition 3.2 to simulate X* is the ability to

generate the r.v. ~ from the distribution specified by (4. 10). We say that the

stationary age distribution is simulatable if such variable generation is

possible. Proposition 3.2 immediately establishes the validity of the following
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algorithm:

Algorithm E. (Generating

distribution is simulatable)

a stationary version X* when the stationary age

1.

2.

3.

4.

5.

Generate a r.v. (3 with distribution (4.10)

Letn+l

Generate X over [l”(n – 1), T(n))

If T. > /3, go to 4;

else let n ~ n + 1 and return to 2

Let X’(t) +X(T’(n – 1) + ,B + t), t >0.

Note that 7’*(O) = ~~ – ~. If ~ = x, the probability of acceptance in step 4

given ~ = x is P(7 > x), so that the expected number of times N the test at

step 4 is performed is

(unless the support of 7 is bounded, say a is the supremum, then we get a/m

precisely as in Algorithm D). Thus typically Algorithm E has an infinite

expected sample size. This indicates that applications that require repeated

use of Algorithm E (see, for example, Section 6) will in practice have enor-

mous sample sizes, whereas the problem is less serious if the algorithm is

only used once, for example when starting a long simulation run, and is a

strictly stationary way to eliminate bias. (It is tempting to circumvent the

problem by generating ~ in step 3 instead, but this idea does not lead to

the correct distribution of X*.)

Note that the r.v. N does not represent an extreme instance of an r.v. with

a heavy-tailed distribution, Suppose for example that 7 has a geometric

distribution (see Examples 7.4, 7.5) or, more generally, that P(7 > x) < e-” z

for some a >0. By Jensen’s inequality,

for p < 1,and hence

One may also note that once ~ = x has been picked in step 1, the conditional

expected sample size l/P(~ > x ) is finite.

One might initially expect that the only case when the stationary age

distribution is simulatable is that where the stationary distribution of X is

known in closed form, in which case one can simulate the stationary version

X* from this distribution explicitly. This, however, is not the case; see

Examples 7.3 and 7.4 for nontrivial applications of Algorithm E.

Algorithm B implies that the class of wide-sense regenerative processes

with a given simulatable stationary age distribution is a uniformity class.
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It turns out that Algorithms D and E can, in fact, be extended beyond the

setting of wide-sense regenerative processes. Variants of these algorithms

can be developed for synchronous processes; see Thorisson [28] for details. A

synchronous process is one in which the “cycles” form a stationary sequence,

but where the dependency structure between cycles can essentially be arbi-

trary. These processes arise naturally as Palm versions of stationary point

processes; see [24]. Because it is not clear to the authors how this would show

up in a simulation context, we don’t discuss this further here.

Recent research indicates that the class of regenerative processes such that

P(7 > t) < g(t) for a known integrable function g is a uniformity class, which

would be a rather satisfying answer in terms of how few special properties

are actually required to generate a stationary version. Our study of this case

involves an application of Keane and O’Brien’s ongoing research [18], and will

be published elsewhere.

5. WEAK UNIFORMITY CLASSES

We start by showing that, for a certain class of Markov chains, one can

calculate a priori estimates on the rate at which the system converges to

steady-state, and thereby construct e-stationarity detection times, which are

deterministic. In the finite state space setting, estimating the convergence

rate essentially amounts to calculating a bound on the eigenvalue of K

having the second largest modulus; since this is the parameter that deter-

mines the rate at which the nth power of an irreducible transition matrix

converges to its limit. In any case, given an upper bound on the rate at which

the system converges to steady-state, we can choose a time T so that the total

variation distance to the steady-state distribution is arbitrarily small. The

deterministic time T can then be used in (2.3) to obtain an appropriate

uniform bound on the total variation distance.

We say that a transition kernel K satisfies a (A, q, m) minorization if

Km(x, ”) z Ap(. ), XGS. (5.1)

Here O < A s 1, q is a probability distribution on S, and m > 1 an integer

(Km( x, B) denotes the probability that the chain X moves from x to B in m

transitions). Some discussion of condition (5.1) is given in Remark 5.1 below.

The following result is well-known and straightforward to show via coupling

(see, e.g., [221):

PROPOSITION 5.1. If K satisfies a (&Q, m) minorization, then K =.X and

supl]K~(x,.)-n~(0)l[ < (1 – ~)L’’~J- (5.2)
XES

It follows that by choosing n sufficiently large, we can make (1 – ML”’ ‘J

arbitrarily small. This immediately proves that one can construct determinis-

tic ●-stationarity detection times for the above class of systems.

THEOREM 5.1. Fix A >0 and m >1, and let J#”s be the family of transition

kernels defined on S such that K satisfies a (A, p, m) minorization for some p.

Then MS is a weak uniformity class, and T(e) is an ●-stationarity detection
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time when T(•) is chosen as the least integer rL having the property (l –
~)~n/nl < ~.

We will see later (Example 7.3) that ifs is a uniformity class. In order to

achieve strict stationarity (rather than ●stationarity), we will use random-

ized stopping times (rather than the deterministic times of this section).

Remark 5.1. Condition (5. 1) is closely related to the Doeblin condition

studied, for example, in Chapter 5 of [ 101 (it is easy to show that condition DO

stated on p. 221 of [ 10] implies (5.1)). In the discrete state space setting, (5.1)

is equivalent to requiring that the m-step transition matrix have a column in

which the elements are uniformly bounded away from zero (in the case of a

finite S, (5.1) holds for some (A, q, m) if and only if the Markov chain is

aperiodic and irreducible). Typically, we would expect (5.1) to hold when S

is compact and K( x, A) satisfies some continuity requirements [in fact, in

(5. l’) we may, preliminarily, for a fixed x take m = m(x) where there is

positive probability of coupling to the stationary version in m steps starting

from x (cf., Lemma 2.2 of [5]); by continuity, the same m will then serve in a

neighborhood of x, and by compactness, a finite m will do for all x].

It turns out, that the class of chains for which deterministic detection times

work uniformly well over all possible initial distributions v is precisely

described by the set of kernels K satisfying (5.1). This follows by the

following partial converse to Theorem 5.1: suppose that for O < e < 1/2 there

exists a deterministic time T(~) = n such that IIPX,~(X~ ● .) – n~(.)11 < e for

each x = S. Then there exists (A, q, m) such that K satisfies a (A, q, m)

minorization. The proof is easy and therefore omitted.

One difficulty with applying Algorithm D of Section 3 is that it requires

that the cycle lengths be bounded. Very few regenerative processes have this

property, although the class of (s, S) inventory systems is a notable exception

(see Example 7.2 for further details). It is worth noting that, in general,

boundedness of the regeneration times does not imply the existence of a

deterministic stationarity detection time T; see [15] for a discussion of the

class of chains for which such deterministic times exist.

On the other hand, one might hope that the application of an appropriately

derived truncation technique to the cycle length distribution would enable

one to use Algorithm E to construct e-stationarity detection times. The

development of such a methodology is given in the Appendix, where we show

the validity of the following algorithm:

Agorithm l?. (Generating an e-stationarity detection time T( e ) when an upper

bound y on Er p + 1 is known)

1. Calculate a = a(e) = (4y/62)11p

2. Let n-l

3. Generate X over [T’(n – 1), T(n))
4. If r. < a, go to 5;

else, let n + n + 1 and return to 3

5. Generate Vn, a uniform r.v. on [0, 1]

6. If a V. < Tn, go to 7;

else, let n + n + 1 and return to 3

7. Generate U, a uniform r.v. on [0, 1], and let 7’(E) ~ T’(n – 1) + UTn
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Thus, the class of regenerative processes with ET P+ 1< c is a weak

uniformity class

6. FURTHER DISCUSSION

An underlying theme of Sections 2 through 5 is that the tail of the distribu-

tion of the cycle length 7 plays a critical role in whether one can construct

e-stationarity times. In particular, we have positive results for

—finite-state Markov chains (stationarity detection r.v.’s are constructed in

Algorithms A, B, C);

—wide-sense regenerative processes with bounded cycle lengths (Algorithm

D constructs stationarity detection times);

—wide-sense regenerative processes with simulatable stationary age distri-

bution (Algorithm E constructs stationarity detection times);

—wide-sense regenerative processes with bounded (p + l)th moment of the

cycle length (Algorithm F constructs ~-stationarity detection times).

On the other hand, our principal negative result (Theorem 2.2) arises in a

setting in which no control whatsoever is placed on the behavior of the cycle

length distribution.

The critical role of the tail behavior of the cycle length distribution in

developing initial transient detection algorithms comes as no surprise, given

the intimate relationship between this tail behavior and rates of convergence

for regenerative processes (see, for example, [26]).

One obvious question of interest to the simulation analyst is whether the

ability to generate a stationary version of the process can be used to obtain a

variance reduction in the context of steady-state simulation. In particular,

suppose that X = {X( t )}~~ ~ is a real-valued regenerative process in the

classical sense (with i.i.d. cycles) for which E[ ~~ + r 2] < ~, where y, =

]~}~!,, IX(S) I ds; to avoid trivial cases, assume that X is not constant (X(t) =

a). Letting al(t) denote the time average (sample mean) t – 1~~X(s) ds, it is

well known that

al(t)’~”a = E~*(0) = -&IY1 = :~j’x(s) ds.
o

The conventional approach for estimating the steady-state mean a is to use

a I( t ) as point estimator, and under the conditions stated,

fi(al(t) - a) ~ CT,iv(o,l), t -+ ~, (6.3)

where v? = EZ~/m, ZI = JJ1 (X(s) – a)ds.

However, the ability to simulate a stationary version of the regenerative

process suggests the following alternative estimator, a2(t ), Assume that the

cycle lengths are bounded and that Algorithm D is used to find a stationarity

detection time T’l(0), then EX(TI(0)) = EX*(0) = a. Let Al = X( T’I(0)), pro-

ceed to the next cycle and execute Algorithm D a second time to produce a

second independent copy Az of Al. In this way, the simulation of X over
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[0, t] will produce a random number x(t) of i.i.d. copies Al, Az, . . . . AY(,, of

~,(o), and-we can therefore letx

Under our moment assumptions, it follows

,,.

/y(t)>1

x(t) = o

that (see [16]) az(t) as” a, and

(6.4)

2 = Var XTILO) “where crz Er #, and r # is the amount of time for which X needs

to be simulated in order that a copy of X~,(Oj can be calculated (~ # is the sum

of the cycle lengths up to the first accepted cycle; the notation indicates that

7 # may be thought of as a regeneration point; cf., the proof of Proposition 6.2

below). The following result is shown in the Appendix:

PROPOSITION 6.1. For any regenerative process satisfying the conditions of

Algorithm D, one has iT~ > cr~.

Thus, one never obtains an efficiency improvement by favoring IXz(t ) over

al(t) (note that u: also can be interpreted as the variance per time unit in

regenerative simulation; hence, Proposition 6.1 also gives a comparison with

that method). This may not appear surprising, as az(t) throws away a great

deal of information that is incorporated in al(t). Nevertheless, a more

sophisticated idea will indeed produce variance reduction:

PROPOSITION 6.2. Under the assumptions of Algorithm D, there exists a

constant b (depending on X) such that the estimator as(t) = (1 – b)al(t) +

baz(t) satisfies

fi(a,(t) - a) ~ cr,N(o,l), t + ~, (6.5)

with u: < U:. Furthermore, b can be consistently estimated, i.e., there exists

b’(t) such that b’(t) can be evaluated from the simulation in [0, t] and

b“(t)a~”b, t ~ ~, and then (6.5) holds with as(t) replaced by (1 – b*(t))al

(t) + b*(t) aJt).

The evaluation of b and the construction of b*(t) is given in the proof (based

upon a slightly tricky application of linear control variates) in the Appendix.

It will also be seen that unless one has a process with a very special

dependence structure, the strict inequality cr~ < u: holds. The construction

is, however, somewhat complicated; it is also the feeling of the authors that

the variance reduction that can be obtained in this way will seldom be very

substantial. Further, even though the control variate idea carries over to

Algorithm E when simulating a fixed number of cycles of generic length ~ #,

the corresponding estimator can never compete with al(t) when we discuss

efficiency in terms of the simulation run length t,since ET # = ~.

As a consequence, we do not believe that the main simulation contribution

of this paper lies in the area of variance reduction. Rather, the focus is on the
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initial transient problem. The idea is to produce estimators with lower bias,

without adversely affecting the asymptotic variance or the length of the

simulation. Our results contribute to this by giving insight into how to

construct a random time ‘T(e) such that the post-Z’(~) process is close

to stationarity. The estimator

1,
a4(t) = ;/ox(T(E) + S)cis

will typically have better bias characteristics than al(t), without affecting

the asymptotic variance (since fi( a~( t ) – a) % UIN(O, 1) as t - CO)or the

order of magnitude of the length of the simulation for large t.

A second important possibility that the results of this paper create is the

ability to use simulation to numerically calculate upper bounds on the rate of

convergence of a stochastic system to its steady-state. Such upper bounds are

current] y of great interest to the probability community; see, for example, [3].

As stated earlier, in the finite state Markov chain setting this is tantamount

to using simulation to numerically calculate an upper bound on the second

eigenvalue A of the transition matrix of the chain. In this case, A may often

be available by other means, but for even slightly more complicated processes

the difficulties are formidable (e.g., for queues this convergence rate is

related to the concept of relaxation time, see [41 Ch. III. 10). What we can

do is to use the method of coupling (see, e.g., [4], Ch. VI.2, for some basic

discussion and [22] for a more comprehensive treatment) to numerically

calculate the rate of convergence. The idea is to simultaneously simulate both

a stationary version X* and the nonstationary version X of the process (the

techniques of this paper would be used to generate X*), in such a way that

the coupling time is finite-by coupling time we mean a random time ~

with the property that X(t) = X*(t), t 2 K. For a positive recurrent Markov

chain with a finite or countably infinite state space S, we may start by

simulating X* and X independently, take K to be the first n such that

X. = X!, and let the processes be identical after ~—whereas for nonMarko-

vian processes or processes with a continuous component of the state space,

slightly more intricate procedures may be needed (see, e.g., Example 6.1

below). In any case, the tail of the distribution of K gives an estimate of an

upper bound on the total variation distance between the distributions of the

stationary and nonstationary versions,

ll~(x(t) ● “) - P(x”(t) = “)11<2P(K> t), (6.6)

and by simulating ii. d replications K 1, . . . . KN Of K, We Can Cakukte em@ical

bounds on P’( K > t).

The ability to generate a stationary version of the process can have

additional benefits as well. For example, one can estimate quantiles of the

stationary distribution by generating i.i.d. samples of the process in station-

arity (in much the same way as az( t) is constructed). The generation of

confidence intervals for quantiles in the i.i.d. setting is less complicated and

more straightforward than that in the dependent context, although it is likely
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that the asymptotic variance of this new estimator is worse than that of the

traditional one. More generally, traditional steady-state estimators like al(t)

only capture features of the one-dimensional distribution, which does not

always tell the whole story; see the discussion in Whitt [31].

7. EXAMPLES

Example 7.1. We give some estimates indicating how the run length of

the recursive Algorithm C may depend on the number s of states of the

Markov chain {X.}. A difficulty is that this run length in general appears to

depend on the transition probabilities k,J in a complicated way, and so it may

be difficult to make comparisons for different values of s. Here we consider

an extremely simple example, a chain that goes to any other state with equal

probabilities (thus k ,J = 1/(s – 1) for i # .j, k,, = 0). By the “run lengt~ 1,

we understand the expected number of steps of {X.} that need to be gener-

ated before Z = Z(s) is observed.

Consider first the version of the algorithm where one state at a time is

added. That is, in Algorithm C, F is a one-point set. Let nf denote the run

length needed to create Z(A) when A has t elements. Due to the special

structure of the k ,J, nt does not depend on A, and obviously nl = O, n, = l,.

Now let G have t elements and F one, say i. To create Z’(G), Algorithm C goes

through the states in G in succession, creates one step of {X~} at a time, and

observes whether the next value is i. The expected amount of time required

for this to turn out successfully is s – 1. Then ZL~ ) is generated, and the

algorithm stops strictly later than at the time when the observed value of

Z(G) is the state from which a transition to i occurred. The probability of this

last event is l/(t – 1), and thus n,+ ~ > (s – 1 + n,)(t – 1), from which it

follows that nz > s – 1,n3 > n2, rz4> 2rz~, n~ > 3nz, and thus

Z,=rz, >(s -l)!. (7.7)

Now assume instead that the recursive step is carried out by letting F and

G be of the same order of magnitude. For convenience, let s = 2 N and let m ~

denote the run length needed to create Z(’) when A has 2 k elements.

Assume that F and G both have 2 k elements. An upper bound on the run

length needed to create T’(G) is 2k (the number of states in G) multiplied by

the expected number of steps needed to create an event in the Poisson stream

with intensity Z~G)A$~+G‘. Arguing as above, this number is

Thus

(
2N–1

mk,l<2.2k

)

+mk 2k+mk,
2k
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where the last m~ comes from step 11 of Algorithm C. Letting m ~ =

max{mk, (2N – 1)/2h}, it follows that ml < 2N+2, mj+l s 2 2h+ 5m~ and thus

Substituting s = 2‘, this upper bound is

4~2 ~10g(S’O~sJ(10~’;2)= 4~5~2 0810gs

so that “doubling up” of states leads to

1, == O(d’ogl”g’), (7.8)

which is clearly much better than the lower bound (7.7) obtained by adding

one state at a time.

For processes with a special structure for the transition graph, these

estimates can be improved somewhat. Assume, for example, that S =

{l,..., s = 2 ~} and that it is known that {X,] has birth-death structure. That

is, h,jisonly nonzeroforj= i–lorj=i+l wheni= 2,. ... l, whenen

i= Oonlyforj=Oorj= l,andwhen i=s only for j=sorj=s–1.

Proceeding again by doubling up the number of states, this leads to Algorithm

C being applied for F, G neighboring intervals of length 2k (k = 1,..., IV – 1).

However, when generating T’~, we need not search all states of G to watch for

a transition to F, but only the state neighboring to F. If all nonzero entries of

K are 1/2, nK is uniform on S, and we can argue as above to get

‘k+l = 2(2 + m~)2k + m~.

Asymptotically, this is easily seen to lead to 1, = 0(S10510g ‘). The exact

values for small IV are given in the following table:

N 1 2 3 4 5 6 7 8 9 10

s 2 4 8 16 32 64 128 256 512 1024

m~ 4 28 268 4588 151.468 9.845.548 = 9.8. 10G 1.3.109 3.3.1011 1.7.1014 1.7.1017

A further possibility for reducing the run length is that n(fl,) may be

known for some partitioning of S, S’ = SI + oGo + S~, so that we can first

select one of the Si with the known probabilities and next generate only 2( ‘L’.

An example would be random environment models with S, the event that the

environment is in state i, which would typically have a known steady-state

probability.

Note that the deterministic algorithms (say Gauss elimination) for comput-

ing n typically have complexity 0(s 3); however, as discussed in the Introduc-

tion, they also require more detailed knowledge of the transition function

than the simulation analyst may want to impose.

Example 7.2. This example serves two purposes, the first to provide a

nonartificial example of a regenerative process with bounded cycle length and

the second to illustrate the use of coupling to estimate the rate of convergence
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to the steady-state. We considered an ( .s, S) inventory system with s = O,

S = 1 and a demand process which is a superposition of a deterministic unit

rate and a compound Poisson process with arrival rate p and jumps which

are uniformly distributed on (O, 1/2). Thus, X drifts downwards at a unit

rate between jumps and is instantaneously reset to 1 whenever ( – ~, O] is hit,

which may occur either continuously at zero (no jump) or through a jump of

size exceeding the present level X(t) of stock. Note that if no arrivals occur in

[u, u + z), we have X(v – ) = X(U) - z (mod 1). The cycle length ~ may be

taken as the time spent between consecutive visits to state 1. The process is

Markovian, but simple explicit formulas for the stationary distribution

enabling X*(0) (and thereby X*) to be simulated by standard methods, are

not available. However, since r s 1, we are in a position to apply Algorithm

D. For example, a coupling time between a stationary version X* and a

version X with arbitrary initial conditions can be constructed as follows:

Algorithm G. (Generating a coupling time K of a (s, S) inventory system)

1. Generate the length P = 7’*(0) of the first cycle {X*(t )}0. ~.(o ~ of Xx by

Algorithm A; let Y* ~ 1.

2. Generate X over the time interval [O, T ‘(O)] by independent simulation;
let Y * X(7’*(O)), t - T*(0).

3. Generate Z, an exponential r.v. with rate ~;

lett-t+ Z, Y+ Y–Z(modl), Y* +Y*– Z(modl)

4. If Y< Y*, letcz*Y*-~, b+ Y;

else leta+Y–*, b~Y*

5. Generate V, V‘, independent r.v.’s on (0, ~);

let Y~Y– V, Y*- Y*– l’*

6. Ifa<Y<banda<Y* <b, l&K~t;

else return to 3

We took ~ = 1 and B = 2, and repeated the experiment 500 times for each

value of ~. Figure 1 gives the empirical values ~~oo I( K, > t )/500 of the

survival probabilities P( K > t) giving an upper bound on the rate of conver-

gence to stationarity, cf., (6.6), and shows the expected tendency of slower

coupling (lower rate of convergence to stationarity) when ~ = 1. A simple

measure of this tendency is also the observed empirical means of K, which

were 5.34 and 1.49, respectively. Roughly, we may also conclude that the

process has become, for all practical purposes, stationary at time t =

10 when @ = 1; whereas the corresponding t-value is probably much higher

when @ = 2. Note, however, that coupling methods typically produce only

upper bounds and that the interpretation of estimates relating to the cou-

pling epoch K, for this and other reasons, seem to require some care (in our

opinion, not least when the mean E ~ is studied!)—no matter whether such

results are obtained from theory, as say in [2], [3], and [1] or from simulation

experiments as in the present work. Our point here, however is not to discuss

these issues, but only to point out that in some cases simulation presents a

feasible approach.

Example 7.3. For a simple yet nontrivial case where one can actually

simulate a r.v. having the stationary age distribution, cf., Algorithm E,

consider the M/G/ 1 queue. If the queue discipline is FIFO (first in first out),
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5 10

Figure 1

enough is known about the steady-state distribution to allow a stationary

version of the system to be simulated. For example, if the service time is

phase-type [23], then so is the steady-state waiting time V ([23]), and hence

straightforward to generate as initial value for the simulation. In general, we

may use the Pollaczek-Khintchine formula V ~ R ~ + 0”0 + RN, where IV is

geometric with rate p (the traffic intensity) and RI, R2,. . . are Lid. with

common density (1 – B( x ))/p, where B is the service time distribution

and ~ its mean; typically, this density will be simulatable given a specific

form of B.

Of course, in the FIFO case the need to simulate at all is questionable.

However, if instead we are dealing with some other work-conserving disci-

pline, such as some variant of processor-sharing or priority queueing, it will

only rarely be the case that full information on the steady-state distribution

is available. Then note that, by work conservation, the cycle length ~ has the

same distribution as for the FIFO case. To generate an r.v. B having

the stationary age distribution as required in step 2 of Algorithm B, one

simply starts a stationary FIFO system and let ~ be its first stationary cycle

length, noting that the stationary distributions of the age and the excess life

of the cycle are the same.

Example 7.4. Our purpose here is to present a further nontrivial case

where one can actually simulate an r.v. having the stationary age distribu-

tion, cf., Algorithm E. We take {X.} as a discrete time Harris recurrent

Markov process, say with state space S and n-step transition probabilities

Kn( x, A) = P(X. c Al XO =x) on which we impose the minorization (5.1).

The splitting argument for Harris chains (see [4] for the theoretical back-

ground and [13] for the simulation implementation) now states that following

each n = O, m, 2 m, . . . . we may let a regeneration occur at time n + m w.p.

A. In this way we obtain the distribution of the zero-delayed cycle length 7 as

geometric on a lattice, P(7 = im) = E(1 – .E)’-l, i = 1,2, . . . . From this it

follows that the stationary age distribution is given by

P(T*(0) = im +j) =
C(1 — fE)~-l

i=l,2, ...,
m’

j= 0,1, . . ..1. l,
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which is of a form allowing for straightforward computer generation. When

m > 1, this is a wide-sense regenerative process that does not (in general)

have i.i.d. cycles (they exhibit dependence).

Example 7.5. Consider the M/G/s/N loss system, that is, an s-server

system with Poisson arrivals at rate a, service time distribution B, and

allowing at most N customers in the system at any time; new customers

arriving when N are present are lost. The queue discipline is work-conserving,

but otherwise arbitrary. This model will serve in part as a concrete illustra-

tion of the idea of Algorithm E, and in part to illustrate the phenomenon of

continuous time but lattice-cycle-length distribution.

For simplicity, we take N = s. The states x of X(t) can then be taken to be

of the form (Ul, . . .. Uk. O, O), ,O), where k = 0,. ... s is the number of cus-

tomers present and there are s – k zeros.

We need to impose a mild condition on the tail of B, namely

B(z +yO)
> 8, Z>zo,

B(z)
(7.9)

for some 8>0, ZO, y. < CO.For example, (7.9) holds if Iim inf b( z ) >0 where

6(z) is the failure rate of B at z, With m = ZO + y., it immediately follows

that the probability B( z + m)/B( z ) of service termination before m, given z

units of service, has been attained and is bounded below by ~ for all z > 0.

By a time transformation, we may assume m = 1. Let p(x) denote the

probability that, starting from X(0) = x, no new customers will arrive in

[0, 1] and that all customers present at time O will have terminated service at

time 1. That is,

k B(uZ + 1)
p(x) =e-p JJ

,=1 B(u, ) “

It follows immediately that p(x) > e ’88 k > ●, where

independent of x.

Tie following algorithm describes how to generate a regenerative cycle,

with the cycle length distribution being geometric on the lattice {1, 2, . . . },

P(T=i)= 6(l– E) ’--l, i=l,2, . . . :

Mgoritbm H. (Generating a regenerative geometric cycle r of a M/G/s/N loss

system)

l. Lett~O, x-(0, . . .. O).

~. simulate {X( s)}ts, s ~+ I starting from X(L) = X;
let P=p(X), X~X(t+l), t~t +1.

3. If X # (O,. . . . O), return to 2;

else, go to 4

4. Generate V, a uniform r.v. on [0, 1];

if V< ~/P, let T* t;

else return to 2.

To simulate the first stationary cycle of the system, construct ~ in step 1 of

Algorithm E by simulating Do, W where P( PO = i) = E(1 – ~)’- 1, i =
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1,2,..., and W is uniform on (0, 1), and putting ~ ~ PO – W. The rest then

follows Algorithm E, using Algorithm H to simulate the cycles of the zero-

delayed process.

8. APPENDIX: PROOFS

PROOF OF PROPOSITION 2.2. Because m is not a unit point mass distribu-

tion, there exists a probability distribution v # m such that m and v

are equivalent (i.e., share the same sets of probability zero). Hence, P., ~

(T = O) = 1 so that P’u,JX~ ~ “) = w(”). Since v + n, this implies that T is

not a stationarity detection time for K, yielding a contradiction. ❑

PROOF OF PROPOSITION 2,3. Assume that Z is a e-stationarity detection

rule in the class #(K(o)) associated with the randomized stopping time a,

and choose O < 8 < 1/2 such that 2(1 – 8 ) > ~. Let A be some large integer

to be specified later, and define K(”) =.,tiK(o)) by

[

kf~) i<A

k~~) = a+ (1 – a)k:~) i>a, i=j,

(l – a)k$) i> A,i+j

O < a < 1.For O s a < 1, write n(”) = m~,., and P(”) = PO,~,., for the P~[.r

distribution of {X,}, starting from XO = O, and let 7 = infln >1: X. = O}.

M = max{X~: O s n s u}, it is easy to see that

(8.1)&P(OJ(M > A) ,

l–a

1 T—1 r—1
--_l--.Em ~ 1(X. =i),—pa) ~ 1(X. = i) = F(.).

F(a)-
i < A (8.2)

L, ~=() L, ~=o

(here (8. 1) follows because K(”) adds a number of “self-loops” in states

i > A). In particular, (8.1) converges to cc and (8.2) to O as a ~ 1, and hence,

for some a, we have m(”~({O,.. ., A)) < 8/2. Choose A such that P(o)(Z s

A,M <A) >1 – 8/2. Since P(”}(Z sA, M <A) = P(0)(Z <A, M <A), by

construction, we get

llp(~)(~ ~ .)_m(~) 011 >IP(U)(Z <A) – m(a)({O,..., A})l

= p~~)(z <A) - n(aj({O,..., A})

> P(”)(Z <A, M<A) – m(a)({O,. ... A})

(

6s

)

>21– —–—>6
22

(using 8< 1/2 in the second step), a contradiction. ❑
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Proof that Algorithm F is valid. Suppose that the cycle length r is not

bounded by the constant a, and consider the r.v. T;(O) having distribution

We note that the r.v. T:(O) can be generated by looking at the subsequence of

the 7,’s for which ~, s a and then applying to the subsequence the “length-

biased” acceptance-rejection technique of Algorithm A (see step 4). If (4.9) is

in force, then (for any measurable set B):

IP(X’(UT;(0) + .) GB) - P(X* GB)I

=lP(X’(UT~(0) + .) =B) - P(X’(UT’(0) ●B)l

=lJmP[x(ut + ) GB,T1 = t](WTa’(0) ‘= d) – P(T’(0) = dt))
o

< j%(T:(0) ● d) - P’(T’(O) = dt)l
o

We further note that if ET > 1, then

~[T; T> Cl]

kT

~[q_112 . T1/2](T > a)]

ET

E1/2T. ~1’2[7; T> a]
<

ET

( Cauchy-Schwarz)

=E1/2[7-; T> a],

whereas (8.3) is bounded by E[T; T > a] if ET < 1. But,

Suppose that an upper-bound y on Er P+ 1 can be computed. Then, for any

positive ~ < 1, we can choose a = a(~) as in step 1 of Algorithm F. By doing
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so we guarantee that

2 supl P(x’(uT&’(o) + .) =B) – P(X* Gl?)\ < c. ❑

B

PROOF OF PROPOSITION 6.1. Obviously, T # is the sum of the cycle lengths

up to and including the first accepted cycle, and since a/m is the acceptance

# = ET. a/m = a. Also, it isprobability, it follows by Wald’s identity that F7

standard (or seen by a simple conditioning argument based upon Proposition

3.1) that

1
Var X*(0) = Var XT,(0) = ;E

[/ 1
‘(x(s) – CY)zds .

0

Thus,

~ _ Ez;

[ 1

2

(r——= ~E /’(X(s) – a)ds ,
m o

2 = Var X*(0) oET# =V2 ‘~~’(x(s) – a)2ds.
mo

However, let t be fixed and let U be uniform on [0, t].Then

E[(x(u) – ~)zlx] > E2[(X(U) – Cl)lx] conditionally upon X,

(8.5)

[ ] [/ 1
2

a“F/T(X(s) – a)2ds > E ~~’(X(s) – a)2ds > E ‘(X(S) – a)ds ,
0 0 0

(8.6)

where (8.5) follows by Cauchy-Schwarz (equality in the last step of (8.6)

would imply X(t) = a for all t G [0, ~), which is impossible because we have

excluded the case X(t) = a). Inserting (8.6) in (8.4) completes the proof. CI

PROOF OF PROPOSITION 6.2. Let ~#(1) = T: = T#, let T#(2) be the sum

of the cycle lengths up to and including the second accepted cycle, ~~ =

‘T#(2) – T#(l), and so on. Then the Z’#(n) are regeneration points for X

(obtained by randomized stopping of the initial regeneration points) and

there are ~(t) of them before t.Let – denote averaging from 1 to x(t),

and put

/

z
z: = “(2) x(s) ds, a~(t) = ~.

T#(i–1)

Then the (Z?, ~~, AZ), z = 1,2,..., are i.i.d., a~(t ) is a regenerative estima-

tor, and it is standard that a~(t) and al(t) are asymptotically equivalent, in
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the sense that the difference is o(X). Thus, in the proof, we may replace

al(t) by a~(t).

Let ~(Z,~) = Z/r, g(Z, ~, A) = (1 – b)~(Z,~) + bA and let fz, ~, and gz,

g,, g~ denote the partial derivatives evaluated at (E 2X, ET # ) and (EZ#, K7 #,

E A), respectively. Then

al(t) =g(z#,7-#), a:(t) ==f(~#,7#, A-),

f(EZ#, E-#) =g(EZ’, E~#, EA) = a,

and applying the Delta method shows that asymptotically,

al(t) = Ct+fz(z – lEz#) +f, (?# – ET#),

a~(t) = a +gz(~x – EZ#) +g, (?# – F7X) +g~(A–– EA)

= a+ (1 – b)(fz(~x – IEZ#) +f, (7# – lE#)) + b(A–– EA).

Interpreting A – fzZ# – fTI-# as a control on ~zZ” + ~T~’, standard results

on linear control variates show that taking

Cov( f“zx + f,~ #, A –fzZ# –fT~#)
b=–

Var(A – fzZ# – f,T#)

will ensure cr~ s cr~, and that we will have u~z < m12 unless the covariance in

the definition of b vanishes; if for no other reason than that because of the

randomization in step 5 of Algorithm D, we find it hard to think of examples

where this can happen.

To obtain an estimator b ‘(t) of b, just estimate the 3 X 3 covariance

matrix of (Z#, ~‘, A) by the empirical covariance matrix (as when doing

regression adjustment for linear control variates). Note that

Ez#

fz =$> f,=-=

can be estimated by inserting the empirical means. Insert these estimates in

the definition of b. R
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