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Abstract

Time series models are often constructed by combining nonstationary effects such as trends
with stochastic processes that are believed to be stationary. Although stationarity of the un-
derlying process is typically crucial to ensure desirable properties or even validity of statistical
estimators, there are numerous time series models for which this stationarity is not yet proven.
A major barrier is that the most commonly-used methods assume ϕ-irreducibility, a condition
that can be violated for the important class of discrete-valued observation-driven models.

We show (strict) stationarity for the class of Generalized Autoregressive Moving Average
(GARMA) models, which provides a flexible analogue of ARMA models for count, binary,
or other discrete-valued data. We do this from two perspectives. First, we show conditions
under which GARMA models have a unique stationary distribution (so are strictly stationary
when initialized in that distribution). This result potentially forms the foundation for broadly
showing consistency and asymptotic normality of maximum likelihood estimators for GARMA
models. Since these conclusions are not immediate, however, we also take a second approach.
We show stationarity and ergodicity of a perturbed version of the GARMA model, which
utilizes the fact that the perturbed model is ϕ-irreducible and immediately implies consistent
estimation of the mean, lagged covariances, and other functionals of the perturbed process.
We relate the perturbed and original processes by showing that the perturbed model yields
parameter estimates that are arbitrarily close to those of the original model.
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1 Introduction

Stationarity is a fundamental concept in time series modeling, capturing the idea that the
future is expected to behave like the past; this assumption is inherent in any attempt to forecast
the future. Many time series models are created by combining nonstationary effects such as
trends, covariate effects, and seasonality with a stochastic process that is known or believed
to be stationary. Alternatively, they can be defined by partial sums or other transformations
of a stationary process. The properties of statistical estimators for particular models are then
established via the relationship to the stationary process; this includes consistency of parameter
estimators and of standard error estimators (Brockwell and Davis 1991, Chap. 7-8).

However, (strict) stationarity can be nontrivial to establish, and many time series models
currently in use are based on processes for which it has not been proven. Strict stationarity
(henceforth, “stationarity”) of a stochastic process {Xn}n∈Z means that the distribution of the
random vector (Xn, Xn+1 . . . , Xn+j) does not depend on n, for any j ≥ 0 (Billingsley 1995,
p.494). Sometimes weak stationarity (constant, finite first and second moments of the process
{Xn}n∈Z) is proven instead, or simulations are used to argue for stationarity.

The most common approach to establishing strict stationarity and ergodicity (defined as in
Billingsley 1995, p.494) is via application of Lyapunov function methods (also known as drift
conditions) to a Markov chain that is related to the time series model. However, Lyapunov
function methods are almost always used in conjunction with an assumption of ϕ-irreducibility,
which can be violated by discrete-valued observation-driven time series models (for an example
see Section 2). Such models are important since (due to the simplicity of evaluating the
likelihood function) they are typically the best option for modeling very long count- or binary-
valued time series.

We address this challenge to show for the first time stationarity of two models designed
for discrete-valued time series: a Poisson threshold model and the class of Generalized Au-
toregressive Moving Average (GARMA) models (Benjamin et al., 2003). We do this from two
perspectives. First, we show that these models have a unique stationary distribution (so are
strictly stationary when initialized in that distribution), by using Feller properties of the chain.
Precisely, we show that both the mean process and the observed process have stationary solu-
tions, and that the stationary solution of the mean process is unique. To our knowledge Feller
properties have not previously been used to show uniqueness of the stationary distribution
for discrete-valued time series models (although they have been used to show existence of a
stationary distribution; Tweedie 1988, Davis, Dunsmuir, and Streett 2003). This approach is
very general and has the potential to be used for showing that wide classes of discrete-valued
models have unique stationary distributions.

These stationarity results potentially form the foundation for showing consistency and
asymptotic normality of parameter estimates in the GARMA model class in its general form.
However, these properties are not immediate so we also take a second approach, showing sta-
tionarity and ergodicity of a perturbed version of the model. This implies consistent estimation
of the mean and lagged covariances of the perturbed process, and more generally the expec-
tation of any integrable function (Billingsley 1995, p.495). More importantly, such ergodicity
results for a perturbed model can be used in some cases to show asymptotic normality of pa-
rameter estimators for the original model (Fokianos et al., 2009; Fokianos and Tjostheim, 2011,
2010). We also show that the perturbed and original models are closely related in the sense
that the perturbed model yields (finite-sample) parameter estimates that are arbitrarily close
to those from the original model. This result is given under weak conditions that encompass
nearly all discrete-valued time series models, and utilizes the fact that the perturbed model
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is ϕ-irreducible. It implies that a researcher can choose to use the perturbed model without
substantially affecting (finite-sample) parameter estimates, in order to get strong theoretical
properties associated with stationarity and ergodicity.

GARMA models generalize autoregressive moving average models to exponential-family
distributions, naturally handling count- and binary-valued data among others. They can
also be seen as an extension of generalized linear models to time series data. The numerous
applications of these models include predicting numbers of births (Léon and Tsai, 1998),
modeling poliomyelitis cases (Benjamin et al., 2003), and predicting valley fever incidence
(Talamantes et al., 2007). The main stationarity result that currently exists for GARMA
models is weak stationarity in the case of an identity link function; unfortunately this excludes
the most popular of the count-valued models (Benjamin et al., 2003). Zeger and Qaqish (1988)
have also used a connection to branching processes to show stationarity for a special case of the
purely autoregressive Poisson log-link GARMA model. The stationarity of particular models
related to Poisson GARMA has also been addressed by Davis et al. (2003) (log link case) and
Ferland et al. (2006) (linear link case).

In Section 2 we give background on Lyapunov function methods, describe the use of Feller
properties to show stationarity, and give our justification for analyzing perturbed versions of
discrete-valued time series models. In Section 3 we illustrate the perturbation approach by
applying it to a specific count-valued threshold model, and in Section 4 we use the perturbation
method to prove stationarity for the class of perturbed GARMA models. In Section 5 we show
stationarity of the original GARMA and count-valued threshold models using Feller properties.

2 Tools for Showing Stationarity

For a real-valued process {Yn}n∈N, let Yn:m = (Yn, Yn+1, . . . , Ym) where n ≤ m. An observation-
driven time series model for {Yn}n∈N has the form:

Yn|Y0:n−1 ∼ ψν(·;µn) (1)
µn = hθ,n(Y0:n−1) (2)

for functions hθ,n parameterized by θ and some density function ψν (typically with respect to
counting or Lebesgue measure) that can depend on both time-invariant parameters ν and the
time-dependent quantities µn (Zeger and Qaqish, 1988; Davis et al., 2003; Ferland et al., 2006).
Observation-driven models are desirable because the likelihood function for the parameter
vector (θ, ν) can be evaluated explicitly. The alternative class of parameter-driven models
(Cox, 1981; Zeger, 1988), by contrast, incorporates latent random innovations which typically
make explicit evaluation of the likelihood function impossible, so that one must resort to
approximate inference or computationally intensive Monte Carlo integration over the latent
process (Chan and Ledolter, 1995; Durbin and Koopman, 2000; Jung et al., 2006). These
methods do not scale well to very long time series, so observation-driven models are typically
the better option in this case.

Observation-driven models are usually constructed via a Markov-p structure for µn, mean-
ing that for n ≥ p

µn = gθ(Yn−p:n−1, µn−p:n−1) (3)

for some function gθ and for fixed initial values µ0:p−1. This structure implies that the vector
µn−p:n−1 forms the state of a Markov chain indexed by n. In this case it is sometimes possible
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to prove stationarity and ergodicity of {Yn}n∈N by first showing these properties for the mul-
tivariate Markov chain {µn−p:n−1}n≥p, then “lifting” the results back to the time series model
{Yn}n∈N. For instance, showing that {µn−p:n−1}n≥p is ϕ-irreducible, aperiodic and positive
Harris recurrent (defined below) implies that it has a unique stationary distribution π, and
that if µ0:p−1 ∼ π then {µn−p:n−1}n≥p is a stationary and ergodic process. That {Yn}n∈N is
also stationary and ergodic is seen as follows. Conditional on {µn}n∈N, the Yn are independent
across n and each Yn has a distribution that is a function of only µn:n+p (since Yn ∼ ψν(µn)
and since the values µn+1:n+p depend on Yn). Therefore there is a deterministic function f
such that one can simulate {Yn} conditional on {µn} by: (a) generating an i.i.d. sequence
of Uniform(0, 1) random variables Un, and (b) setting Yn = f(µn:n+p, Un). The multivariate
process {(µn−p:n−1, Un)}n≥p is stationary and ergodic, and so Thm. 36.4 of Billingsley (1995)
shows that its transformation {Yn} is also stationary and ergodic.

First we give background on the use of drift conditions to show stationarity and ergodicity
of ϕ-irreducible processes; we extend to the non-ϕ-irreducible models of interest in Sections 2.1
and 2.2. For a general Markov chain X = {Xn}n∈N on state space S with σ-algebra F define
Tn(x,A) = Pr(Xn ∈ A|X0 = x) for A ∈ F to be the n-step transition probability starting
from state X0 = x. The appropriate notion of irreducibility when dealing with a general state
space is that of ϕ-irreducibility, since general state space Markov chains may never visit the
same point twice.

Definition 1. A Markov chain X is ϕ-irreducible if there exists a nontrivial measure ϕ on F
such that, whenever ϕ(A) > 0, Tn(x,A) > 0 for some n = n(x,A) ≥ 1, for all x ∈ S.

The notion of aperiodicity in general state space chains is the same as that seen in countable
state space chains, namely that one cannot decompose the state space into a finite partition of
sets where the chain moves successively from one set to the next in sequence, with probability
one. For a more precise definition, see Meyn and Tweedie (1993), Sec. 5.4.

We need one more definition before we can present drift conditions.

Definition 2. A set A ∈ F is called a small set if there exists an m ≥ 1, a nontrivial measure
ν on F , and a λ > 0 such that for all x ∈ A and all C ∈ F , Tm(x,C) ≥ λν(C).

Small sets are a fundamental tool in the analysis of general state space Markov chains because,
among other things, they allow one to apply regenerative arguments to the analysis of a chain’s
long-run behavior. Regenerative theory is indeed the fundamental tool behind the following
result, which is a special case of Theorem 14.0.1 in Meyn and Tweedie (1993). Let Ex(·) denote
the expectation under the probability Px(·) induced on the path space of the chain when the
initial state X0 is deterministically x.

Theorem 1. (Drift Conditions): Suppose that X = {Xn}n∈N is ϕ-irreducible on S. Let
A ⊂ S be small, and suppose that there exist b ∈ (0,∞), ε > 0, and a function V : S → [0,∞)
such that for all x ∈ S,

ExV (X1) ≤ V (x)− ε+ b1{x∈A}. (4)

Then X is positive Harris recurrent.

The function V is called a Lyapunov function or energy function. The condition (4) is
known as a drift condition, in that for x /∈ A, the expected energy V drifts towards zero by at
least ε. The indicator function in (4) asserts that from a state x ∈ A, any energy increase is
bounded (in expectation).
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Positive Harris recurrent chains possess a unique stationary probability distribution π. If
X0 is distributed according to π then the chain X is a stationary process. If the chain is also
aperiodic then X is ergodic, in which case if the chain is initialized according to some other
distribution, then the distribution of Xn will converge to π as n→∞.

Hence, the drift condition (4), together with aperiodicity, establishes ergodicity. A stronger
form of ergodicity, called geometric ergodicity, arises if (4) is replaced by the condition

ExV (X1) ≤ βV (x) + b1{x∈A} (5)

for some β ∈ (0, 1) and some V : S → [1,∞) (note the change in the range of V ). Indeed, (5)
implies (4). Either of these criteria are sufficient for our purposes.

A problem can occur, however, when we attempt to apply this method for proving sta-
tionarity to an observation-driven time series model given by (1) and (3): the Markov chain
{µn−p:n−1}n≥p may not be ϕ-irreducible. This occurs, for instance, whenever Yn can only take
a countable set of values and the state space of µn−p:n−1 is Rp. Then, given a particular initial
vector µ0:p−1 the set of possible values for µn is countable. In fact, for any fixed initialization
µ0:p−1 there is a countable set A ⊂ Rp such that

∑∞
n=p Pr(µn−p:n−1 ∈ A|µ0:p−1) = 1, and

distinct initial vectors µ0:p−1 can have distinct sets A. For a simpler example of a Markov
chain with the same property, consider the stochastic recursion defined by Xn = [Xn−1 + Yn]
mod 1 where {Yn}n≥1 are i.i.d. discrete random variables on the rationals and x mod 1 is the
fractional part of x. If X0 is rational, then so is Xn for all n ≥ 1, while if X0 is irrational
then so is Xn for all n ≥ 1. Also, the set of states that can be reached from any fixed X0 is
countable.

2.1 Feller Conditions for Stationarity

When the chain {µn−p:n−1}n≥p associated with the observation-driven time-series model is
not ϕ-irreducible we will see that one can instead use Feller properties to prove that it has a
unique stationary distribution. We address existence of a stationarity distribution first, then
uniqueness of that distribution.

In the absence of ϕ-irreducibility, the “weak Feller” condition can be combined with a drift
condition (4) to show existence of a stationary distribution. A chain evolving on a complete
separable metric space S is said to be “weak Feller” if the transition kernel T (x, ·) satisfies
T (x, ·) ⇒ T (y, ·) as x→ y, for any y ∈ S and where ⇒ indicates convergence in distribution;
see, e.g., Section 6.1.1 of Meyn and Tweedie (1993) and Theorem 25.8 (i) and (ii) of Billingsley
(1995).

Theorem 2. (Tweedie, 1988) Suppose that S is a locally compact complete separable metric
space with F the Borel σ-field on S, and that the Markov chain {Xn}n∈N with transition kernel
T is weak Feller. Let A ∈ F be compact, and suppose that there exist b ∈ (0,∞), ε > 0, and
a function V : S → [0,∞) such that for all x ∈ S the drift condition (4) holds. Then there
exists a stationary distribution for T .

Uniqueness of the stationary distribution can be established using the “asymptotic strong
Feller” property, defined as follows (Hairer and Mattingly, 2006). Let S be a Polish (complete,
separable, metrizable) space. A “totally separating system of metrics {dn}n∈N for S” is a set
of metrics such that for any x, y ∈ S with x 6= y, the value dn(x, y) is nondecreasing in n
and limn→∞ dn(x, y) = 1. A metric d on S implies the following distance between probability
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measures µ1 and µ2:

‖µ1 − µ2‖d = sup
Lipdφ=1

(∫
φ(x)µ1(dx)−

∫
φ(x)µ2(dx)

)
(6)

where
Lipdφ = sup

x,y∈S:x 6=y

|φ(x)− φ(y)|
d(x, y)

is the minimal Lipschitz constant for φ with respect to d. Using these definitions, a chain is
asymptotically strong Feller if, for every fixed x ∈ S, there is a totally separating system of
metrics {dn} for S and a sequence tn > 0 such that

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

‖T tn(x, ·)− T tn(y, ·)‖dn = 0 (7)

where B(x, γ) is the open ball of radius γ centered at x, as measured using some metric defining
the topology of S.

Then we have the following result, which is an extension of results in Hairer and Mattingly
(2006) and Hairer (2008). A “reachable” point x ∈ S means that for all open sets A containing
x,
∑∞

n=1 T
n(y,A) > 0 for all y ∈ S (Meyn and Tweedie, 1993, p. 135).

Theorem 3. Suppose that S is a Polish space and the Markov chain {Xn}n∈N with transition
kernel T is asymptotically strong Feller. If there is a reachable point x ∈ S then T can have
at most one stationary distribution.

The results in Hairer (2008) require an “accessible” point, which is stronger than a reachable
point. Theorem 3 is proven in Appendix A.1.

We will show stationarity of discrete-valued time series models by applying Theorems 2 and
3. These results lay the foundation for showing convergence of time averages for a broad class
of functions, and asymptotic properties of maximum likelihood estimators. However, these
results are not immediate. For instance, Laws of Large Numbers do exist for non-ϕ-irreducible
stationary processes (cf. Meyn and Tweedie 1993, Thm. 17.1.2), and show that time averages
of bounded functionals converge. However, the value to which they converge may depend on
the initialization of the process. It may be possible to obtain correct limits of time averages by
restricting the class of functions under consideration, or by obtaining additional mixing results
for the time series models under consideration; we leave this for future work.

2.2 Analyzing a Perturbed Process

Due to the constraints of our stationarity results for the original process (end of Section 2.1),
we give an alternative approach based on a perturbed version of the discrete-valued model,
and justify its use. By adding small real-valued perturbations to a discrete-valued time series
model one can obtain a ϕ-irreducible process. We do this by returning to the most general
framework (1) and (2), and replacing hθ,n with a function of two inputs:

Y (σ)
n |Y (σ)

0:n−1 ∼ ψν(·;µ(σ)
n )

µ(σ)
n = hθ,n(Y (σ)

0:n−1, σZ0:n−1) (8)

where the Zi
iid∼ φ are random perturbations having density function φ (typically with re-

spect to Lebesgue measure), σ > 0 is a scale factor associated with the perturbation, and
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hθ,n(·, σZ0:n−1) is a continuous function of Z0:n−1 such that hθ,n(y, 0) = hθ,n(y) for any y. The
value µ(σ)

0 is a fixed constant that we take to be independent of σ, so that µ(σ)
0 = µ0. When

the perturbed model is constructed to be ϕ-irreducible, one can then apply drift conditions to
prove its stationarity.

We will show that using the perturbed instead of the original model has an arbitrarily small
effect on the (finite-sample) parameter estimates. We do this by proving that the likelihood
of the parameter vector η = (θ, ν) calculated using (8) converges uniformly to the likelihood
calculated using (2) as σ → 0. More precisely, the joint density of the observations Y = Y

(σ)
0:n

and first n perturbations Z = Z0:n−1, conditional on the parameter vector η, the perturbation
scale σ, and the initial value µ0, is

f(Y, Z|η, σ, µ0) = f(Z|η, σ, µ0)× f(Y |Z, η, σ, µ0)

=

[
n−1∏
k=0

φ(Zk)

]
n∏

k=0

ψν(Y
(σ)
k ;µk(σZ))

where µk(σZ) is the value of µ(σ)
k induced by the perturbation vector σZ through (8), with

µ0(σZ) = µ0. The likelihood function for the parameter vector η implied by the perturbed
model is the marginal density of Y integrating over Z, i.e.,

Lσ(η) = f(Y |η, σ, µ0) =
∫
f(Y, Z|η, σ, µ0) dZ.

Here we have placed a subscript σ on the likelihood function to emphasize its dependence on
σ. Let the likelihood function without the perturbations be denoted by L, so that

L(η) =
n∏

k=0

ψν(Yk;µk(0)).

Theorem 4. Under regularity conditions (a) & (b) below, the likelihood function Lσ based on
the perturbed model (8) converges uniformly on any compact set K to the likelihood function
L based on the original model (2), i.e.,

sup
η∈K

|Lσ(η)− L(η)| σ→0−→ 0

for any fixed sequence of observations y0:n and conditional on the initial value µ0. So if L is
continuous in η and has a finite number of local maxima and a unique global maximum on K,
the maximum-likelihood estimate of η based on Lσ converges to that based on L. Also, Bayesian
inferences based on Lσ converge to those based on L, in the sense that the posterior probability
of any measurable set A using likelihood Lσ (and restricting to a compact set) converges to
that using L.

Regularity Conditions:

(a) For any fixed y the function ψν(y;µ) is bounded and Lipschitz continuous in µ, uniformly
in η ∈ K.

(b) For each n, µn(σZ) is Lipschitz in some bounded neighborhood of zero, uniformly in
η ∈ K.
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Assumption (a) holds, e.g., for ψν(y;µ) equal to a Poisson or binomial density with mean µ, or
a negative binomial density with mean µ and precision parameter ν. As we will see for several
models, µn(σZ) can easily be constructed to satisfy (b). Theorem 4 is proven in Appendix A.2.

Theorem 4 says that one can choose to use the perturbed model (with fixed and sufficiently
small perturbation scale σ) instead of the original model, without significantly affecting finite-
sample parameter estimates, in order to get the strong theoretical properties associated with
stationarity and ergodicity. These include consistent estimation of the mean and lagged co-
variances of the process. Although we have shown that the perturbed and original models are
closely related, and although one can use drift conditions to show stationarity and ergodicity
properties of the perturbed model, this approach does not yield stationarity and ergodicity
properties for the original model. This is due to the substantial technical difficulty associated
with interchanging the limits σ → 0 and n→∞. Theorem 4 addresses the case of a fixed num-
ber of observations n, as σ → 0, while consistency of parameter estimation for the perturbed
model is a statement about n→∞ for fixed σ.

3 A Poisson Threshold Model

Our first example is a Poisson threshold model with identity link function that we have found
useful in our own applications (Matteson et al., 2011). The model is defined as

Yn|Y0:n−1 ∼ Poisson(µn)
µn = ω + αYn−1 + βµn−1 + (γYn−1 + ηµn−1)1{Yn−1 /∈(L,U)} (9)

where n ≥ 0 and the threshold boundaries satisfy 0 < L < U <∞. To ensure positivity of µn

we assume ω, α, β > 0, (α + γ) > 0, and (β + η) > 0. Additionally we take η ≤ 0 and γ ≥ 0,
so that when Yn−1 is outside the range (L,U) the mean process µn is more adaptive, i.e. puts
more weight on Yn−1 and less on µn−1.

We will first show that a perturbed version of the model {Yn}n∈N is stationary and ergodic
under the restriction (α + β + γ + η) < 1. Stationarity of the original process {Yn}n∈N will
follow from the same proof, as shown in Section 5.

Stationarity and ergodicity of the perturbed model can be proven via extension of results
in Fokianos et al. (2009) for a non-threshold linear model. However, a much simpler proof is
as follows. First, incorporate perturbations Zn

iid∼ Uniform(0, 1) as in Theorem 4:

Y (σ)
n |Y (σ)

0:n−1 ∼ Poisson(µ(σ)
n )

µ(σ)
n = ω + αY

(σ)
n−1 + βµ

(σ)
n−1 +

(
γY

(σ)
n−1 + ηµ

(σ)
n−1

)
1{Y (σ)

n−1 /∈(L,U)} + σZn−1.

The regularity conditions for Theorem 4 hold since ψν is the Poisson density and µ(σ)
n is linear

in Z0:n−1 with bounded coefficients.
Set Xn = µ

(σ)
n and take the state space of the Markov chain X = {Xn}n∈N to be S =

[ ω
1−β−η ,∞). Define A = [ ω

1−β−η ,
ω

1−β−η +M ] for any M > 0, and define m to be the smallest
positive integer such that M(β + η)m−1 < σ/2. Then

inf
x∈A

Pr(Y0 = Y1 = . . . = Ym−2 = 0|X0 = x) > 0 and

Pr
(
σ(Z0 + Z1 + . . .+ Zm−2) <

σ

2
−M(β + η)m−1

)
> 0.
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Therefore infx∈A T
m−1(x,B) > 0, where B = [ ω

1−β−η ,
ω

1−β−η + σ
2 ] and where T is the transition

kernel of the Markov chain X. Taking ν = Unif( ω
1−β−η + σ

2 ,
ω

1−β−η + σ) in Definition 2 then
establishes A as a small set. A similar argument can be used to show ϕ-irreducibility and
aperiodicity.

Taking the energy function V (x) = x,

ExV (X1) = (α+ β)V (x) + γEx[Y01{Y0 /∈(L,U)}] + ηxPx[Y0 /∈ (L,U)] + (ω + σ/2)
≤ (α+ β + γ)V (x) + ηx− ηxPx[Y0 ∈ (L,U)] + (ω + σ/2).

In particular, ExV (X1) is bounded for x ∈ A. Also, as x→∞ we have xPx[Y0 ∈ (L,U)] → 0,
so for sufficiently large M , x > M implies that −ηxPx[Y0 ∈ (L,U)] ≤ 1. Thus for x > M ,

ExV (X1) ≤ (α+ β + γ + η)V (x) + (ω + σ/2 + 1) ≤ νV (x)

for some |ν| < 1 and for M large enough. So ExV (X1) has geometric drift for x 6∈ A. Although
the range of V is [0,∞) here, we can easily replace V by Ṽ (x) = x+1 to get the range [1,∞).
So the chain {µ(σ)

n }n∈N is geometrically ergodic, and thus stationary for an appropriate initial
distribution for µ(σ)

0 . As shown in Section 2, this implies that the time series model {Y (σ)
n }n∈N

is also stationary and ergodic.

4 Generalized Autoregressive Moving Average Mod-

els

Generalized Autoregressive Moving Average (GARMA) models are a generalization of autore-
gressive moving average models to exponential-family distributions, allowing direct treatment
of binary and count-valued data, among others. GARMA models were stated in their most
general form by Benjamin et al. (2003), based on earlier work by Zeger and Qaqish (1988) and
Li (1994). Showing stationarity for GARMA models is harder than for the linear models that
have been the subject of most previous studies (Bougerol and Picard, 1992; Ferland et al.,
2006; Fokianos et al., 2009), since a small change in the transformed mean can correspond to
a very large change on the scale of the observations, causing instability.

We write GARMA models in the following form (Benjamin et al., 2003):

Yn|Y0:n−1 ∼ ψν(µn)
g(µn) = γ + ρ[g(Y ∗

n−1)− γ] + θ[g(Y ∗
n−1)− g(µn−1)] (10)

for some real-valued link function g, where Y ∗
n is some mapping of Yn to the domain of g,

and where ψν is a density function with respect to some measure on R (typically Lebesgue
or counting measure), parameterized by ν. The second and third terms of the model (10) are
the autoregressive and moving-average terms, respectively. This model is more general than
the class of models developed in Benjamin et al. (2003) in the sense that we do not assume
that ψν is in the exponential family. However, we do assume that E(Yn|µn) = µn, and we
assume a bound on the (2 + δ) moment of Yn in terms of |µn|, for some δ > 0. We will see
that our conditions are satisfied by many standard choices such as the Poisson and binomial
GARMA models. In practice when applying the GARMA model covariates are often included,
and multiple lags can be allowed in the autocorrelation and moving-average terms, yielding
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the more general model:

g(µn) = W ′
nβ +

p∑
j=1

ρj [g(Y ∗
n−j)−W ′

n−jβ] +
q∑

j=1

θj [g(Y ∗
n−j)− g(µn−j)]. (11)

However, for simplicity we focus on the case p, q = 1; we discuss how one might extend our
results to p > 1 and q > 1 at the end of Sec. 4.1. Since the covariates are time-dependent, the
model (11) is in general nonstationary, and interest is in proving stationarity in the absence
of covariates, i.e. where W ′

nβ = γ as in (10).
We handle three separate cases:

Case 1: ψν(µ) is defined for any µ ∈ R. In this case the domain of g is R and we take Y ∗
n = Yn.

Case 2: ψν(µ) is defined for only µ ∈ R+ (or µ on any one-sided open interval by analogy). In
this case the domain of g is R+ and we take Y ∗

n = max{Yn, c} for some c > 0.

Case 3: ψν(µ) is defined for only µ ∈ (0, a) where a > 0 (or any bounded open interval by
analogy). In this case the domain of g is (0, a) and we take Y ∗

n = min [max(Yn, c), (a− c)]
for some c ∈ (0, a/2).

Valid link functions g are bijective and monotonic (WLOG, increasing). Choices for Case 2
include the log link, which is the most commonly used, and the link, parameterized by α > 0,

g(µ) = log (eαµ − 1) /α, (12)

which has the property that g(µ) ≈ µ for large µ. Benjamin et al. (2003) also suggest an
unmodified identity link function g(µ) = µ for Case 2; however, this requires strong restrictions
on the parameters in order to guarantee that µn ≥ 0, so we do not address this or other cases
of non-surjective link functions. Examples of valid link functions for Cases 1 and 3 are the
identity and logit functions, respectively.

In this section we obtain ergodicity and stationarity results for the following perturbed
model. Stationarity of the original model (10) follows from a special case of the same proof,
as shown in Section 5. The perturbed model is

Y (σ)
n |Y (σ)

0:n−1 ∼ ψν(µ(σ)
n )

g(µ(σ)
n ) = γ + ρ[g(Y (σ)∗

n−1 )− γ] + θ[g(Y (σ)∗
n−1 )− g(µ(σ)

n−1)] + σZn−1 (13)

where Zn
iid∼ N(0, 1), for any σ > 0.

For the perturbed model we have the following stationarity results.

Theorem 5. The process {µ(σ)
n }n∈N specified by the perturbed GARMA model (13) is an

ergodic Markov chain and thus stationary for an appropriate initial distribution for µ(σ)
0 , under

the conditions below. This implies that the perturbed GARMA model {Y (σ)
n }n∈N is stationary

and ergodic when µ
(σ)
0 is initialized appropriately. The conditions are:

• E(Y (σ)
n |µ(σ)

n ) = µ
(σ)
n

• (2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative constants
d1, d2 such that

E
[
|Y (σ)

n − µ(σ)
n |2+δ

∣∣∣µ(σ)
n

]
≤ d1|µ(σ)

n |r + d2.

• g is bijective, increasing, and

10



Case 1: g : R 7→ R is concave on R+ and convex on R−, and |ρ| < 1
Case 2: g : R+ 7→ R is concave on R+, and |ρ|, |θ| < 1
Case 3: |θ| < 1; no additional conditions on g : (0, a) 7→ R

In fact we show the stronger condition of geometric ergodicity of the {µ(σ)
n }n∈N process. This

implies geometric ergodicity of the joint {(Y (σ)
n , µ

(σ)
n )}n∈N process, by applying Prop. 1 of Meitz

and Saikkonen (2008).
The following popular models are special cases of Theorem 5:

Corollary 6. Suppose that conditional on µ
(σ)
n , Y (σ)

n is Poisson distributed with mean µ
(σ)
n .

Then the perturbed GARMA model is ergodic and stationary given an appropriate initial dis-
tribution for µ(σ)

0 , provided that |ρ|, |θ| < 1 and the link function g is bijective, increasing, and
concave. This is satisfied, for instance, by the log link and the modified identity link (12).
Theorem 4 applies with no further restrictions.

Proof. If X is Poisson with mean µ then

E(X − λ)4 = 3λ2 + λ ≤ 4λ2 + 1,

where the inequality can be seen by considering the cases λ ≤ 1 and λ > 1 separately. Thus
we can take δ = 2 and r = 2. Theorem 4 applies here, shown as follows. The Poisson density
satisfies regularity condition (a). Also, Xn = g(µ(σ)

n ) is linear in Z0:n−1 and g−1(·) is Lipschitz
on any compact set (due to the concavity of g), implying that µn = g−1(Xn) is Lipschitz in
Z0:n−1, uniformly on any compact subset of the parameter space (γ, ρ, θ) ∈ R3.

Corollary 7. Suppose that conditional on µ
(σ)
n , Y (σ)

n is binomially distributed with mean µ
(σ)
n

and fixed number of trials a. Then the perturbed GARMA model is ergodic and thus stationary
for an appropriate initial distribution for µ(σ)

0 , provided that |θ| < 1 and g is bijective and
increasing (e.g. the logit link). If g−1 is locally Lipschitz then Theorem 4 also holds.

The local Lipschitz condition on g−1 is satisfied for the logit and probit link functions, and in
the case where g is differentiable holds as long as the derivative of g is nowhere zero.

Proof. The 2 + δ moment condition holds by taking δ = 0.5 and r = 0:

E
[
|Y (σ)

n − µ(σ)
n |2.5

]
≤ k2.5.

Theorem 4 applies here, by verifying the regularity conditions as for Corr. 6. Unlike the case
of Corr. 6, g−1 is not automatically locally Lipschitz, which is why Corr. 7 explicitly makes
this assumption.

4.1 Proof of Theorem 5

DefineXn = g(µ(σ)
n ); we will prove Theorem 5 by showing that the Markov chainX = {Xn}n∈N

with transition kernel T on state space R is ϕ-irreducible, aperiodic, and positive Harris
recurrent with a geometric drift condition. Aperiodicity and ϕ-irreducibility are immediate
since the Markov transition kernel has a (normal mixture) density that is positive on the whole
real line.

11



Next, define the set A = [−M,M ] for some constant M > 0 to be chosen later; we will
show that A is small, taking m = 1 and ν to be the uniform distribution on A in Definition 2.
Let x = X0 and write µ = g−1(x). For any y > 0 Markov’s inequality then gives

Px(|Y (σ)
0 − µ| > y) ≤ Ex|Y (σ)

0 − µ|2+δ

y2+δ
≤ d1|µ|r + d2

y2+δ
. (14)

In particular, for y = [4(d1|µ|r + d2)]1/(2+δ), Px(|Y (σ)
0 − µ| > y) ≤ 1/4. Then for any x ∈ A,

Px(Y (σ)
0 ∈ [a1(M), a2(M)]) > 3/4 for

a1(M) = g−1(−M)− [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]1/(2+δ)

a2(M) = g−1(M) + [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]1/(2+δ).

Then with probability at least 3/4,

X1 − σZ0 ≥ min{b(a1(M)), b(a2(M))} − |θ|M and
X1 − σZ0 ≤ max{b(a1(M)), b(a2(M))}+ |θ|M where

b(a) = (ρ+ θ)g(a∗) + (1− ρ)γ

where a∗ is the operator ∗ applied to a (e.g. a∗ = max{a, c} for Case 2). Then it is easy to see
that ∃λ > 0 such that T (x, ·) ≥ λν(·) for all x ∈ A.

Next we use the small set A to prove a drift condition. Taking the energy function V (x) =
|x|, we have the following results. First we give the drift condition for x ∈ A:

Proposition 8. Cases 1-3: There is some constant K(M) <∞ such that ExV (X1) ≤ K(M)
for all x ∈ A.

Then we give the drift condition for x /∈ A, handling the cases x < −M and x > M separately:

Proposition 9. Cases 2-3: There is some constant K2 <∞ such that ExV (X1) ≤ |θ|V (x)+
K2 for all x < −M .
Case 1: For any ε ∈ (0, 1) there is some constant K2 < ∞ such that for M large enough,
ExV (X1) ≤ (|ρ|+ ε)V (x) +K2 for all x < −M .

Proposition 10. Cases 1-2: For any ε ∈ (0, 1) there is some constant K3 < ∞ such that
for M large enough, ExV (X1) ≤ (|ρ|+ ε)V (x) +K3 for all x > M .
Case 3: There is some constant K3 <∞ such that ExV (X1) ≤ |θ|V (x) +K3 for all x > M .

Propositions 8-10 are proven in Appendices A.6-A.11. Propositions 9 and 10 give the overall
drift condition for x 6∈ A as follows. Consider Case 2; the other two cases are analogous. Take
ε = (1−|ρ|)/2, define η = max{|θ|, |ρ|+ε} < 1, and choose M large enough to satisfy Prop. 10.
Then for any x 6∈ A we have

ExV (X1) ≤ ηV (x) + max{K2,K3}

≤ η + 1
2

V (x)

for M large enough, establishing geometric ergodicity (although the range of V is [0,∞), we
can easily replace V with Ṽ (x) = |x|+ 1 to get the range [1,∞)).
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These results have the following intuition for Case 2: Prop. 9 shows that for very negative
Xn−1, |θ| controls the rate of drift, while Prop. 10 shows that for large positive Xn−1, |ρ|
controls the rate of drift. The former result is due to the fact that for very negative values of
Xn−1 the autoregressive term in (13) is a constant, ρ(g(c) − γ), so the moving-average term
dominates. The latter result is due to the fact that for large positive Xn−1, the distribution
of Y (σ)

n−1 concentrates around µ
(σ)
n−1, so that the moving-average term θ[g(Y (σ)∗

n−1 ) − g(µ(σ)
n−1)] in

(13) is negligible and the autoregressive term dominates.
For a perturbed version of the GARMA model with multiple lags (11), it may be possible to

show geometric ergodicity of the multivariate Markov chain with state vector µ(σ)
(n−max{p,q}+1):n.

Again this could be done by finding a small set and energy function such that a drift condition
holds, subject to appropriate restrictions on the parameters (ρ1, . . . , ρp) and (θ1, . . . , θq).

5 Stationarity of the Original Model

In this section we will show existence and uniqueness of the stationary distribution for the
original (unperturbed) Poisson threshold model and class of GARMA models. These results
potentially form the foundation for broadly showing consistency and asymptotic normality of
maximum likelihood estimators in these models.

5.1 The Poisson Threshold Model

We will illustrate the use of Feller properties to show that a discrete-valued time series model
has a unique stationary distribution. For the Poisson threshold model (9) we first show exis-
tence of a stationary distribution.

Lemma 11. The Markov chain {µn}n∈N defined by (9) has a stationary distribution, under
the restriction (α + β + γ + η) < 1 and recalling that ω, α, β > 0, (α + γ) > 0, (β + η) > 0,
η ≤ 0, and γ ≥ 0.

Proof. We use Theorem 2. The space S = [ w
1−β−η ,∞) is a locally compact complete separable

metric space with Borel σ-field. Let Y0(x) and µ1(x) denote the random variables Y0 and µ1

conditioned on µ0 = x. Since Y0(x) = Pois(x) we have that Y0(x) converges in distribution to
Y0(y) as x → y for any y ∈ S. Therefore µ1(x) converges in distribution to µ1(y) as x → y,
proving that the chain {µn}n∈N is weak Feller. The set A defined in Section 3 is compact, and
a drift condition for this set is shown in that Section (the proof of the drift condition is valid
in the case σ = 0). By Theorem 2 the chain {µn}n∈N has a stationary distribution.

Next we show uniqueness of the stationary distribution.

Lemma 12. The chain {µn}n∈N defined by (9) has at most one stationary distribution, pro-
vided that β < 1 and recalling that ω, α, β > 0, (α+ γ) > 0, (β + η) > 0, η ≤ 0, and γ ≥ 0.

Proof. The space S is a Polish space. The point x = w
1−β−η is reachable, shown as follows. For

any initial state µ0 = y and any m the probability that Yn = 0 for all n = 0, . . . ,m is strictly
positive. So for any open set A containing x we can choose m large enough that µm ∈ A with
positive probability; therefore x is reachable.

The process {µn}n∈N is asymptotically strong Feller; the proof is given in Appendix A.5,
under the condition β < 1. Theorem 3 then implies that the process {µn} has at most one
stationary distribution.
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Putting together Lemmas 11 and 12 we find that:

Corollary 13. The mean process {µn}n∈N of the Poisson threshold model defined by (9) has
a unique stationary distribution π, under the restrictions (α+ β + γ + η) < 1 and β < 1, and
recalling that ω, α, β > 0, (α + γ) > 0, (β + η) > 0, η ≤ 0, and γ ≥ 0. When µ0 is initialized
according to π the Poisson threshold model {Yn}n∈N is strictly stationary.

Notice that stationarity holds for both the mean process {µn}n∈N and the observed process
{Yn}n∈N, while uniqueness of the stationary solution has been shown for just the mean process
{µn}n∈N. Feller properties cannot be directly applied to the observed process {Yn}n∈N to show
uniqueness of its stationary solution, since that process is non-Markovian. Additionally, it is
not immediately clear that the uniqueness property for a mean process {µn}n∈N is inherited
by the observed process. We leave this question for future work.

5.2 The GARMA Model

First we show existence of a stationary distribution for the GARMA model (10) by using the
weak Feller property. Let Y0(x) denote the random variable Y0 conditioned on µ0 = x.

Theorem 14. The process {µn}n∈N specified by the GARMA model (10) has a stationary
distribution, and thus is stationary for an appropriate initial distribution for µ0, under the
conditions below. This implies that the GARMA model {Yn}n∈N is stationary when µ0 is
initialized appropriately. The conditions are:

• Y0(x) ⇒ Y0(y) as x→ y

• E(Yn|µn) = µn

• (2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative constants
d1, d2 such that

E
[
|Yn − µn|2+δ

∣∣∣µn

]
≤ d1|µn|r + d2.

• g is bijective, increasing, and

Case 1: g : R 7→ R is concave on R+ and convex on R−, and |ρ| < 1
Case 2: g : R+ 7→ R is concave on R+, and |ρ|, |θ| < 1
Case 3: |θ| < 1; no additional conditions on g : (0, a) 7→ R.

Proof. We apply Theorem 2 to the chain {g(µn)}n∈N to show that it has a stationary distribu-
tion; this implies the same result for the chain {µn}n∈N. The state space S = R of {g(µn)}n∈N
is a locally compact complete separable metric space with Borel σ-field. A drift condition for
{g(µn)}n∈N is given in the proof of Theorem 5, for the compact set A = [−M,M ] (the proof of
that drift condition holds when σ = 0). All that remains is to show that the chain {g(µn)}n∈N
is weak Feller. Let Xn = g(µn). For X0 = x we have that

X1(x) = γ + ρ(g(Y ∗
0 (g−1(x)))− γ) + θ(g(Y ∗

0 (g−1(x)))− x).

Since g−1 is continuous, Y0(g−1(x)) ⇒ Y0(g−1(y)) as x→ y. Since the ∗ operation that maps
Y0 to the domain of g is continuous, it follows that Y ∗

0 (g−1(x)) ⇒ Y ∗
0 (g−1(y)) as x→ y. Since

g is continuous, we have that g(Y ∗
0 (g−1(x))) ⇒ g(Y ∗

0 (g−1(y))). So X1(x) ⇒ X1(y) as x → y,
showing the weak Feller property.
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Next we show uniqueness of the stationary distribution, using the asymptotic strong Feller
property. We will assume that the distribution πz(·) of g(Y ∗

n ) conditional on g(µn) = z varies
smoothly and not too quickly as a function of z. By this we mean that πz(·) has the Lipschitz
property

sup
w,z∈R:w 6=z

‖πw(·)− πz(·)‖TV

|w − z|
< B <∞. (15)

Theorem 15. Suppose that the conditions of Thm. 14 and the Lipschitz condition (15) hold,
and that there is some x ∈ R that is in the support of Y0 for all values of µ0. Then there is a
unique stationary distribution for {µn}n∈N.

This result is proven in Appendix A.3.
The following two results give two classes of examples where Theorem 15 may be applied.

The proofs of these results may be found in Appendix A.4.

Proposition 16. Suppose that conditional on µn, Yn is Poisson(µn), the link function g :
R+ → R is bijective, concave and increasing, g−1 is Lipschitz, |ρ|, |θ| < 1 and c ∈ (0, 1). Then
the process {µn}n∈N defined in (10) has a unique stationary distribution π. Hence, when µ0 is
initialized according to π, the process {Yn}n∈N is strictly stationary.

The condition that g−1 be Lipschitz is equivalent to requiring that for y > x, g(y) − g(x) ≥
ζ(y−x) for some ζ > 0, and this condition in turn is equivalent to requiring that g′ be bounded
away from zero when g is differentiable. The link function (12) satisfies this condition, while
the log link does not.

We suspect that the Lipschitz condition in Theorem 15 can be weakened to a local Lipschitz
condition, based on the fact that local Lipschitz is equivalent to Lipschitz on a compact space,
and the fact that although the state space of g(µn) is not compact, we have a drift condition
for the process {g(µn)}n∈N which (informally) ensures that the chain stays in a limited part
of the space. With the weaker local Lipschitz condition, Proposition 16 could be extended to
link functions like the log link.

Proposition 17. Suppose that conditional on µn, Yn is binomial with fixed number of trials
a and mean µn, the link function g : (0, a) → R is bijective and increasing, g−1 is Lipschitz,
|θ| < 1 and c ∈ (0, 1). Then the process {µn}n∈N defined in (10) has a unique stationary
distribution π. Hence, when µ0 is initialized according to π, the process {Yn}n∈N is strictly
stationary.

The restrictions on g are satisfied, for instance, by the logit and probit link functions.

A Appendix: Proofs

A.1 Proof of Theorem 3

We will show that if a point x is reachable, then x is in the support of any invariant distribution.
Combined with Corollary 3.17 of Hairer and Mattingly (2006) this gives the desired result.

Let x be reachable and let π be an invariant probability measure. We will show that x is
in the support of π by showing that π(A) > 0 for all open sets A containing x (see Lemma 3.7
of Hairer and Mattingly 2006). To begin, let A be an arbitrary open set containing x. Let Bn
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be the set of initial states y ∈ S that have positive probability of hitting A on the nth step,
i.e., Bn = {y : Tn(y,A) > 0}.

Since x is reachable, the countable union of {Bn : n ≥ 1} contains S. Since π(S) = 1, it
follows that the π measure of at least one Bn is strictly positive. Fix n ≥ 1 such that this is
the case. Then

π(A) =
∫

S
π(dy)Tn(y,A) ≥

∫
Bn

π(dy)Tn(y,A) > 0.

The fact that this quantity is strictly positive follows using a standard argument as follows.
First, we can write Bn as the countable union of the increasing sets Ck, k ≥ 1, where

Ck = {y : Tn(y,A) ≥ 1/k}.

So then π(Bn) = limk→∞ π(Ck). Fix k > 0 such that π(Ck) > 0. Then∫
Bn

π(dy)Tn(y,A) ≥
∫

Ck

π(dy)Tn(y,A) ≥
∫

Ck

π(dy)
1
k

=
π(Ck)
k

> 0.

A.2 Proof of Theorem 4

Fixing y0:n and letting Z = Z0:n−1 be the perturbations,

sup
η∈K

|Lσ(η)− L(η)| = sup
η∈K

∣∣∣∣∣E
n∏

k=0

ψν(yk;µk(σZ))−
n∏

k=0

ψν(yk;µk(0))

∣∣∣∣∣
where the expectation is taken over Z, the data being fixed. Then we have

sup
η∈K

|Lσ(η)− L(η)| ≤ sup
η∈K

E

∣∣∣∣∣
n∏

k=0

ψν(yk;µk(σZ))−
n∏

k=0

ψν(yk;µk(0))

∣∣∣∣∣
≤E sup

η∈K

∣∣∣∣∣
n∏

k=0

ψν(yk;µk(σZ))−
n∏

k=0

ψν(yk;µk(0))

∣∣∣∣∣
=E sup

η∈K

∣∣∣∣∣
n∏

k=0

βk(σZ)−
n∏

k=0

βk(0)

∣∣∣∣∣ (16)

where βk(·) = ψν(yk;µk(·)). We will show that the supremum inside the expectation in (16)
converges to 0 almost surely (in Z) as σ → 0; then bounded convergence implies that the
expectation (16) itself converges to 0 as σ → 0, proving Thm. 4.

By assumption the function ψν(y;µ) is Lipschitz continuous in µ, and µk(·) is Lipschitz
continuous in some bounded neighborhood C of 0, uniformly in η ∈ K. In other words, there
exists a finite constant Lk such that, for any z, z′ ∈ C,

sup
η∈K

|µk(z)− µk(z′)| ≤ Lk‖z − z′‖

for each k = 0, 1, . . . , n. Thus, the composition βk(·) = ψν(yk, µk(·)) is Lipschitz continuous
on C, uniformly in η ∈ K, for each k = 0, 1, . . . , n.
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Finally, we apply the usual telescoping-sum argument to conclude that the function
∏n

k=0 βk(·)
is Lipschitz in z ∈ C, uniformly in η ∈ K. For any z, z′ ∈ C,∣∣∣∣∣

n∏
k=0

βk(z)−
n∏

k=0

βk(z′)

∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
k=0

n−k∏
i=0

βi(z)
n∏

j=n−k+1

βj(z′)−
n−k−1∏

i=0

βi(z)
n∏

j=n−k

βj(z′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

k=0

(βn−k(z)− βn−k(z′))
n−k−1∏

i=0

βi(z)
n∏

j=n−k+1

βj(z′)

∣∣∣∣∣∣
≤

n∑
k=0

 ∏
j 6=n−k

sup
µ
ψν(yj ;µ)

 |βn−k(z)− βn−k(z′)|.

By regularity condition (a),

[ ∏
j 6=n−k

supµ ψν(yj ;µ)

]
is bounded uniformly in η ∈ K for each k.

The fact that βk(·) is Lipschitz uniformly in η ∈ K for each k = 0, 1, . . . , n then ensures that∏n
k=0 βk(·) is Lipschitz on C, uniformly in η ∈ K as desired.

A.3 Proof of Theorem 15

Let Zn = g(µn) for all n ≥ 0. We will show that the Markov chain {Zn}n∈N is asymptotically
strong Feller, and that there is a reachable point for {Zn}n∈N. Combined with Theorem 3
and the fact that R is Polish this shows that the chain {Zn} can have at most one stationary
distribution. Since g is bijective, this implies that the Markov chain {µn}n∈N can have at most
one stationary distribution. Combined with Theorem 14 this gives the desired result.

First we show the existence of a reachable point for {Zn}n∈N. Since there is some point
x ∈ R that is in the support of Yn for all values of µn, the point g(x∗) is in the support of
g(Y ∗

n ) for all values of µn (since the transformations ∗ and g are continuous and monotonic).
So for every open set B 3 g(x∗) we have Pr(g(Y ∗

n ) ∈ B | µn) > 0 for all µn. Furthermore,
Pr(g(Y ∗

j ) ∈ B ∀j = 1, . . . , n | µ0) > 0.
We can rewrite the definition of g(µn) given in (10) as

g(µn) = γ(1− ρ)
n−1∑
j=0

(−θ)j + (ρ+ θ)
n−1∑
j=0

(−θ)jg(Y ∗
n−1−j) + (−θ)ng(µ0).

We will show that z = [γ(1−ρ)+(ρ+ θ)g(x∗)]/(1+ θ) is a reachable point, using the fact that∑n−1
j=0 (−θ)j n→∞−→ 1/(1 + θ). Take any open set A 3 z, and any initial value µ0; we will show

that ∃n such that Pr(g(µn) ∈ A | µ0) > 0. Letting B(z, ε) indicate the open ball of radius
ε > 0 centered at z, there is some ε such that B(z, ε) ⊂ A. Then for some δ > 0 we have that
for all w ∈ B(g(x∗), δ),

[γ(1− ρ) + (ρ+ θ)w]/(1 + θ) ∈ B(z, ε/2).

Choose n large enough that for all w ∈ B(g(x∗), δ) we have

[γ(1− ρ) + (ρ+ θ)w]
n−1∑
j=0

(−θ)j + (−θ)ng(µ0) ∈ B(z, ε) ⊂ A.
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Since Pr
[
g(Y ∗

j ) ∈ B(g(x∗), δ) ∀j = 1, . . . , n − 1 | µ0

]
> 0, we have Pr(g(µn) ∈ A | µ0) > 0 as

desired.
To show that {Zn}n∈N is asymptotically strong Feller we will use the sequence of metrics

dn defined by

dn(x, y) =

{
n|x− y| |x− y| < 1/n
1 else.

(17)

By Example 3.2 (1) in Hairer and Mattingly (2006) this is a totally separating system of
metrics. We will also define tn = n.

An interesting property of the distance metric (6) is that if we take d(x, y) = 1{x 6=y} then
we get the total variation distance between the probability measures µ1, µ2. This is because
in this case taking the supremum over {φ : Lipdφ = 1} is equivalent to taking the supremum
over {φ : φ(x) ∈ [0, 1] ∀x ∈ R}. An analogous result is true for our choice of distance dn,
that when taking the supremum over {φ : Lipdn

φ = 1} it is sufficient to consider φ such that
φ(x) ∈ [0, 1] ∀x ∈ R and Lipdn

φ = 1.
Let Yn(z) and Zn(z) indicate the random variables Yn and Zn conditioned on Z0 = z. By

(15) we have ‖πz(·)− πw(·)‖TV < B|z −w|. Using Proposition 3(g) of Roberts and Rosenthal
(2004) we can construct the random variables g(Y ∗

0 (z)) and g(Y ∗
0 (w)) in such a way that

they have the correct marginal distributions πz and πw, and that Pr(g(Y ∗
0 (w)) = g(Y ∗

0 (z))) ≥
1− ‖πw(·)− πz(·)‖TV > 1−B|z − w|.

If g(Y ∗
0 (w)) = g(Y ∗

0 (z)) then |Z1(w)−Z1(z)| = |θ||z−w|, and so ‖πZ1(z)(·)−πZ1(w)(·)‖TV <
|θ||z − w|B. Then we can construct g(Y ∗

1 (z)) and g(Y ∗
1 (w)) so that they have the correct

marginal distributions, and that Pr(g(Y ∗
1 (z)) = g(Y ∗

1 (w)) | g(Y ∗
0 (w)) = g(Y ∗

0 (z))) ≥ 1 −
‖πZ1(z)(·) − πZ1(w)(·)‖TV > 1 − |θ||z − w|B. If g(Y ∗

1 (z)) = g(Y ∗
1 (w)) then we can continue to

“couple” the chains in the above way. Notice that the probability that the chains couple for
all times 0, 1, . . . is at least 1−B|z − w|

∑∞
n=0 |θ|n = 1− |z−w|B

1−|θ| .
Consider the distance ‖Tn(z, ·)−Tn(w, ·)‖dn ; we will bound this by conditioning on whether

or not the chains couple for all time. If they couple for all time, then |Zn(z) − Zn(w)| =
|θ|n|z−w|. Due to this fact and the fact that it is sufficient to consider φ such that φ(x) ∈ [0, 1]
for all x ∈ R,

‖T tn(z, ·)− T tn(w, ·)‖dn

= ‖Tn(z, ·)− Tn(w, ·)‖dn

= sup
Lipdnφ=1

(∫
φ(x)Tn(z, dx)−

∫
φ(x)Tn(w, dx)

)
= sup

Lipdnφ=1
(E[φ(Zn(z))]− E[φ(Zn(w))])

= sup
Lipdnφ=1

E[φ(Zn(z))− φ(Zn(w))]

≤ sup
Lipdnφ=1

E
[
φ(Zn(z))− φ(Zn(w))

∣∣ g(Y ∗
0:n(z)) = g(Y ∗

0:n(w))
]
+

sup
Lipdnφ=1

E
[
φ(Zn(z))− φ(Zn(w))

∣∣ g(Y ∗
0:n(z)) 6= g(Y ∗

0:n(w))
]
× Pr

[
g(Y ∗

0:n(z)) 6= g(Y ∗
0:n(w))

]
≤ n|θ|n|z − w|+ Pr

[
g(Y ∗

0:n(z)) 6= g(Y ∗
0:n(w))

]
≤ n|θ|n|z − w|+ |z − w|B

1− |θ|
.
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So

lim sup
n→∞

sup
y∈B(x,γ)

‖T tn(x, ·)− T tn(y, ·)‖dn ≤
γB

1− |θ|

which converges to 0 as γ → 0. Therefore the process {Zn}n∈N is asymptotically strong Feller.

A.4 Proof of Propositions 16 and 17

In view of Corollary 6 it suffices to verify the two conditions stated in Theorem 15 to prove
Proposition 16.

Zero is in the support of Y0 for all values of µ0. To establish the Lipschitz condition (15),
we use coupling theory as follows. Let Yn(z) denote Yn conditional on g(µn) = z. Suppose
that z and w are two values of g(µn). Then the total variation distance between g(Y ∗

n (z)) and
g(Y ∗

n (w)) is

dTV (g(Y ∗
n (z)), g(Y ∗

n (w))) = sup
A
|P (g(Y ∗

n (z)) ∈ A)− P (g(Y ∗
n (w)) ∈ A)|

= sup
A
|P (Y ∗

n (z) ∈ A)− P (Y ∗
n (w) ∈ A)|

= sup
A
|P (Yn(z) ∈ A)− P (Yn(w) ∈ A)|

= dTV (Yn(z), Yn(w)),

since g is invertible, and we can recover Yn from Y ∗
n since c ∈ (0, 1).

The coupling inequality, e.g., Thorisson (1995), ensures that

dTV (X,Y ) ≤ P (X ′ 6= Y ′)

for any random variables X ′ and Y ′ such that X ′ D=X and Y ′ D=Y , where D= means “has the
same distribution as.” The key point is that the joint distribution of X ′ and Y ′ is arbitrary.
We choose X ′ and Y ′ in such a way that we can bound P (X ′ 6= Y ′) and therefore obtain a
bound on the total-variation distance between X and Y . When this bound is Lipschitz, we
then have the desired property.

So, suppose z > w. Let Yn(w) be Poisson distributed with mean g−1(w). Let ξ be a Poisson
random variable, independent of Yn(w), with mean g−1(z)−g−1(w), and set Yn(z) = Yn(w)+ξ.
Then

P (Yn(z) 6= Yn(w)) = P (ξ > 0)

= 1− exp(−[g−1(z)− g−1(w)]). (18)

Let ζ be the Lipschitz constant for g−1. Then (18) is bounded above by

1− exp(−ζ(z − w))

which is Lipschitz, with Lipschitz constant ζ, and this completes the proof of Proposition 16.
The proof of Proposition 17 follows exactly the same lines as Proposition 16 except for

the coupling used. To this end, suppose that z > w and let Yn(z) be binomially distributed
with parameters a (number of trials) and g−1(z)/a (probability of success). Let Yn(w) be
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conditionally binomially distributed with parameters Yn(z) and g−1(w)/g−1(z), conditional
on Yn(w). Then Yn(w) is (marginally) binomially distributed with mean g−1(w), and

P (Yn(z) 6= Yn(w)) = E

(
1−

(
g−1(w)
g−1(z)

)Yn(z)
)
.

The moment generating function of a binomial random variable X ∼ Bin(a, p) with a trials
and probability p of success is E(etX) = (pet + 1− p)a. Taking et = g−1(w)/g−1(z) gives

P (Yn(z) 6= Yn(w)) = 1−
(

1− g−1(z)− g−1(w)
a

)a

≤ 1−
(

1−min
{
ζ(z − w)

a
, 1
})a

= 1−
(

max
{

1− ζ(z − w)
a

, 0
})a

. (19)

Now, the function (1− ζ(z − w)/a)a is Lipschitz for z ∈ [w,w + a/ζ] as can be seen since the
absolute value of its derivative is bounded (by ζ), and this implies that (19) is Lipschitz. This
completes the proof of Proposition 17.

A.5 Proof that Model (9) is Asymptotically Strong Feller

The proof is nearly identical to that for the GARMA model given in Appendix A.3. However,
it requires that 1 > max{β + η, β} = β. The necessary Lipschitz property referred to in that
proof holds for the Poisson threshold model (9) since this model uses the identity link function.

To give more detail, let Zn = µn and let πz(·) be the distribution of Yn conditional on
Zn = z, i.e. πz = Pois(z). The proof of Prop. 16 then implies that the Lipschitz condition (15)
holds. As in Appendix A.3, use the system of metrics dn defined in (17) and define tn = n.
Let Yn(z) and µn(z) indicate the random variables Yn and µn conditioned on µ0 = z. We have
‖πz(·)−πw(·)‖TV < B|z−w|. So we can construct Y0(z) and Y0(w) in such a way that they have
the correct marginal distributions πz and πw, and Pr(Y0(z) = Y0(w)) ≥ 1−‖πz(·)−πw(·)‖TV >
1−B|z − w|. If Y0(z) = Y0(w) then

|µ1(w)− µ1(z)| =

{
β|w − z| Y0 ∈ (L,U)
(β + η)|w − z| else

≤ β|w − z|.

This implies that ‖πµ1(w)(·) − πµ1(z)(·)‖TV < Bβ|w − z|. If β < 1, the probability that the
chains “couple” in this way for all time is at least 1− B|w−z|

1−β . The rest of the argument from
Sec A.3 holds unchanged.

A.6 Proof of Proposition 8, Case 1

For readability we make the dependence of Y (σ)
0 on σ implicit. Recall that µ = g−1(x), and

assume WLOG that g(0) = 0, since replacing g(y) with h(y) = g(y)− g(0) simply changes the
value of γ. Due to the fact that g is concave on R+ and convex on R−, there are constants
a0, a1 ≥ 0 such that |g(y)| ≤ a0 + a1|y| for all y. Using these facts, equation (13), and
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the triangle inequality, we can bound ExV (X1) as follows, where di denote bounded (in µ)
constants for each i ≥ 3:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y0) + θ(g(Y0)− x) + σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ|Ex|g(Y0)|+ |θ|Ex|g(Y0)− x| (20)
≤ d3 + (|ρ|+ |θ|)a1Ex|Y0|+ |θ||x|.

By the triangle and Jensen’s inequalities,

Ex|Y0| = Ex|µ+ Y0 − µ|
≤ |µ|+ Ex|Y0 − µ|

≤ |µ|+
[
Ex|Y0 − µ|2+δ

]1/(2+δ)

≤ |µ|+ (d1|µ|r + d2)1/(2+δ). (21)

So supx∈[−M,M ]ExV (X1) <∞, proving Prop. 8.

A.7 Proof of Propositions 9 and 10, Case 1

We will prove Prop. 10 for Case 1; Prop. 9 for Case 1 then holds by symmetry. We will show
that for large x, the autoregressive part of the GARMA model dominates and the moving-
average portion of the model is negligible. In the bound (20), the autoregressive part of the
model is captured by |ρ|Ex|g(Y0)|, while the moving-average part corresponds to the term
|θ|Ex|g(Y0)− x|. Since g(0) = 0 and g is monotonic increasing, for all x large enough

Ex|g(Y0)| = Ex[g(Y0)1Y0>0]− Ex[g(Y0)1Y0<0]
= Exg(Y01Y0>0)− Exg(Y01Y0<0)
≤ g(Ex[Y01Y0>0])− g(Ex[Y01Y0<0])
= g(ExY0 − Ex[Y01Y0<0])− g(Ex[Y01Y0<0]) (22)

by Jensen’s inequality. Now, µ = g−1(x) > 0 for x > 0, so using (14)

−Ex[Y01Y0<0] =
∫ ∞

0
Px(Y0 < −u) du

≤
∫ ∞

0
Px(|Y0 − µ| > u+ µ) du

≤
∫ ∞

0

d1µ
r + d2

(u+ µ)2+δ
du

=
d1µ

r + d2

(1 + δ)µ1+δ
→ 0 (23)

as x→∞. Thus, from (22), for any given ε > 0, there exists M > 0 so that for x > M ,

Ex|g(Y0)| ≤ g(ExY0 + ε) + ε ≤ g(ExY0) + g(ε) + ε = x+ d4 (24)

where the second inequality is due to concavity of g on R+.
Next we show that the term Ex|g(Y0) − x| in (20) is “small” relative to the linear (in x)

term:
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Proposition 18. There is some constant d13 such that

Ex|g(Y0)− x| ≤ d13x
r/(2+δ)

for all x large enough.

Prop. 18 is proven in Appendix A.11. Combining it with (20) and (24), we have that for all x
large enough,

ExV (X1) ≤ d14 + |ρ|x+ |θ|d13x
r/(2+δ)

≤ d14 + (|ρ|+ ε)x

proving Prop. 10.

A.8 Proof of Proposition 8 and Proposition 9, Case 2

Assume WLOG that g(c) = 0, since replacing g(y) with h(y) = g(y)− g(c) simply changes the
value of γ. Since g(c) = 0, g(Y ∗

0 ) ≥ 0 is nonnegative for any Y ∗
0 . Also, due to the concavity of

g, there is some a1 > 0 such that g(y) ≤ a1y for all y ∈ R+. Using these facts, equation (13),
and the triangle inequality, we can bound ExV (X1) as follows:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y ∗
0 ) + θ(g(Y ∗

0 )− x) + σZ0|
≤ (1− ρ)|γ|+

√
2σ2/π + |ρ|Ex[g(Y ∗

0 )] + |θ|Ex|g(Y ∗
0 )− x| (25)

= d15 + |ρ|Px(Y0 < c)g(c) + |ρ|Ex[g(Y0)1Y0≥c] +
|θ|Px(Y0 < c)|g(c)− x|+ |θ|Ex[|g(Y0)− x|1Y0≥c]

≤ d15 + (|ρ|+ |θ|)Ex[g(Y0)1Y0≥c] +
|θ|Px(Y0 < c)|g(c)− x|+ |θ|Px(Y0 ≥ c)|x|

≤ d15 + (|ρ|+ |θ|)a1Ex[Y01Y0≥c] + |θ||x|

In the same way that we obtained (21) for Case 1, we have the following bound for Case 2:

Ex[Y01Y0≥c] ≤ Ex|Y0| ≤ µ+ (d1µ
r + d2)1/(2+δ)

≤ d16 + d17µ
r/(2+δ)

where µ = g−1(x), implying that

ExV (X1) ≤ d18 + d19µ+ |θ| |x|.

This is sufficient to get a uniform bound on ExV (X1) for x ∈ [−M,M ], proving Prop. 8. It also
proves Prop. 9 by showing that for x < −M , ExV (X1) ≤ d20+|θ| |x|, since µ = g−1(x) ≤ g−1(0)
on this set.

A.9 Proof of Proposition 10, Case 2

Using Jensen’s inequality and the fact that Px(Y0 < c) x→∞−→ 0, for all x large enough

Ex[g(Y ∗
0 )] ≤ g(ExY

∗
0 ) = g(Ex[Y01Y0≥c] + cPx(Y0 < c))

= g(Ex[Y0]− Ex[Y01Y0<c] + cPx(Y0 < c)).
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Using a similar argument to (23) above, we see that the last two terms in the argument of g
converge to 0 as x→∞. Hence, for any ε > 0 we can find M > 0 so that, for all x > M ,

Ex[g(Y ∗
0 )] ≤ g(g−1(x) + ε) ≤ x+ d21ε,

where d21 is the slope of a subgradient of g at g−1(M).
Combining this with (25), there exists M > 0 such that for x > M ,

ExV (X1) ≤ d22 + |ρ|V (x) + |θ|Ex|g(Y ∗
0 )− x|.

It remains to show that the final term in this expression is small relative to the linear (in V (x))
term as x→∞. This follows in almost identical fashion to the proof of this result in Case 1.
We omit the details.

A.10 Proof of Propositions 8-10, Case 3

Assume WLOG that g(c) = 0. Since g(Y ∗
0 ) ∈ [g(c), g(a− c)],

ExV (X1) = Ex|(1− ρ)γ + (ρ+ θ)g(Y ∗
0 )− θx+ σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ+ θ|Ex |g(Y ∗
0 )|+ |θ||x|

≤ d23 + |ρ+ θ| g(a− c) + |θ||x|.

Propositions 8, 9, and 10 follow immediately.

A.11 Proof of Proposition 18

By (23),

Ex|g(Y0)− x| = Ex|g(Y01Y0>0)− x+ g(Y01Y0<0)|
≤ Ex|g(Y01Y0>0)− x|+ Ex|g(Y01Y0<0)|
≤ Ex|g(Y01Y0>0)− x|+ a0 + a1Ex[|Y0|1Y0<0]
≤ Ex|g(Y01Y0>0)− x|+ d5

for x > M .
Using (14), for any fixed ε ∈ (0, 1) and x > M ,

Ex

[
|g(Y01Y0>0)− x|1Y0≤(1−ε)µ

]
(26)

≤ xPx(Y0 ≤ (1− ε)µ)
≤ xPx(|Y0 − µ| > εµ)

≤ x(d1µ
r + d2)

ε2+δµ2+δ

≤ d6x

µ2+δ−r
.

Recall that for y ≥ 0, a0 + a1y ≥ g(y), so that a0 + a1g
−1(y) ≥ y. Hence µ = g−1(x) ≥

(x− a0)/a1. So (26) is bounded by

d7x

(x− a0)2+δ−r
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which converges to 0 as x→∞ and is therefore bounded by d8 say for x > M . It only remains
to show that

Ex|g(Y01{Y0>0})− x|1{Y0>(1−ε)µ} = Ex|g(Y0)− x|1{Y0>(1−ε)µ}

is “small.”
Recall that g is concave on R+ and so has a subgradient at (1 − ε)µ, i.e. there exist

b0(x), b1(x) such that g(y) ≤ b0(x)+ b1(x)y for y > 0, with equality at y = (1− ε)µ. The slope
of the chord from (0, 0) to ((1− ε)µ, g((1− ε)µ)) is greater than or equal to b1(x), so

b1(x)(1− ε)µ ≤ g((1− ε)µ) ≤ g(µ) = x. (27)

Furthermore, g is concave so b1(x) is bounded for x > M . We now have

Ex|g(Y0)− x|1{Y0>(1−ε)µ} ≤ b1(x)Ex|Y0 − µ|1{Y0>(1−ε)µ}

≤ b1(x)Ex|Y0 − µ|

≤ b1(x)
[
Ex|Y0 − µ|2+δ

]1/(2+δ)
(Jensen)

≤ b1(x)(d1µ
r + d2)1/(2+δ)

≤ b1(x)(d9µ
r/(2+δ) + d10) (triangle inequality)

= d9b1(x)µr/(2+δ) + d10b1(x)

≤ d9xµ
r/(2+δ)

(1− ε)µ
+ d11 (from (27))

≤ d12xµ
−(1−r/(2+δ))

≤ d12x

(
x− a0

a1

)−(1−r/(2+δ))

≤ d13x
r/(2+δ).

proving the result.

References

Benjamin, M. A., Rigby, R. A., and Stasinopoulos, D. M. (2003), “Generalized autoregressive
moving average models,” Journal of the American Statistical Association, 98, 214–223.

Billingsley, P. (1995), Probability and Measure, 3rd edn, New York: Wiley.

Bougerol, P., and Picard, N. (1992), “Strict stationarity of generalized autoregressive pro-
cesses,” Annals of Probability, 20, 1714–1730.

Brockwell, P. J., and Davis, R. A. (1991), Time Series: Theory and Methods, 2nd edn, New
York: Springer-Verlag.

Chan, K. S., and Ledolter, J. (1995), “Monte Carlo EM estimation for time series models
involving counts,” Journal of the American Statistical Association, 90, 242–252.

Cox, D. R. (1981), “Statistical analysis of time series: Some recent developments,” Scandina-
vian Journal of Statistics, 8, 93–115.

24



Davis, R. A., Dunsmuir, W. T. M., and Streett, S. B. (2003), “Observation-driven models for
Poisson counts,” Biometrika, 90, 777–790.

Durbin, J., and Koopman, S. J. (2000), “Time series analysis of non-Gaussian observations
based on state space models from both classical and Bayesian perspectives,” Journal of the
Royal Stastistical Society, Series B, 62, 3–56.

Ferland, R., Latour, A., and Oraichi, D. (2006), “Integer-valued GARCH process,” Journal of
Time Series Analysis, 27, 923–942.

Fokianos, K., Rahbek, A., and Tjostheim, D. (2009), “Poisson autoregression,” Journal of the
American Statistical Association, 104, 1430–1439.

Fokianos, K., and Tjostheim, D. (2010), Nonlinear Poisson autoregression,. Submitted; avail-
able on request from K. Fokianos, http://www2.ucy.ac.cy/˜fokianos.

Fokianos, K., and Tjostheim, D. (2011), “Log-linear Poisson autoregression,” Journal of Mul-
tivariate Analysis, 102, 563–578.

Hairer, M. (2008), “Ergodic theory for infinite-dimensional stochastic processes,” Oberwolfach
Reports, 5(4), 2815–2874.

Hairer, M., and Mattingly, J. C. (2006), “Ergodicity of the 2D Navier-Stokes equations with
degenerate stochastic forcing,” Annals of Mathematics, 164, 993–1032.

Jung, R. C., Kukuk, M., and Liesenfeld, R. (2006), “Time series of count data: Modeling,
estimation and diagnostics,” Computational Statistics and Data Analysis, 51, 2350–2364.
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