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Abstract Motivated by queueing systems playing a key role in the performance
evaluation of telecommunication networks, we analyze in this paper the station-
ary behavior of a fluid queue, when the instantaneous input rate is driven by a
continuous-time Markov chain with finite or infinite state space. In the case of an
infinite state space and for particular classes of Markov chains with a countable
state space, such as quasi birth and death processes or Markov chains of the G/M/1
type, we develop an algorithm to compute the stationary probability distribution
function of the buffer level in the fluid queue. This algorithm relies on simple
recurrence relations satisfied by key characteristics of an auxiliary queueing system
with normalized input rates.

Keywords fluid queues - Markov chains - uniformization - stationary regime -
numerical algorithm
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1 Introduction

In the performance evaluation of packet telecommunication networks, fluid flow
approximations prove very useful to analyze complex systems. Among fluid flow
models, fluid queues with Markov modulated input rates play a key role in the
recent developments of both queueing theory and performance evaluation of packet
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networks (see for instance Boxma and Dumas, 1998). The first studies of such
queueing systems can be dated back to the works by Kosten (1984) and Anick et
al. (1982), who analyzed in the early 1980’s fluid models in connection with statistical
multiplexing of several identical exponential on-off input sources in a buffer.

The above studies mainly focused on the analysis of the stationary regime and
have given rise to a series of theoretical developments. For instance, Mitra (1987)
and (1988) generalizes this model by considering multiple types of exponential on—
off inputs and outputs. Stern and Elwalid (1991) consider such models for separable
Markov modulated rate processes which lead to a solution of the equilibrium
equations expressed as a sum of terms in Kronecker product form. Igelnik et
al. (1995) derive a new approach, based on the use of interpolating polynomials,
for the computation of the buffer overflow probability. Using the Wiener—Hopf
factorization of finite Markov chains, Rogers (1994) shows that the distribution of
the buffer level has a matrix exponential form, and Rogers and Shi (1994) explore
algorithmic issues of that factorization. Ramaswami (1996) and da Silva Soares and
Latouche (2002) respectively exhibit and exploit the similarity between stationary
fluid queues in a finite Markovian environment and quasi birth and death processes.
Ahn and Ramaswami (2003) establish a direct connection by stochastic coupling
between fluid queues and quasi birth and death processes. Following the work of
Sericola (1998) and that of Nabli and Sericola (1996), Nabli (2004) obtained an
algorithm to compute the stationary distribution of a fluid queue driven by a finite
Markov chain.

Most of the above cited studies have been carried out for finite modulating
Markov chains. The analysis of a fluid queue driven by infinite state space Markov
chains has also been addressed in many research papers. For instance, when the
driving process is the M/M/1 queue, Virtamo and Norros (1994) solve the associated
infinite differential system by studying the continuous spectrum of a key matrix.
Adan and Resing (1996) consider the background process as an alternating renewal
process, corresponding to the successive idle and busy periods of the M/M/1 queue.
By renewal theory arguments, the fluid level distribution is given in terms of integral
of Bessel functions. They also obtain the expression of Virtamo and Norros via an
integral representation of Bessel functions. Barbot and Sericola (2002) obtain an
analytic expression for the joint stationary distribution of the buffer level and the
state of the M/M/1 queue. This expression is obtained by writing down the solution
in terms of a matrix exponential and then by using generating functions that are
explicitly inverted.

The Markov chain describing the number of customers in the M/M/1 queue is
a specific birth and death process. Queueing systems with more general modulating
infinite Markov chain have been studied by several authors. For instance, van Dorn
and Scheinhardt (1997) studied a fluid queue fed by an infinite general birth and
death process using spectral theory. In Sericola and Tuffin (1999), the authors
consider a fluid queue driven by a general Markovian queue with the hypothesis
that only one state has a negative drift. By using the differential system, the fluid
level distribution is obtained in terms of a series, which coefficients are computed
by means of recurrence relations. This study is extended to the finite buffer case in
Sericola (2001).

Besides the study of the stationary regime of fluid queues driven by finite or
infinite Markov chains, the transient analysis of such queues has been studied by
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using Laplace transform by Kobayashi and Ren (1992) and Ren and Kobayashi
(1995) for exponential on—off sources. These studies have been extended to the
Markov modulated input rate model by Tanaka et al. (1995). Sericola (1998) has
obtained a transient solution based on simple recurrence relations, which are particu-
larly interesting for their numerical properties. More recently, Ahn and Ramaswami
(2004) use an approach based on an approximation of the fluid model by the amounts
of work in a sequence of Markov modulated queues of the quasi birth and death type.
When the driving Markov chain has an infinite state space, the transient analysis is
more complicated. Sericola et al. (2005) consider the case of the M/M/1 queue by
using recurrence relations and Laplace transforms.

With respect to all above cited studies, the contribution of the present paper
is to propose to a general algorithm for computing the stationary distribution and
related characteristics of an infinite buffer fluid queue driven by a Markov chain
with a countable state space, while controlling the error made in the computations.
The only assumption underlying the proposed algorithm is that some associated
Markov chain can be uniformized. This means that the corresponding infinitesimal
generator must have a finite norm. This restrictive assumption is needed because
the solution we propose here is based on the uniformization technique (Ross, 1983).
By using simple recurrence relations, we obtain in the case of infinite state spaces
and for particular classes of countable Markov chains, such as quasi birth and death
processes or Markov chains of the G/M/1 type, algorithms to compute the stationary
distribution of the buffer level in the fluid queue. Clearly, the recurrence relations
can also be used to compute the stationary distribution of the buffer level in the fluid
queue, when the state space of the driving Markov chain is finite.

The paper is organized as follows. In Section 2, we present the model, the notation
and the system of partial differential equations satisfied by the joint probability
distribution function of the buffer level and of the state of the driving process.
Section 3 is devoted to the resolution of that system of partial differential equations;
the solution is obtained in terms of a series. We first construct an equivalent fluid
queue with unit net input rates, which allows us to obtain simpler recurrence relations
satisfied by the coefficient of the series. In Section 4, we give details of some
algorithmic aspects of the buffer level distribution computation for general driving
processes and we give, in Section 5, the precise algorithms for particular classes of
driving processes.

2 Model Description

We consider an infinite capacity fluid queue driven by a continuous-time Markov
chain {Z,, t > 0} on the countable state space S with infinitesimal generator A =
(a; ;). The Markov chain { Z,} is supposed to be stationary and ergodic. We denote by
B the output rate from state j given by 8; = —a; ; and by x its stationary probability
distribution that satisfies w A = 0. The stationary distribution = has been studied in
several papers for various special types of countable Markov chains such as birth
and death processes, quasi birth and death processes or Markov chains of the G/M/1
type. We refer the reader to Latouche and Ramaswami (1999), Meini (1998) and the
references therein for the main results on this subject.
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The fluid level in the queue at time ¢ is denoted by X, and the net input rate,
defined as the difference between the input and the service rate, of the fluid queue
at time ¢ is denoted by rz,. It is well-known, see for instance Tanaka (1995), that the
joint distribution F;(t, x) = P{Z; = j, X, < x} of the fluid level and of the state of the
Markov chain {Z,} at time ¢ satisfies the partial differential equation

I, x) | 8F (r x)
ot

= Z Fi(t, X)a; ). (1)

ieS

When X, = 0, the function F;(z, x) has, on top of its usual jump at point x = 0, a jump
at point x = r;t for ¢t > 0. This jump corresponds to the case, when the Markov chain
{Z,} starts and remains during the whole interval [0, #) in states having the same net
input rate and is carefully detailed in Sericola (1998).

We assume that the net input rates r; are such that E(rz,) < 0, that is, such that

Zl’jﬂ']‘ < 0, (2)
jes

which means that the queue is stable and that a stationary regime exists for the
system.

The stationary state of the Markov chain and of the fluid level are respectively
denoted by Z and X. The joint distribution F;(x) = P{Z = j, X < x} thus satisfies,
for every je Sand x > 0,

Fi(x) = tgnoo Fi(t, x),

and
dF (x)

=Y Fia;.

ieS

The initial condition is given by F;(0) = 0 for every jsuch thatr; > 0, since the queue
cannot be empty if there is a positive drift. In addition, for every j € S, we have by
the law of total probability (Ross, 1983)

XE)nOC Fix)=P{Z = j} =mn;.
The differential equation can be written in matrix notation as

dF(x)
dx

R=F(x)A, (3)

where F(x) is the infinite row vector, whose jth component is equal to F;(x), and
where R is the diagonal matrix, whose jth diagonal element is ;.

We suppose without any loss of generality that, as shown in da Silva Soares and
Latouche (2002) or Sericola (2001), for every je S, we have r; # 0, so that the
matrix R is invertible. We moreover assume that the states of the Markov chain {Z,,
t > 0} are ordered in such a way that r; is an increasing function of j. We decompose
the state space § with respect to the sign of the net input rates r;, so that S_ =
{jeS|ri<0land S, ={je S|r;>0}.
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In the following, we denote by | M| the matrix obtained from matrix M by taking
the absolute values of its entries.

3 Solution to the Basic Matrix Equation
3.1 Notation and Preliminary Results

In this paper, we are interested in computing the quantity P(X > x) for x > 0 and
in designing an algorithm for obtaining the numerical value of this quantity with a
predetermined round-off error ¢. It turns out that instead of considering the original
system, it is more convenient in the computations to introduce an auxiliary system.
It is easy to check that the matrix T = |R|~' A is an infinitesimal generator. Define

A =sup{Bj/Irjl: j€ S} (4)
and
r=inf{|r;|; je S}. 5)
In the following, we make the two following assumptions:

(Hy;) The Markov chain with generator 7' can be uniformized, i.e., A < 00.
(Hz) The infimum of the absolute values of the net input rates is positive, i.e., r > 0.

Let & the stationary probability distribution corresponding to the matrix 7, that
is, the row vector such that §7 = 0 and £1 = 1, where 1 is the infinite column vector
with all entries equal to 1. It is easy to check that & = 7| R|/(|R|1) or equivalently
thatw = &|R|™'/(£|R|'1).

We denote by I the diagonal matrix with entries equal to —1 for the states of S_
and equal to 1 for the states of S, that is

-1 0
= ( 0 1+> ’
where /_ and I, are the identity matrices corresponding to the subsets S_ and S,

respectively.
As suggested in da Silva Soares and Latouche (2002), we rewrite Eq. (3) as

dF(x)
dx

|RIL = F(x)|R|T. (6)

This amounts to introducing an auxiliary fluid queue with net input rates given by the
matrix I and driven by the Markov chain with infinitesimal generator 7. This latter
queue is stable and we denote by X and Z the stationary level in this queue and the
stationary state of the driving Markov chain, respectively. The row vector G(x) of
the joint distributions G;(x) = P{Z = j, X < x} satisfies

dG(x)
dx

I=Gx)T with G;j(0) =0for je S; and lim G(x) =¢&.
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We thus have

G(x)|R|I™! F(x)|R
F(x) = % or equivalently G(x) = n(lxl)i'|| 1 |.

The transient distribution of the couple (Z,, X)) is 7denoted7 by the row vector
G(t, x), the jth component of this vector is G(t, x) = P{Z, = j, X, < x}. Similarly to
Eq. (1), this transient distribution satisfies the following partial differential equation

aG(t, x) n aG(t, x)

o S 1=G(t.xT. (7)

By taking as initial conditions Xy = 0 and P{Z, = j} = &, for every j € S, it is shown
in Sericola (1998) that for every ¢ > 0 and x € [0, t), we have

A (n) sx\k x\n—k
G(t,x):ng:;e Mm;(k) (;) (1—?) bn, k), (8)

where the infinite row vector b (n, k) = (b;j(n, k), je S) is defined as follows. For
je s,

bj(n,n) = §&;for n > 0, )
bi(n, k) = ;b]-(n,k—i-l)—l-;;bi(n— Lkpjfork=n—1,...,0. (10)

and for j e S}
bj(n,0) = 0for n > 0, (11)
bin.k) = bi(n—1,k—1)p;fork=1,....n (12)

ieS

where P = (p; ;) is the transition probability matrix of the uniformized Markov chain
with generator T with respect to the rate A. This matrix is related to 7 by the relation
P = I+ T/A, where [ is the identity matrix with dimension given by the context and
A is defined by Eq. (4). The stationary probability distribution & satisfies £ P = &.

In the next section, we show how to use the auxiliary queueing system with
net input rates given by matrix I and driven by the Markov chain with infinitesimal
generator T to compute the probability distribution function (PDF) of the buffer X.

3.2 Computation of the Stationary PDF of the Buffer Level

By using the auxiliary queue with net input rates given by matrix I and driven by the
Markov chain with infinitesimal generator 7, we have the following representation
for the complementary probability distribution function P(X > x).
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Proposition 1 For fixed k > 0, the sequence (b (n, k), n > k) converges to a limit b(k)
as n — oo and the complementary probability distribution function of the stationary
buffer content X is given for fixed N by

N
P{X > x} = Z —hx (A]f) (1 =b(N,k)v) +e(x; N), (13)

k=0

where

N
e(x; N):Z - 07 x) (b(N, k) — b(k))v + Z *“(l:) 1 -blv) (14)
k=0 k=N+1
and the column vector v is given by
_ [RI~'1 _ 1
= SR = (r|RIL)|R|I™'1. (15)

To prove Proposition 1, we first establish a technical lemma describing the
properties of the sequence of vectors b(n, k). For the sake of simplicity, an inequality
between vectors of the same dimension means that the inequality stands for each of
their entry (i.e., the inequality holds component by component).

Lemma 1 The row vectors b (n, k), n > 0 and 0 < k < n, satisfy:

(@) Forn>=0and1 <k <n0=<b(n k—1)<bn k) <E&.
(b) Forn>1land1 <k <nbn—1,k—1)<b(n,k).
(¢) Forn>1land0<k<n-—1,bnk)<bn-—1,k).
(d) Forn>=1and0<k<n-—2bn, k) <bn-—1k+1).

Proof Inequality (a) has been proven in Sericola (1998), in which we consider the
vectors & — b(n, k) instead of the b(n, k). Inequality (d) follows from (c) and (a) by
writing b (n, k) < b(n — 1, k) < b(n — 1, k + 1). Inequalities (b) and (c) are proven in
the Appendix. O

We now proceed to the proof of Proposition 1.

Proof of Proposition 1 From Lemma 1, we deduce that for fixed k, the sequence
(b(n, k), n > k) is non increasing and non negative, and then converges as n goes
to infinity. We denote by b(k) = (b;(k), je S) the limit of b(n, k) when n tends to
infinity. In other words, for j € S, we have

lim b;(n, k) = bj(k).
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Let us now consider relation (8). When ¢ goes to infinity, we have for every x > 0

G = Jim zew S (1) ) (-2 v
k=0

o] k o0
= Ze—“Lx) lim » e 0 = 4k
k! =00 n!
k=0 n=0
o0 k
= Zew% lim b(n +k, k)
P ! n—oo
N 0
=) e z b(k),

~
Il
o

where the third equality follows from the following well-known result : If u, is
a sequence converging to u when n goes to infinity, then the limit of the series
S0 e AL (“) u, when x goes to infinity is equal to u. By using the above equation,

n=0

we have
P{X>x}=1—-Fx1
=1-Gx)v
= 1= ) e (“) b(k)v

=0

| i,mw o o 00
— e b(k)v Z e ——b(k)v

k!
k=0 k=N+1

N k
=Y e (”) (1 = b(N, k)v) + e(x: N),
k=0

where e(x; N) is defined by Eq. (14) and the vector v is defined by Eq. (15). This
establishes Eq. (13). o

From Eq. (13), we see that we can evaluate the value of P(X > x) by computing
the finite series in the right hand side of this equation with an error given by the
term e(x; ). Hence, if we want to compute this quantity with a prescribed round-off
error ¢, we have to find an upper bound for e(x; N) by choosing N and by controlling
the values of (b(N, k) — b(k)) for k=0,..., N and (1 — b(k)v). The remainder of
this section is devoted to exhibiting the properties of the vectors b(n, k) and b(k).
These properties will be used in the next section to design an algorithm for computing
P(X > x) for a series of values x; < ... < xy.

Proposition 2 The sequence of vectors b(k) is converging and
lim b(k) =¢&. (16)
k—>00
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Proof By taking limits when n goes to infinity in the recurrence relations satisfied by
the b(n, k) see Eqgs. (10), (11) and (12), we obtain

_ 1 1
For je S_: bj(k) = btk + 1) + 5 ;b,-(k)pi_,-, k>0, (17)
For je S, : bj(0) =0, (18)
bj(ky =Y btk —Dpi;. k=1 (19)

€S

It is easy to check by taking the limit when #n goes to infinity in inequality (a) of
Lemma 1 that

0<bjtk—1) <bjk) <§,.

This proves that, for every je S, the sequence b;(k) converges when k tends to
infinity. Since the sequence b(k) converges, we have

Jim b(k) = lim G(x) =&. O

Another property of the sequence of vectors b(k) is obtained by writing the flow
equation, which states that the mean stationary input rate is equal to the mean
stationary output rate. We write § = (§_, £&;), where £_ and &, denote the sub-vectors
obtained from & by considering the states of S_ and S, respectively.

Proposition 3 The quantities bj(0), j € S are such that

Dobi0)y=) &—> £=21-1, (20)

jes- jes- jeS+
which establishes

P{X =0}=2&1-1. (21)

Proof First note that the stability condition (2) is equivalent to the condition

Zg,—25/>0.

jes- jess

Let a; and d; be respectively the input rate and the service rate of the fluid queue
when Z = j. The flow equation then becomes

Y aigi=Y dP{Z=jX>0+) aP(Z=jX=0)

jes jes jes-
=Y djl&j— GO+ Y _ a;G;(0)
jes jes—
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=Y digi— Y diGi0)+ Y a;G0)

jes jes- jes_
=Y digi+ Y (aj—dpG;0),
jes jes-

which can be written as
> (aj—dpgj= > (a;—dpG(0).
jes jes-

Since for every je S, G;(0) = b;(0), and for je S_, we have a; —d; = —1, and for
j € Sy, we have a; — d; = 1, we obtain the first equality of Eq. (20). The second one
is trivial by using the normalizing condition £;1 + £_1 = 1. To get relation (21) we
simply write

PX=0}=) Gi0) =) G0)=) b0
jes jes- jes-
and then we use relation (20). O

By using the above proposition and relations (17), (18) and (19), it can be easily
shown that for every k > 0, we have

> bitk) = > bik) =261 1.
jes- jeS+

As we did for &, we write b(n, k) = (b _(n, k), b, (n, k)) and bk) = (b_(k), b, (k))
where b _(n, k), b . (n, k), b_(k) and b , (k) are the sub-vectors restricted to the states
of S_ and S, respectively.

Proposition 4 The vectors b(n, k) satisfy the inequalities
bn—1,k)1 —bn, k)1 <b_(n,001 —26_1+1, forn>=1and0<k<n-—1
(22)
and

E1-b_(n,001 <b,(n,n)l <&.1, for n>0. (23)

Proof By summation over jin relation (10) at point (n, kK — 1) and in relation (12) at
point (n, k), we obtain

2Y bink—1) =) bink)+ > bin—1.k=1Y pi;
jes- jes- ieS jes-
and

Y b k)= bin—1.k=1)>_ pi;.

jeSy ieS jeSy
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By adding these two relations, we obtain

23 b k—1)+ Y bin.k)y =Y bjnk)+ Y bin—1,k—1),

jes- jess jes- jeS
which can be written as
b_(n,k)1—bi(n,k)1=b_(n,k—D1—-by(n,k—1)1+bn, k—1)1—-b(n—1,k—1)1.
Defining d, x = b_(n, k)1 — b (n, k)1, we obtain
bn— 1,1 —bn, k)1 =dy i — dpis1-

This quantity is positive from inequality (c) of Lemma 1. Hence, the sequence d,, x is
decreasing with respect to integer k. We then have, from inequality (a) of Lemma 1,

0=<b(n—1,k1->bn Kl =d—dnrw
= dn,O - dn,n = b_(l’l, O)]l - E—]l +b+(ﬂ,l’l)]l
<b_n,0Ol—&1+&1=b_(n,001 —26.1+1,

which completes the proof of relation (22).

The right hand side of inequality (23) is the right hand side of inequality (a)
of Lemma 1. In order to prove the first inequality of Eq. 23, we use the fact that
the sequence d,, i is decreasing with respect to integer k by writing that d,, , < d,, o,
that is

E1-by(n,n)l <b_(n 01,

which is the desired inequality. O

Propositions 3 and 4 are used in the next section in order to devise a numerical
algorithm for computing the quantity P(X > x) for different values x; < ... < x,,.

4 Algorithmic Aspects

From Proposition 1, we see that we can compute P{X > x} with a prescribed
precision ¢ by using the series in the right hand side of Eq. (13) as soon as we can
guarantee that the term e(x; N) defined by Eq. (14) is less than e. This requires
to adequately choose N and to control the terms (b(V, k) — b(k)) and (1 — b(k)v).
For this purpose, we first need to compute the vectors b (k). However, this task
is quite intricate because these vectors appear as limits of sequences of vectors
(b(n, k), n > k) defined by recurrence relations. By assuming that these sequences
are sufficiently smooth (typically that there is no step decrease), we approximate
b(k) by b(n, k) as soon as b(n, k) — b(n + 1, k) < e, which means that the sequence
(b(n, k)) is numerically stable and close to the limit b(k).
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Denote by v the maximal entry of vector v. We have

sup{1/|r;|; je S} 1 7|R|1

E|RI7'1 T rE|RC'L T

’

v=sup{v;; j€ S} =

where r is defined Eq. (5).

We then define the integer N as the smallest integer n such that v(b_(n, 0) —
b_(0))1 <e. From Proposition 3, we have b_(0)1 =21 -1, so that N is
defined as

N=infln >0 |v(b_(n,001 —26_1+1) < ¢}. (24)

With this choice for N, we subsequently show that we have (b(N, k) —
b(N + 1, k)) < e and (1 — b(N, k)v) < ¢ so that we can expect that

(1-bk)v) <e and (b(N,k)—Db(k)) <e,

which in turn implies that e(x; N) < ¢ for all x € R.
For k = 0, we have, by definition of N and v,

(b(N,0) — b(0))v < v(b(N,0) — b(0))1 <e.
For k=1, ..., N, we have from Proposition 4 and by definition of N

(b(N, k) —b(N+1,k)v < v(b(N,k) —b(N+1,k))1
<v(BN+1,001 —26_1+1)
<v(b(N,0)1 -2 1+1)

=g

so we expect that (b(N, k) — b(k))v < e.
For k > N + 1, from inequality (23) and since b _(n, n) = £_, we get

261 —b_(n,001 <b(n,m1l <1,
that is

0<v(l—-bnnl) <vb_(n,0)1 —2&_1+1).

By definition of N, we have for k > N,
0<v( -0k k) <e,
and we obtain for k > N
1 — bk, k)v = (§ — bk, k))v <v(E — bk, k)L =v(l —b_(k,k)1) <e.

That is why we expect that (1 — b(k)v) < ¢, for k > N.
@ Springer
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Table 1 Algorithm for the computation of P{X > x}.

input:x; < .- <xpy,e¢

output : P{X > x} forx =x,...,xy
A =sup{Bj/Irjl; j€ S}
T=|RA

Compute the stationary distribution &
Compute the column vector v and v = sup{v;; je S}
P=1+T/x
b4(0,00=0
b_(0,0) =¢_
n=20
while v(b _(n,0)1 —26_1+1) > ¢ do
n =n+l
by(n,00=0
for k = 1 to n do compute b 4 (n, k) from Eq. (12) endfor
b_(n,n)=§&_
for k = n — 1 downto 0 do compute b _(n, k) from Eq. (10) endfor
endwhile
N=n
o xm)®

N
form:ltonoIP{X>xm}=Ze T

k=0

(1 —=b(N, k)v) endfor

The above considerations lead us to expect that e(x; N) <e. We tested this
approximation by considering fluid queues fed Markov chains with only one negative
effective input rate. For such queues we developed in Sericola and Tuffin (1999) an
exact algorithm which gives for a prescribed precision ¢ the same results as those
obtained with the method presented in this paper. This supports the assumption
made above on the smoothness of the sequences of vectors (b (n, k), n > k), k > 0.

The algorithm to compute the distribution Pr{X > x} for the M values x; <
X, < .-+ < xp of x is then given in Table 1.

Of course, this algorithm can be applied for every finite Markov chain. For infinite
state space Markov chains, the computation of the stationary distribution & and of the
infinite row vectors b (1, k) can be obtained only for special structures of the driving
Markov chain. We deal with these particular types of structures in the following
section.

5 Special Cases

In this section, we give a few examples of Markov chains for which the algorithm
described in Section 4 can be used for estimating the probability distribution function
of the buffer content in the stationary regime of a fluid queue driven by a Markov
chain with a countable state space.
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5.1 Fluid Queues Fed by Quasi Birth and Death Processes

The fluid queue is driven by a stationary ergodic continuous-time quasi birth
and death (QBD) process, non necessarily homogeneous, represented by the two-
dimensional Markov chain {Z,} on the state space S given by

S={,p:LeN,1=<j<my,

where the first component is called the level and the second one is called the phase.
The infinitesimal generator A of the QBD process is a block-tridiagonal infinite
matrix that can be written as

Ago Ao O
Ao A1 Ap 0O
A=| 0 Ay Az Ass

0 Ay Az; -

where, for £ > 0, the matrices Ay, are square matrices of dimension m, and the
sizes of the other sub-matrices are determined accordingly. The computation of the
stationary distribution 7 (or &) of the QBD process has been studied in several
papers for various types of QBD processes. We refer the reader to Latouche and
Ramaswami (1999) and the references therein for the main results on this subject.

As we did for matrix A, we write the matrix R and the vectors b(n, k) and & by
using blocks, that is

R =diag(Ry, Ry, -+, Ry, Ryy1,-++),
where R, is the diagonal matrix containing the entries ¢ j for j=1,...,my,
b(n,k) = (bo(n, k),b1(n, k), ...,bi(n, k,...),
with, for £ > 0,
be(n, k) = (be,1y(n, k), ..., by,m,(n, k)),
and
§=CGo &1, 600,

with, for £ > 0,

o= Cun, - Eem)-
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We assume that r j > 0 when £ is greater than a fixed £y > 0 and that r¢ 5 <0
for0 <€ < ¢p. Wethushave S_ ={(¢, ) € S: € <y} and S, ={(¢, ) € S: € > {y}.
The transition probability matrix P = I + 7/ can then be written as

Poo Po1 O

Pio Pry Pia O
P=| 0 Py Py Prs |,
0 Psp P33

where
Poevr = Rl Agogr /A,
Poo=1+|Ry| ™" Agy/A,
Pioy = |Re|™ Ay /.

The relations (9), (10), (11), (12) can be written for 0 < £ < £, as
be(n,n) =& forn >0 (25)

1 1
be(n, k) = Eb((n’ k+1)+ 5 [beo1(n =1, k) Py o+ be(n—1,k) Py ]

+ %bg“(n—l,k)PHug fork=n-1,...,0 (26)
and for £ > £y + 1 as
be(n,0) =0forn >0 (27)
be(n, k) =by1(n—1,k—=1)Pe1o+bi(n—1,k—1)Pg,
+ bppi(n—1,k—1)Ppfork=1,...,n, (28)

where we set b_(n — 1, k) P_1 o = 0. The computation of each b,(n, k) requires a
finite number of operations but the number of such vectors is infinite. This difficulty
is overcome by the following result.

Lemma?2 Forn>0and0 < k < n, we have

be(n,k) =0for £ >ty +k+1.
Proof We proceed by recurrence over index k. For k = 0, we have from relation (11),
bj(n,0) = 0for j e S, which means that b;(n,0) = 0 for £ > £, + 1.

Suppose that for a fixed index k > 1, we have by(n, k — 1) = 0 for £ > £y + k, for
every n > k — 1. This means in particular that

bi_in—1,k—1)=0 forf >4y +k+1
bein—1,k—1)=0 for ¢ > ¢y + k

bpyyin—1,k—1)=0 for > ¢y +k—1.
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Thus, we obtain, from relation (28), that by(n, k) = 0 for £ > £y + k + 1. O

The above result means also that we only need to compute relation (28) for
(:Eo—i—ltOE:Eo—i—k.

5.2 Fluid Queues Fed by G/M/1 Type Markov Chains

Markov chains of the G/M/1 type have an infinitesimal generator with the following
Hessenberg structure

Aopo Aop 0 0
Ao Arg A1a 0
A= Ayo Ayy Az Ays - |
Asg Az Asn Aszz

on the same state space S as that used for QBDs. The computation of the stationary
distribution of such Markov chains can be found for instance in Meini (1998).

The matrix P has clearly the same structure and thus the recurrence relations (9),
(10), (11), (12) become for 0 < ¢ < ¢,

be(n,n) = & for n > 0, (29)

1
b@(}’l, k) = Ebg(}’l, k + 1)

l o0
+5 Y bun—1.kPyfork=n—1,...0, (30)
h=max(0,£—1)
andfor € > £y + 1
by(n,0) = 0 for n >0, (31)
ben,k) = Y byn— 1, k—=1)Pyofork=1,....n. (32)
h=t—1

In this case, the computation of each by(n, k) requires an infinite number of opera-
tions and the number of such vectors is infinite. These difficulties are overcome by
using Lemma 2, which is still valid. The recurrence relations (29), (30), (31), (32) thus
become for 0 < £ < £,

be(n,n) = & forn >0, (33)

1
bg(l’l, k) = Ebg(ﬂ, k + 1)

Lo+k
+5 Y. bun—1.kPyfork=n—1,....0, (34)

h=max(0,£—1)
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and for € > ¢y + 1

b(n,0) =0forn>0 (35)
Lo+k—1

ben, k)= Y by(n—1,k—1)Py,fork=1,...n. (36)
h=t(—1

This means that we only need to compute relation (36) for £ = £y + 1 to £ = €y + k.

5.3 Non-skip-free G/M/1 Type Markov Chains

Clearly, our method also applies for more general driving processes such as Markov
chains of the non-skip-free G/M/1 type. The corresponding infinitesimal generator is
an H-Hessenberg matrix, that is a matrix of the following form.

Ao - Aou—1 Aom 0 0
Ao - Aig—r Ainn Al 0
A=| Ay -+ Ayt Asn Asmy1 AsHp2

Azg - Aspor Asm Asnp Az i

Appendix
Proof of Lemma 1

In this Appendix, we prove inequalities (b) and (c) appearing in Lemma 1.

Proof of inequality (b) The proof is by mathematical induction on the index n. We
use inequality (a) of Lemma 1,i.e. 0 < b(n, k) < &.
Forn =1, we have

bi(1,1) > 0=b;(0,0) for je S,
bj(1,1) =&;=b;(0,0) for je S_.

Suppose that for a fixed index n > 1, we have
b(n,k) >b(n—1,k—1)for 1 <k <n. (37)

We must show thatfor 1 <k <n+1,wehave bn+1,k) > b(n, k —1).
Let j € ST. By using the recurrence hypothesis (37), we obtain

bi(n+1,k) —bjn,k—1) =Y (bin,k—1) =bi(n— 1,k =2)p;; > 0.
ieS
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We proceed again by recurrence over index k. Let j € S™. For k = n + 1, we have
bj(n+1,n41) =0 = bj(n, n). Suppose that for a fixed index k < n, we have

biin+1,k+1) = bj(n, k). (38)

By using the two recurrence hypotheses (37) and (38), we have
1
b/'(l’l +1, k) — b/'(i’l, k — 1) = E(b,(n +1,k+ 1) — b/’(}’l, k))

1
+5 ;(bj(n, k) —bj(n—1,k—1)p;i;

>0,

which completes the proof. O

Proof of inequality (c) We follow exactly the same steps as in the proof of inequality
(b).

The proof is by mathematical induction on the index n. We use inequality (a) of
Lemma 1,i.e.0 < b(n, k) <E&.

For n = 1, we have

bj(0,0) > 0=>;(1,0) for je S,
bj(O, 0) = E;',' > b,’(l,O) for jE S_.

Suppose that for a fixed index n > 1, we have
b(n—1,k)>bn,kyfor0<k<n-—1. (39)

We must show that for 0 < k < n, we have b(n, k) > b(n + 1, k).
Let j € ST. By using the recurrence hypothesis (39), we have

bin, k) —bijn+1,k) = Z(b,-(n - Lk—=1)=bi(n,k—1)p;;>0.
ieS

We proceed again by recurrence over index k. Let je€ S™. For k = n, we have
bj(n,n) =&; > bj(n+ 1, n). Suppose that for a fixed index kK < n — 1, we have

bin.k+1)>bin+1,k+1). (40)

By using the two recurrence hypotheses (39) and (40), we obtain
1
bj(n, k) —bj(n+1,k) = E(bi(n’ k+1)—bi(n+1,k+1))

1
+ 3 Z(b,(n —1,k) — bj(n, k) pi
ieS
Z 07

which completes the proof. O
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