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Abstract
The spectrum of known black hole solutions to the stationary Einstein equa-

tions has increased in an unexpected way during the last decade. In particular,
it has turned out that not all black hole equilibrium configurations are charac-
terized by their mass, angular momentum and global charges. Moreover, the
high degree of symmetry displayed by vacuum and electro-vacuum black hole
space-times ceases to exist in self-gravitating non-linear field theories. This text
aims to review some of the recent developments and to discuss them in the light
of the uniqueness theorem for the Einstein-Maxwell system.
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1 Introduction

1.1 General

Our conception of black holes has experienced several dramatic changes during
the last two hundred years: While the “dark stars” of Michell [134] and Laplace
[123] were merely regarded as peculiarities of Newton’s law of gravity and his
corpuscular theory of light, black holes have nowadays achieved the status of
astrophysical objects, being as real as ordinary stars.1 In fact, today’s technol-
ogy is sufficiently advanced to enable us, for the first time, to actually detect
black holes. Although the observations are necessarily indirect, the evidence for
both stellar and galactic black holes has become very compelling lately.2

The theory of black holes was initiated by the pioneering work of Chan-
drasekhar [34], [35] in the early 1930s. Computing the Chandrasekhar limit for
neutron stars [2], Oppenheimer and Snyder [141], and Oppenheimer and Volkoff
[142] were able to demonstrate that black holes present the ultimate fate of suf-
ficiently massive stars. Modern black hole physics started with the advent of
relativistic astrophysics, in particular with the discovery of the pulsars in 1967.
(The geometry of the Schwarzschild solution [157], [158] was, for instance, not
understood for almost half a century; the misconception of the “Schwarzschild
singularity” was retained until the late 1950s.)

One of the most intriguing outcomes of the mathematical theory of black
holes is the uniqueness theorem, applying to the stationary solutions of the
Einstein-Maxwell equations. Asserting that all electrovac black hole space-times
are characterized by their mass, angular momentum and electric charge, the
theorem bears a striking resemblance to the fact that a statistical system in
thermal equilibrium is described by a small set of state variables as well, whereas
considerably more information is required to understand its dynamical behavior.
The similarity is reinforced by the black hole mass variation formula [3] and the
area increase theorem [84], which are analogous to the corresponding laws of
ordinary thermodynamics. These mathematical relationships are given physical
significance by the observation that the temperature of the black body spectrum
of the Hawking radiation [83] is equal to the surface gravity of the black hole.3

The proof of the celebrated uniqueness theorem, conjectured by Israel, Pen-
rose and Wheeler in the late sixties, has been completed during the last three
decades (see, e.g. [39] and [40] for reviews). Some open gaps, notably the elec-
trovac staticity theorem [167], [168] and the topology theorem [57], [58], [44],
have been closed recently (see [40] for new results). The beauty of the theorem

1For a review on the evolution of the subject the reader is referred to Israel’s comprehensive
account [101].

2A list of the most promising candidates was recently presented by Rees [148] at a sympo-
sium dedicated to the memory of S. Chandrasekhar (Chicago, Dec. 14-15, 1996).

3Lately, there has been growing interest in the fascinating relationship between the laws
of black hole mechanics and the laws of thermodynamics. In particular, recent computations
within string theory seem to offer a promising interpretation of black hole entropy [98]. The
reader interested in the thermodynamic properties of black holes is referred to the review by
Wald [177].
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5 Stationary Black Holes: Uniqueness and Beyond

provided support for the expectation that the stationary black hole solutions of
other self-gravitating matter fields are also parametrized by their mass, angu-
lar momentum and a set of charges (generalized no-hair conjecture). However,
ever since Bartnik and McKinnon discovered the first self-gravitating Yang-Mills
soliton in 1988 [4], a variety of new black hole configurations which violate the
generalized no-hair conjecture have been found. These include, for instance,
non-Abelian black holes [174], [122], [9], and black holes with Skyrme [50], [97],
Higgs [12] or dilaton fields [124], [77].

In fact, black hole solutions with hair were already known before 1989: The
first example was the Bekenstein solution [7], [8], describing a conformally cou-
pled scalar field in an extreme Reissner-Nordström spacetime. Since the horizon
has vanishing surface gravity,4 and since the scalar field is unbounded on the
horizon, the status of the Bekenstein solution gives still rise to some controversy
[169]. In 1982, Gibbons found a new black hole solution within a model occur-
ring in the low energy limit of N = 4 supergravity [73]. The Gibbons solution,
describing a Reissner-Nordström spacetime with a nontrivial dilaton field, must
be considered the first flawless black hole solution with hair.

While the above counterexamples to the no-hair conjecture consist in static,
spherically symmetric configurations, more recent investigations have revealed
that static black holes are not necessarily spherically symmetric [115]; in fact,
they need not even be axisymmetric [150]. Moreover, some new studies also
indicate that non-rotating black holes need not be static [22]. The rich spectrum
of stationary black hole configurations demonstrates that the matter fields are
by far more critical to the properties of black hole solutions than expected
for a long time. In fact, the proof of the uniqueness theorem is, at least in
the axisymmetric case, heavily based on the fact that the Einstein-Maxwell
equations in the presence of a Killing symmetry form a σ-model, effectively
coupled to three-dimensional gravity [139]. Since this property is not shared
by models with non-Abelian gauge fields [19], it is, with hindsight, not too
surprising that the Einstein-Yang-Mills system admits black holes with hair.

There exist, however, other black hole solutions which are likely to be subject
to a generalized version of the uniqueness theorem. These solutions appear in
theories with self-gravitating massless scalar fields (moduli) coupled to Abelian
vector fields. The expectation that uniqueness results apply to a variety of
these models arises from the observation that their dimensional reduction (with
respect to a Killing symmetry) yields a σ-model with symmetric target space
(see, e.g. [15], [45], [67], and references therein).

1.2 Organization

The purpose of this text is to review some of the most important features of black
hole space-times. Since the investigation of dynamical problems lies beyond the
scope of this report, we shall mainly be concerned with stationary situations.

4Like the Papapetrou-Majumdar solution [143], [128], the Bekenstein solution is not a
convincing counter-example to Wheeler’s no-hair conjecture, since the classical uniqueness
results do not apply to black holes with degenerate horizons.

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://www.livingreviews.org


M. Heusler 6

Moreover, the concept of the event horizon requires asymptotic flatness. (Black
hole solutions with cosmological constant are, therefore, not considered in this
text.5) Hence, we are dealing with asymptotically flat, stationary black config-
urations of self-gravitating classical matter fields.

The emphasis is given to the recent developments in the field and to the
fundamental concepts. For detailed introductions into the subject we refer to
Chandrasekhar’s book on the mathematical theory of black holes [37], the classic
by Hawking and Ellis [84], Carter’s review [33], and chapter 12 of Wald’s book
[178]. Some of the issues which are not raised in this text can be found in [87],
others will be included in a future version.

The first part of this report is intended to provide a guide to the literature,
and to present some of the main issues, without going into technical details. We
start by recalling the main steps involved in the uniqueness theorem for electro-
vacuum black hole space-times (Sect. 2). The classification scheme obtained in
this way is then reexamined in the light of the solutions which are not covered
by no-hair theorems, such as the Einstein-Yang-Mills black holes (Sect. 3).

The second part reviews the main structural properties of stationary black
hole space-times. In particular, we recall the notion of a Killing horizon, and dis-
cuss the dimensional reduction of the field equations in the presence of a Killing
symmetry in some detail (Sect. 4). For a variety of matter models, such as self-
gravitating Abelian gauge fields, the reduction yields a σ-model with symmetric
target manifold, effectively coupled to three-dimensional gravity. Particular ap-
plications of this distinguished structure are the Mazur identity, the quadratic
mass formulas and the Israel Wilson class (Sect. 5).

The third part is devoted to stationary and axisymmetric black hole space-
times (Sect. 6). We start by recalling the circularity problem for non-Abelian
gauge fields and for scalar mappings. The dimensional reduction with respect
to the second Killing field yields a boundary value problem on a fixed, two-
dimensional background, provided that the field equations assume the coset
structure on the effective level. As an application we recall the uniqueness
proof for the Kerr-Newman metric.

5Some “cosmological” black hole solutions can be found in [176], [20] and references therein.
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7 Stationary Black Holes: Uniqueness and Beyond

2 Classification of Stationary Electrovac Black
Hole Space-Times

The uniqueness theorem applies to the black hole solutions of Einstein’s vacuum
equations and the Einstein-Maxwell (EM) equations. Under certain conditions
(see below), the theorem implies that all stationary, asymptotically flat elec-
trovac black hole space-times (with non-degenerate horizon) are parametrized
by the Kerr-Newman metric. The proof of the theorem comprises various issues,
not all of which have been settled in an equally reliable manner.6 The purpose
of this section is to review the various steps involved in the classification of
electrovac space-times (see Fig. 1). In the next section we shall then comment
on the validity of the partial results in the presence of non-linear matter fields.

2.1 Rigidity, Staticity and Circularity

At the basis of the classification of stationary electrovac black hole space-times
lies Hawking’s strong rigidity theorem (SRT) [84].

It relates the global concept of the event horizon to the independently defined
– and logically distinct – local notion of the Killing horizon: Requiring that the
fundamental matter fields obey well behaved hyperbolic equations, and that
the stress-energy tensor satisfies the weak energy condition,7 the first part of
the SRT asserts that the event horizon of a stationary black hole spacetime is
a Killing horizon.8 The latter is called non-rotating if it is generated by the
stationary Killing field, and rotating otherwise. In the rotating case, the second
part of the SRT implies that spacetime is axisymmetric.9

The subdivision provided by the SRT is, unfortunately, not sufficient to ap-
ply the uniqueness theorems for the Reissner-Nordström and the Kerr-Newman
metric: The latter are based on the stronger requirements that the domain
of outer communication (DOC) is either static (non-rotating case) or circular
(axisymmetric case). Hence, in both cases one has to establish the Frobenius in-
tegrability conditions for the Killing fields beforehand (staticity and circularity
theorems).

The circularity theorem, due to Carter [27], and Kundt and Trümper [118],
implies that the metric of a vacuum or electrovac spacetime can, without loss of
generality, be written in the well-known Papapetrou (2+2)-split. The staticity

6We refer to [39] and [40] for detailed discussions of the open problems.
7The original proof of the SRT [84] was based on an analyticity requirement which had no

justification [41]. A precise formulation and a correct proof of the theorem were given only
recently by Chruściel [38]; see also [40], Sect. 5. In particular, no energy conditions enter the
new version of the SRT.

8In order to prove the SRT one also needs to show that the connected components of the
event horizon have the topology IR×S2. This was established only recently by Chruściel
and Wald [44], taking advantage of the topological censorship theorem [55]. A related version
of the topology theorem, applying to globally hyperbolic – but not necessarily stationary –
space-times was obtained by Jacobson and Venkataramani [103], and Galloway [56], [57], [58],
[59]. We refer to [40], Sect. 2 for a detailed discussion.

9See [6] for a complete classification of the isometry groups.
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M. Heusler 8

Stationary, asymptotically flat electrovac black hole spacetime

[asymptotically time-like Killing field kµ]

STRONG RIGIDITY THM (1st part)

Event horizon = Killing horizon H[ξ]

[null generator Killing field ξµ]

H[ξ] non-rotating: kµ |H[ξ]= ξµ H[ξ] rotating: kµ |H[ξ] 6= ξµ

STATICITY THM (1st part) STRONG RIGID. THM (2nd part)

DOC strictly stationary DOC axisymmetric

[kµkµ ≤ 0] [∃ Killing field mµ]

STATICITY THM CIRCULARITY THM

DOC static DOC circular
∃ coordinate t: kµ = ∂t is ∃ coordinates t, ϕ: kµ = ∂t and
hyper-surface orthogonal mµ = ∂ϕ are hyper-surface orthogonal

STATIC UNIQUENESS THM CIRCULAR UNIQUENESS THM

[originally by means of Israel’s thm, [originally by means of Robinson’s thm,
later by the positive energy thm] later by σ-model (Mazur) identities]

Schwarzschild (Reissner-Nordström) Kerr (Kerr-Newman) metric

Figure 1: Classification of stationary electrovac black hole space-times
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9 Stationary Black Holes: Uniqueness and Beyond

theorem, implying that the stationary Killing field of a non-rotating, electrovac
black hole spacetime is hyper-surface orthogonal, is more involved than the
circularity problem: First, one has to establish strict stationarity, that is, one
needs to exclude ergo-regions. This problem, first discussed by Hajicek [78],
[79], and Hawking and Ellis [84], was solved only recently by Sudarsky and
Wald [167], [168], assuming a foliation by maximal slices.10 If ergo-regions are
excluded, it still remains to prove that the stationary Killing field satisfies the
Frobenius integrability condition. In the vacuum case, this was achieved by
Hawking [82], who was able to extend a theorem due to Lichnerowicz [126] to
black hole space-times. In the presence of Maxwell fields the problem was solved
only a couple of years ago [167], [168], by means of a generalized version of the
first law of black hole physics.

2.2 The Uniqueness Theorems

The main task of the uniqueness program is to show that the static electrovac
black hole space-times are described by the Reissner-Nordström metric, while
the circular ones are represented by the Kerr-Newman metric. In combination
with the SRT and the staticity and circularity theorems, this implies that all sta-
tionary black hole solutions to the EM equations (with non-degenerate horizon)
are parametrized by their mass, angular momentum and electric charge.

In the non-rotating case it was Israel who, in his pioneering work, showed
that both static vacuum [99] and electrovac [100] black hole space-times are
spherically symmetric. Israel’s ingenious method, based on differential identities
and Stokes’ theorem, triggered a series of investigations devoted to the static
uniqueness problem (see, e.g. [137], [138], [151], [153]). Later on, Simon [160],
Bunting and Masood-ul-Alam [26], and Ruback [154] were able to improve on
the original method, taking advantage of the positive energy theorem.11 (The
“latest version” of the static uniqueness theorem can be found in [129].)

The key to the uniqueness theorem for rotating black holes exists in Carter’s
observation that the stationary and axisymmetric EM equations reduce to a two-
dimensional boundary value problem [29] (See also [31] and [33].). In the vacuum
case, Robinson was able to construct an amazing identity, by virtue of which
the uniqueness of the Kerr metric followed [152]. The uniqueness problem with
electro-magnetic fields remained open until Mazur [131] and, independently,
Bunting [25] were able to obtain a generalization of the Robinson identity in
a systematic way: The Mazur identity (see also [132], [133]) is based on the
observation that the EM equations in the presence of a Killing field describe a
non-linear σ-model with coset space G/H = SU(1, 2)/S(U(1)×U(2)) (provided
that the dimensional reduction of the EM action is performed with respect to
the axial Killing field12). Within this approach, the Robinson identity looses its

10The existence of a foliation by maximal slices was established by Chruściel and Wald [43].
11The positive energy conjecture was proven by Schoen and Yau [155], [156] and, using

spinor techniques, by Witten [184]; see also [171].
12Reduction of the EM action with respect to the time-like Killing field yields, instead,

H = S(U(1, 1)× U(1)).
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enigmatic status – it turns out to be the explicit form of the Mazur identity for
the vacuum case, G/H = SU(1, 1)/U(1).

2.3 Black Holes with Degenerate Horizons

The uniqueness theorem outlined above applies exclusively to Killing horizons
with non-vanishing surface gravity. In fact, the multi black hole solutions of
Papapetrou [143] and Majumdar [128] illustrate that stationary EM black holes
with degenerate Killing horizons need not belong to the Kerr-Newman family.
In order to complete the classification of stationary electrovac black hole space-
times one has to include the Papapetrou-Majumdar solutions, and to establish
their uniqueness amongst the stationary configurations with degenerate, non-
connected horizons. Some progress toward this goal was recently achieved by
Chruściel and Nadirashvili [42]; a complete proof is, however, not yet available
(see also [90] for more information).
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3 Beyond Einstein-Maxwell

The purpose of this section is to estimate the generality of the various steps
leading to the classification of electrovac black hole space-times. In particular,
we shall argue that virtually all theorems displayed in Fig. 1 cease to exist in
the presence of non-Abelian gauge fields. Unfortunately, this implies that we
are far from having a classification of all stationary black hole space-times.

3.1 Spherically Symmetric Black Holes with Hair

Requiring spherical symmetry, the task to prove the no-hair theorem for the
Einstein-Maxwell (EM) system becomes almost trivial. However, not even this
part of the uniqueness proof can be generalized: The first black hole solution
demonstrating the failure of the no-hair conjecture was obtained by Gibbons in
1982 [73] within EM-dilaton theory.13 The fact that the Gibbons solution carries
no dilatonic charge makes it asymptotically indistinguishable from a Reissner-
Nordström black hole with the same mass and electric charge. However, since
the latter is not a consistent solution of the EM-dilaton equations, one might
expect that – within a given matter model – the stationary black hole solutions
are still characterized by a set of global charges (generalized no-hair conjecture).
In fact, the Gibbons black hole supports the generalized no-hair conjecture; its
uniqueness within EM-dilaton theory was established by Masood-ul-Alam in
1992 [130].

However, neither the original nor the generalized no-hair conjecture are cor-
rect. For instance, the latter fails to be valid within Einstein-Yang-Mills (EYM)
theory: According to the generalized version, any static solution of the EYM
equations should either coincide with the Schwarzschild metric or have some
non-vanishing Yang-Mills charges. This turned out not to be the case, when, in
1989, various authors [174], [122], [9] found a family of static black hole solutions
with vanishing Yang-Mills charges.14 Since these solutions are asymptotically
indistinguishable from the Schwarzschild solution, and since the latter is a par-
ticular solution of the EYM equations, the non-Abelian black holes violate the
generalized no-hair conjecture.

As the non-Abelian black holes are not stable [166], [186] [179],15 one might
adopt the view that they do not present actual threats to the generalized no-hair
conjecture. However, during the last years, various authors have found stable
black holes which are not characterized by a set of asymptotic flux integrals:
For instance, there exist stable black hole solutions with hair to the static,
spherically symmetric Einstein-Skyrme equations [50], [92], [93], [97] and to the
EYM equations coupled to a Higgs triplet [12], [14], [180], [1].16 Hence, the

13The model considered by Gibbons arises naturally in the low energy limit of N = 4
supergravity; see also [76] and [69] in this context.

14Originally, these solitons were constructed by numerical means. Existence proofs using
rigorous methods were given later in [164], [163], [162] and [13].

15See [21] for the general structure of the pulsation equations, [173], [24] and [11] for the
sphaleron instabilities of the particle-like solutions, and [159] for a review on sphalerons

16The solutions of the EYM-Higgs equations with a Higgs doublet are unstable [11], [183].
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restriction of the generalized no-hair conjecture to stable configurations is not
correct either.

One of the reasons why it was not until 1989 that black hole solutions with
self-gravitating gauge fields were discovered was the widespread belief that the
EYM equations admit no soliton solutions. There were, at least, four reasons
in support of this hypothesis.

• First, there exist no purely gravitational solitons, that is, the only globally
regular, asymptotically flat, static vacuum solution to the Einstein equa-
tions with finite energy is Minkowski spacetime. (This result is obtained
from the positive mass theorem and the Komar expression for the total
mass of an asymptotically flat, stationary spacetime; see, e.g. [74] or [88].)

• Second, both Deser’s energy argument [48] and Coleman’s scaling method
[46] show that there exist no pure YM solitons in flat spacetime.

• Third, the EM system admits no soliton solutions. (This follows by ap-
plying Stokes’ theorem to the static Maxwell equations; see, e.g. [87].)

• Finally, Deser [49] proved that the three-dimensional EYM equations ad-
mit no soliton solutions. The argument takes advantage of the fact that
the magnetic part of the Yang-Mills field has only one non-vanishing com-
ponent in 2+1 dimensions.

All this shows that it was conceivable to conjecture a nonexistence theorem
for soliton solutions of the EYM equations (in 3+1 dimensions), and a no-hair
theorem for the corresponding black hole configurations. On the other hand,
none of the above examples takes care of the full nonlinear EYM system, which
bears the possibility to balance the gravitational and the gauge field interactions.
In fact, a closer look at the structure of the EYM action in the presence of a
Killing symmetry dashes the hope to generalize the uniqueness proof along the
lines used in the Abelian case: The Mazur identity owes its existence to the σ-
model formulation of the EM equations. The latter is, in turn, based on scalar
magnetic potentials, the existence of which is a peculiarity of Abelian gauge
fields (see Sect. 4).

3.2 Static Black Holes without Spherical Symmetry

The above counterexamples to the generalized no-hair conjecture are static and
spherically symmetric. The famous Israel theorem guarantees that spherical
symmetry is, in fact, a consequence of staticity, provided that one is dealing
with vacuum [99] or electrovac [100] black hole space-times. The task to extend
the Israel theorem to more general self-gravitating matter models is, of course,
a difficult one. In fact, the following example proves that spherical symmetry
is not a generic property of static black holes.

A few years ago, Lee et al. [125] reanalyzed the stability of the Reissner-
Nordeström (RN) solution in the context of SU(2) EYM-Higgs theory. It turned
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13 Stationary Black Holes: Uniqueness and Beyond

out that – for sufficiently small horizons – the RN black holes develop an insta-
bility against radial perturbations of the Yang-Mills field. This suggested the
existence of magnetically charged, spherically symmetric black holes with hair,
which were also found by numerical means [12], [14], [180], [1].

Motivated by these solutions, Ridgway and Weinberg [149] considered the
stability of the magnetically charged RN black holes within a related model; the
EM system coupled to a charged, massive vector field . Again, the RN solution
turned out to be unstable with respect to fluctuations of the massive vector
field. However, a perturbation analysis in terms of spherical harmonics revealed
that the fluctuations cannot be radial (unless the magnetic charge assumes an
integer value).17 In fact, the work of Ridgway and Weinberg shows that static
black holes with magnetic charge need not even be axially symmetric [150].18

This shows that static black holes may have considerably more structure
than one might expect from the experience with the EM system: Depending
on the matter model, they may allow for nontrivial fields outside the horizon
and, moreover, they need not be spherically symmetric. Even more surprisingly,
there exist static black holes without any rotational symmetry at all.

3.3 The Birkhoff Theorem

The Birkhoff theorem implies that the domain of outer communication of a
spherically symmetric black hole solution to the vacuum or the EM equations
is static. Like its counterpart, the Israel theorem, the Birkhoff theorem admits
no straightforward extension to arbitrary matter models, such as non-Ableian
gauge fields: Numerical investigations have revealed spherically symmetric solu-
tions of the EYM equations which describe the explosion of a gauge boson star
or its collapse to a Schwarzschild black hole [185], [186]. A systematic study of
the problem for the EYM system with arbitrary gauge groups was performed by
Brodbeck and Straumann [23]. Extending previous results due to Künzle [119]
(see also [120], [121]), the authors of [23] were able to classify the principal bun-
dles over spacetime which – for a given gauge group – admit SO(3) as symmetry
group, acting by bundle automorphisms. It turns out that the Birkhoff theorem
can be generalized to bundles which admit only SO(3) invariant connections of
Abelian type.19

3.4 The Staticity Problem

Going back one step further on the left half of the classification scheme displayed
in Fig. 1, one is led to the question whether all black holes with non-rotating
horizon are static. For the EM system this issue was settled only recently [167],

17The stability properties are discussed in Weinberg’s comprehensive review on magnetically
charged black holes [181].

18Axisymmetric, static black black holes without spherical symmetry also exist within the
pure EYM system and the EYM-dilaton model [111]; see Sect. 3.5.

19We refer to [23] for the precise formulation of the statement in terms of Stiefel diagrams,
and to [17], [18], [80] for the bundle classification of EYM solitons.
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[168],20 whereas the corresponding vacuum problem was solved quite some time
ago [84]. Using a slightly improved version of the argument given in [84],21. the
staticity theorem can be generalized to self-gravitating stationary scalar fields
and scalar mappings [88] as, for instance, the Einstein-Skyrme system. (See also
[94], [85], [96], for more information on the staticity problem.)

While the vacuum and the scalar staticity theorems are based on differential
identities and Stokes’ law, the new approach due to Sudarsky and Wald takes
advantage of the ADM formalism and a maximal slicing property [43]. Along
these lines, the authors of [167], [168] were also able to extend the staticity the-
orem to non-Abelian black hole solutions. However, in contrast to the Abelian
case, the non-Abelian version applies only to configurations for which either all
components of the electric Yang-Mills charge or the electric potential vanish
asymptotically. As the asymptotic value of a Lie algebra valued scalar is not a
gauge freedom in the non-Abelian case, the EYM staticity theorem leaves some
room for stationary black holes which are non-rotating – but not static. More-
over, the theorem implies that these configurations must be charged. On the
perturbative level, the existence of these charged, non-static black holes with
vanishing total angular momentum was recently established by rigorous means
[22].

3.5 Rotating Black Holes with Hair

So far we have addressed the ramifications occurring on the “non-rotating half”
of the classification diagram shown in Fig. 1: We have argued that non-rotating
black holes need not be static, static ones need not be spherically symmetric,
and spherically symmetric ones need not be characterized by a set of global
charges. The right-hand-side of the classification scheme has been studied less
intensively until now. Here, the obvious questions are the following ones: Are
all stationary black holes with rotating Killing horizons axisymmetric (rigidity)?
Are the stationary and axisymmetric Killing fields hyper-surface orthogonal
(circularity)? Are the circular black holes characterized by their mass, angular
momentum and global charges (no-hair)?

Let us start with the first issue, concerning the generality of the strong rigid-
ity theorem (SRT). While earlier attempts to proof the theorem were flawed22

and subject to restrictive assumptions concerning the matter fields [84], the re-
cent work of Chruściel [38], [40] has shown that the SRT is basically a geometric
feature of stationary space-times. It is, therefore, conceivable to suppose that
both parts of the theorem – that is, the existence of a Killing horizon and the
existence of an axial symmetry in the rotating case – are generic features of

20An early apparent success rested on a sign error [30]. Carter’s amended version of the
proof was subject to a certain inequality between the electric and the gravitational potential
[33]. The origin of this inequality has become clear only recently; the particular combination
of the potentials arises naturally in the dimensional reduction of the EM system with respect
to a time-like Killing field.

21The new proof given in [88] works under less restrictive topological assumptions, since it
does not require the global existence of a twist potential

22See the footnote on page 7.
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stationary black hole space-times. (See also [6] for the classification of asymp-
totically flat space-times.)

The counterpart to the staticity problem is the circularity problem: As the
non-rotating black holes are, in general, not static, one expects that the axisym-
metric ones need not necessarily be circular. This is, indeed, the case: While
circularity is a consequence of the EM equations and the symmetry properties
of the electro-magnetic field, the same is not true for the EYM system.23 Hence,
the familiar Papapetrou ansatz for a stationary and axisymmetric metric is too
restrictive to take care of all stationary and axisymmetric degrees of freedom of
the EYM system.24 Recalling the enormous simplifications of the EM equations
arising from the (2+2)-split of the metric in the Abelian case, an investigation
of the non-circular EYM equations will be rather awkward. As rotating black
holes with hair are most likely to occur already in the circular sector (see the
next paragraph), a systematic investigation of the EYM equations with circular
constraints is needed as well.

The static subclass of the circular sector was investigated in recent studies
by Kleihaus and Kunz (see [111] for a compilation of the results). Since, in
general, staticity does not imply spherical symmetry, there is a possibility for a
static branch of axisymmetric black holes without spherical symmetry.25 Using
numerical methods, Kleihaus and Kunz have constructed black hole solutions
of this kind for both the EYM and the EYM-dilaton system [115].26 The new
configurations are purely magnetic and parametrized by their winding number
and the node number of the relevant gauge field amplitude. In the formal limit
of infinite node number, the EYM black holes approach the Reissner-Nordström
solution, while the EYM-dilaton black holes tend to the Gibbons-Maeda black
hole [73], [76].27 Both the soliton and the black hole solutions of Kleihaus and
Kunz are unstable and may, therefore, be regarded as gravitating sphalerons
and black holes inside sphalerons, respectively.

Slowly rotating regular and black hole solutions to the EYM equations were
recently established in [22]. Using the reduction of the EYM action in the
presence of a stationary symmetry reveals that the perturbations giving rise to
non-vanishing angular momentum are governed by a self-adjoint system of equa-
tions for a set of gauge invariant fluctuations [19]. For a soliton background the
solutions to the perturbation equations describe charged, rotating excitations
of the Bartnik-McKinnon solitons [4]. In the black hole case the excitations

23In the Abelian case, the proof rests on the fact that the field tensor satisfies F (k,m) =
(∗F )(k,m) = 0, k and m being the stationary and the axial Killing field, respectively. For
Yang-Mills fields these conditions do no longer follow from the field equations and the invari-
ance properties; see Sect. 6.1 for details.

24There are other matter models for which the Papetrou metric is sufficiently general: The
proof of the circularity theorem for self-gravitating scalar fields is, for instance, straightforward
[86].

25Although non-rotating, these configurations were not discussed in Sect. 3.2; in the present
context I prefer to view them as particular circular configurations.

26The related axisymmetric soliton solutions without spherical symmetry were previously
obtained by the same authors [113], [114]; see also [112] for more details.

27The solutions themselves are neutral and not spherically symmetric; however, their lim-
iting configurations are charged and spherically symmetric.
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are combinations of two branches of stationary perturbations: The first branch
comprises charged black holes with vanishing angular momentum,28 whereas
the second one consists of neutral black holes with non-vanishing angular mo-
mentum.29 In the presence of bosonic matter, such as Higgs fields, the slowly
rotating solitons cease to exist, and the two branches of black hole excitations
merge to a single one with a prescribed relation between charge and angular
momentum [19].

28We have already mentioned in Sect. 3.4 that these black holes present counter-examples
to the naive generalization of the staticity theorem, they are nice illustrations of the correct
non-Abelian version of the theorem [167], [168].

29A particular combination of the charged and the rotating branch was found in [175].
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4 Stationary Space-Times

For physical reasons, the black hole equilibrium states are expected to be sta-
tionary. Space-times admitting a Killing symmetry exhibit a variety of interest-
ing features, some of which will be discussed in this section. In particular, the
existence of a Killing field implies a canonical 3+1 decomposition of the metric.
The projection formalism arising from this structure was developed by Geroch
in the early seventies [71], [70], and can be found in chapter 16 of the book on
exact solutions by Kramer et al. [117].

A slightly different, rather powerful approach to stationary space-times is
obtained by taking advantage of their Kaluza-Klein (KK) structure. As this
approach is less commonly used in the present context, we will discuss the KK
reduction of the Einstein-Hilbert(-Maxwell) action in some detail, (the more so
since this yields an efficient derivation of the Ernst equations and the Mazur
identity). Moreover, the inclusion of non-Abelian gauge fields within this frame-
work [19] reveals a decisive structural difference between the Einstein-Maxwell
(EM) and the Einstein-Yang-Mills (EYM) system. Before discussing the dimen-
sional reduction of the field equations in the presence of a Killing field, we start
this section by recalling the concept of the Killing horizon.

4.1 Killing Horizons

The black hole region of an asymptotically flat spacetime (M, g) is the part of
M which is not contained in the causal past of future null infinity.30 Hence,
the event horizon, being defined as the boundary of the black hole region, is
a global concept. Of crucial importance to the theory of black holes is the
strong rigidity theorem, which implies that the event horizon of a stationary
spacetime is a Killing horizon.31 The definition of the latter is of purely local
nature: Consider a Killing field ξ, say, and the set of points where ξ is null,
N ≡ (ξ , ξ) = 0. A connected component of this set which is a null hyper-
surface, (dN , dN) = 0, is called a Killing horizon, H[ξ]. Killing horizons
possess a variety of interesting properties:32

• An immediate consequence of the above definition is the fact that ξ and
dN are proportional on H[ξ]. (Note that (ξ , dN) = 0, since LξN = 0,
and that two orthogonal null vectors are proportional.) This suggests the
following definition of the surface gravity, κ,

dN = −2κ ξ on H[ξ] . (1)

Since the Killing equation implies dN = −2∇ξξ, the above definition
shows that the surface gravity measures the extent to which the parametriza-
tion of the geodesic congruence generated by ξ is not affine.

30More precisely, the definition applies to strongly asymptotically predictable space-times;
see [178], Chap. 12 for the exact statements.

31See Sect. 2.1 and Sect. 3.5 for more information on the rigidity theorem.
32We refer to [33] and [87], Chap. 6.3 and Chap. 6.4 for derivations and more details.
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• A theorem due to Vishveshwara [172] gives a characterization of the Killing
horizon H[ξ] in terms of the twist ω of ξ:33 The surface N ≡ (ξ , ξ) = 0
is a Killing horizon if and only if

ω = 0 and iξdξ 6= 0 on N = 0. (2)

• Using general identities for Killing fields34 one can derive the following
explicit expressions for κ:

κ2 = −
[

1
N

(∇ξξ , ∇ξξ)
]
H[ξ]

= −
[

1
4

∆N
]
H[ξ]

. (3)

Introducing the four velocity u = ξ/
√
−N for a time-like ξ, the first ex-

pression shows that the surface gravity is the limiting value of the force
applied at infinity to keep a unit mass at H[ξ] in place: κ = lim(

√
−N |a|),

where a = ∇uu (see, e.g. [178]).

• Of crucial importance to the zeroth law of black hole physics (to be dis-
cussed below) is the fact that the (ξξ)-component of the Ricci tensor
vanishes on the horizon,

R(ξ, ξ) = 0 on H[ξ]. (4)

This follows from the above expressions for κ and the general Killing field
identity 2NR(ξ, ξ) = 4 (∇ξξ , ∇ξξ)−N∆N − 4 (ω , ω).

It is an interesting fact that the surface gravity plays a similar role in the
theory of stationary black holes as the temperature does in ordinary thermo-
dynamics. Since the latter is constant for a body in thermal equilibrium, the
result

κ = constant on H[ξ] (5)

is usually called the zeroth law of black hole physics [3]. The zeroth law can be
established by different means: Each of the following alternatives is sufficient to
prove that κ is uniform over the Killing horizon generated by ξ.

• (i) Einstein’s equations are fulfilled with matter satisfying the dominant
energy condition.

• (ii) The domain of outer communications is either static or circular.

• (iii) H[ξ] is a bifurcate Killing horizon.

(i) The original proof of the zeroth law rests on the first assumption [3].
The reasoning is as follows: First, Einstein’s equations and the fact that R(ξ, ξ)
vanishes on the horizon (see above), imply that T (ξ, ξ) = 0 on H[ξ]. Hence,

33See, e.g. [47], pg. 239 or [87], pg. 92 for the proof.
34For a compilation of Killing field identities we refer to [87], Chap. 2.
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the one-form T (ξ)35 is perpendicular to ξ and, therefore, space-like or null on
H[ξ]. On the other hand, the dominant energy condition requires that T (ξ) is
time-like or null. Thus, T (ξ) is null on the horizon. Since two orthogonal null
vectors are proportional, one has, using Einstein’s equations again, ξ∧R(ξ) = 0
on H[ξ]. The result that κ is uniform over the horizon now follows from the
general property36

ξ ∧ dκ = − ξ ∧R(ξ) on H[ξ]. (6)

(ii) By virtue of Eq. (6) and the general Killing field identity dω = ∗[ξ∧R(ξ)],
the zeroth law follows if one can show that the twist one-form is closed on the
horizon [147]:

[dω]H[ξ] = 0 =⇒ κ = constant on H[ξ]. (7)

While the original proof (i) takes advantage of Einstein’s equations and the
dominant energy condition to conclude that the twist is closed, one may also
achieve this by requiring that ω vanishes identically,37 which then proves the
second version of the first zeroth law.38

(iii) The third version of the zeroth law, due to Kay and Wald [105], is
obtained for bifurcate Killing horizons. Computing the derivative of the surface
gravity in a direction tangent to the bifurcation surface shows that κ cannot vary
between the null-generators. (It is clear that κ is constant along the generators.)
The bifurcate horizon version of the zeroth law is actually the most general one:
First, it involves no assumptions concerning the matter fields. Second, the work
of Rácz and Wald strongly suggests that all physically relevant Killing horizons
are either of bifurcate type or degenerate [146], [147].

4.2 Reduction of the Einstein-Hilbert Action

By definition, a stationary spacetime (M, g) admits an asymptotically time-
like Killing field, that is, a vector field k with Lkg = 0, Lk denoting the Lie
derivative with respect to k. At least locally, M has the structure Σ×G, where
G ≈ IR denotes the one-dimensional group generated by the Killing symmetry,
and Σ is the three-dimensional quotient space M/G. A stationary spacetime is
called static, if the integral trajectories of k are orthogonal to Σ.

With respect to the adapted time coordinate t, defined by k ≡ ∂t, the
metric of a stationary spacetime is parametrized in terms of a three-dimensional
(Riemannian) metric ḡ ≡ ḡijdxidxj , a one-form a ≡ aidxi, and a scalar field σ,
where stationarity implies that ḡij , ai and σ are functions on (Σ, ḡ):

g = −σ(dt+ a)2 +
1
σ
ḡ. (8)

35T (ξ) is the one-form with components [T (ξ)]µ ≡ Tµνξν .
36The derivation of Eq. (6) is the main task; see, e.g. [178].
37The fact that ω vanishes always on the horizon is, of course, not sufficient to conclude

that dω vanishes as well on Hξ].
38This is obvious for static configurations, since ξ coincides with the static Killing field. In

the circular case one also needs to show that (m, ωk) = (k , ωm) = 0 implies dωξ = 0 on the
horizon generated by ξ = k + Ωm; see [87], Chap. 7 for details).
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Using Cartan’s structure equations (see, e.g. [165]), it is a straightforward
task to compute the Ricci scalar for the above decomposition of the spacetime
metric39. The result shows that the Einstein-Hilbert action of a stationary
spacetime reduces to the action for a scalar field σ and an Abelian vector field
a, which are coupled to three-dimensional gravity. The fact that this coupling
is minimal is a consequence of the particular choice of the conformal factor in
front of the three-metric ḡ in the decomposition (8). The vacuum field equations
are, therefore, equivalent to the three-dimensional Einstein-matter equations
obtained from variations of the effective action

Seff =
∫
∗̄
(
R̄ − 1

2σ2
〈dσ , dσ〉 +

σ2

2
〈da , da〉

)
, (9)

with respect to ḡij , σ and a. (Here and in the following R̄ and 〈 , 〉 denote the
Ricci scalar and the inner product40 with respect to ḡ.)

It is worth noting that the quantities σ and a are related to the norm and
the twist of the Killing field as follows:

σ = −g(k, k) , ω ≡ 1
2
∗ (k ∧ dk) = − 1

2
σ2∗̄da , (10)

where ∗ and ∗̄ denote the Hodge dual with respect to g and ḡ, respectively41.
Since a is the connection of a fiber bundle with base space Σ and fiber G, it
behaves like an Abelian gauge potential under coordinate transformations of the
form t → t + ϕ(xi). Hence, it enters the effective action in a gauge-invariant
way, that is, only via the “Abelian field strength”, f ≡ da.

4.3 The Coset Structure of Vacuum Gravity

For many applications, in particular for the black hole uniqueness theorems, it
is of crucial importance that the one-form a can be replaced by a function (twist
potential). We have already pointed out that a, parametrizing the non-static
part of the metric, enters the effective action (9) only via the field strength,
f ≡ da. For this reason, the variational equation for a (that is, the off-diagonal
Einstein equation) assumes the form of a source-free Maxwell equation,

d∗̄
(
σ2da

)
= 0 =⇒ dY ≡ −∗̄

(
σ2da

)
. (11)

By virtue of Eq. (10), the (locally defined) function Y is a potential for the twist
one-form, dY = 2ω. In order to write the effective action (9) in terms of the twist
potential Y , rather than the one-form a, one considers f ≡ da as a fundamental
field and imposes the constraint df = 0 with the Lagrange multiplier Y . The
variational equation with respect to f then yields f = −∗̄(σ−2dY ), which is used

39See, e.g. [91] for the details of the derivation.
40For arbitrary p-forms α and β the inner product is defined by ∗̄〈α , β〉 ≡ α ∧ ∗̄β, where ∗̄

is the Hodge dual with respect to ḡ.
41Here and in the following we use the symbol k for both the Killing field ∂t and the

corresponding one-form −σ(dt+ a).
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to eliminate f in favor of Y . One finds 1
2σ

2f ∧ ∗̄f−Y df → − 1
2σ
−2dY ∧ ∗̄dY .

Thus, the action (9) becomes

Seff =
∫
∗̄
(
R̄ − 〈dσ , dσ〉+ 〈dY , dY 〉

2σ2

)
, (12)

where we recall that 〈 , 〉 is the inner product with respect to the three-metric
ḡ defined in Eq. (8).

The action (12) describes a harmonic mapping into a two-dimensional target
space, effectively coupled to three-dimensional gravity. In terms of the complex
Ernst potential E [52], [53], one has

Seff =
∫
∗̄
(
R̄ − 2

〈dE , dĒ〉
(E + Ē)2

)
, E ≡ σ + iY . (13)

The stationary vacuum equations are obtained from variations with respect to
the three-metric ḡ [(ij)-equations] and the Ernst potential E [(0µ)-equations].
One easily finds R̄ij = 2(E+Ē)−2E,i Ē,j and ∆̄E = 2(E+Ē)−1〈dE , dE〉, where
∆̄ is the Laplacian with respect to ḡ.

The target space for stationary vacuum gravity, parametrized by the Ernst
potential E, is a Kähler manifold with metric GEĒ = ∂E∂Ē ln(σ) (see [60] for
details). By virtue of the mapping

E 7→ z =
1− E
1 + E

, (14)

the semi-plane where the Killing field is time-like, Re(E) > 0, is mapped into
the interior of the complex unit disc, D = {z ∈ C | |z| < 1}, with standard
metric (1− |z|2)−2〈dz , dz̄〉. By virtue of the stereographic projection, Re(z) =
x1(x0 + 1)−1, Im(z) = x2(x0 + 1)−1, the unit disc D is isometric to the pseudo-
sphere, PS2 = {(x0, x1, x2) ∈ IR3 | −(x0)2 + (x1)2 + (x2)2 = −1}. As the
three-dimensional Lorentz group, SO(2, 1), acts transitively and isometrically
on the pseudo-sphere with isotropy group SO(2), the target space is the coset
PS2 ≈ SO(2, 1)/SO(2)42. Using the universal covering SU(1, 1) of SO(2, 1),
one can parametrize PS2 ≈ SU(1, 1)/U(1) in terms of a positive hermitian
matrix Φ(x), defined by

Φ(x) =
(

x0 x1 + i x2

x1 − i x2 x0

)
=

1
1− |z|2

(
1 + |z|2 2 z

2 z̄ 1 + |z|2
)
. (15)

Hence, the effective action for stationary vacuum gravity becomes the standard
action for a σ-model coupled to three-dimensional gravity [139],

Seff =
∫
∗̄
(
R̄ − 1

4
Trace〈Φ−1dΦ , Φ−1dΦ〉

)
. (16)

42See, e.g. [116] or [10] for the general theory of symmetric spaces.
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The simplest nontrivial solution to the vacuum Einstein equations is obtained
in the static, spherically symmetric case: For E = σ(r) one has 2R̄rr = (σ′/σ)2

and ∆̄ ln(σ) = 0. With respect to the general spherically symmetric ansatz

ḡ = dr2 + ρ2(r)dΩ2, (17)

one immediately obtains the equations −4ρ′′/ρ = (σ′/σ)2 and (ρ2σ′/σ)′ = 0,
the solution of which is the Schwarzschild metric in the usual parametrization:
σ = 1− 2M/r, ρ2 = σ(r)r2.

4.4 Stationary Gauge Fields

The reduction of the Einstein-Hilbert action in the presence of a Killing field
yields a σ-model which is effectively coupled to three-dimensional gravity. While
this structure is retained for the EM system, it ceases to exist for self-gravitating
non-Abelian gauge fields. In order to perform the dimensional reduction for the
EM and the EYM equations, we need to recall the notion of a symmetric gauge
field.

In mathematical terms, a gauge field (with gauge group G, say) is a connec-
tion in a principal bundle P (M,G) over spacetime M . A gauge field is called
symmetric with respect to the action of a symmetry group S of M , if it is de-
scribed by an S-invariant connection on P (M,G). Hence, finding the symmetric
gauge fields involves the task of classifying the principal bundles P (M,G) which
admit the symmetry group S, acting by bundle automorphisms. This program
was recently carried out by Brodbeck and Straumann for arbitrary gauge and
symmetry groups [17], (see also [18], [23]), generalizing earlier work of Harnad
et al. [80], Jadczyk [104] and Künzle [121].

The gauge fields constructed in the above way are invariant under the action
of S up to gauge transformations. This is also the starting point of the alterna-
tive approach to the problem, due to Forgács and Manton [54]. It implies that
a gauge potential A is symmetric with respect to the action of a Killing field ξ,
say, if there exists a Lie algebra valued function Vξ, such that

LξA = DVξ , (18)

where Vξ is the generator of an infinitesimal gauge transformation, Lξ denotes
the Lie derivative, and D is the gauge covariant exterior derivative, DVξ =
dVξ + [A,Vξ].

Let us now consider a stationary spacetime with (asymptotically) time-like
Killing field k. A stationary gauge potential is parametrized in terms of a one-
form Ā orthogonal to k, Ā(k) = 0, and a Lie algebra valued potential φ,

A = φ (dt+ a) + Ā , (19)

where we recall that a is the non-static part of the metric (8). For the sake
of simplicity we adopt a gauge where Vk vanishes.43 By virtue of the above

43The symmetry condition (18) translates into Lkφ = [φ,V] and LkĀ = D̄V, which can be
used to reduce the EYM equations in the presence of a Killing symmetry in a gauge invariant
manner [94], [95].
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decomposition, the field strength becomes F = D̄φ∧ (dt+ a) + (F̄ +φf), where
F̄ is the Yang-Mills field strength for Ā and f ≡ da. Using the expression (12)
for the vacuum action, one easily finds that the EYM action,

SEYM =
∫ (
∗R− 2 t̂r {F ∧ ∗F}

)
, (20)

gives rise to the effective action44

Seff =
∫
∗̄
(
R̄− 1

2σ2
|dσ|2 +

σ2

2
|f |2 +

2
σ
|D̄φ|2 − 2σ|F̄ + φ f |2

)
, (21)

where D̄ is the gauge covariant derivative with respect to Ā, and where the
inner product also involves the trace: ∗̄|F̄ |2 ≡ t̂r

{
F̄ ∧ ∗̄F̄

}
. The above action

describes two scalar fields, σ and φ, and two vector fields, a and Ā, which
are minimally coupled to three-dimensional gravity with metric ḡ. Like in the
vacuum case, the connection a enters Seff only via the field strength f ≡ da.
Again, this gives rise to a differential conservation law,

d∗̄
[
σ2f − 4σ t̂r

{
φ(F̄ + φf)

}]
= 0, (22)

by virtue of which one can (locally) introduce a generalized twist potential Y ,
defined by −dY = ∗̄[. . .].

The main difference between the Abelian and the non-Abelian case concerns
the variational equation for Ā, that is, the Yang-Mills equation for F̄ : The
latter assumes the form of a differential conservation law only in the Abelian
case. For non-Abelian gauge groups, F̄ is no longer an exact two-form, and
the gauge covariant derivative of φ causes source terms in the corresponding
Yang-Mills equation:

D̄
[
σ∗̄
(
F̄ + φf

)]
= σ−1∗̄

[
φ , D̄φ

]
. (23)

Hence, the scalar magnetic potential – which can be introduced in the Abelian
case according to dψ ≡ σ∗̄(F̄ + φf) – ceases to exist for non-Abelian Yang-
Mills fields. The remaining stationary EYM equations are easily derived from
variations of Seff with respect to the gravitational potential σ, the electric Yang-
Mills potential φ and the three-metric ḡ.

As an application, we note that the effective action (21) is particularly suited
for analyzing stationary perturbations of static (a = 0), purely magnetic (φ = 0)
configurations [19], such as the Bartnik-McKinnon solitons [4] and the corre-
sponding black hole solutions [174], [122], [9]. The two crucial observations in
this context are [19], [175]:

• (i) The only perturbations of the static, purely magnetic EYM solutions
which can contribute the ADM angular momentum are the purely non-
static, purely electric ones, δa and δφ.

44 t̂r { } denotes the normalized trace; e.g. t̂r {τaτb} = δab for SU(2), where τa ≡ σa/(2i).
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• (ii) In first order perturbation theory the relevant fluctuations, δa and δφ,
decouple from the remaining metric and matter perturbations

The second observation follows from the fact that the magnetic Yang-Mills equa-
tion (23) and the Einstein equations for σ and ḡ become background equations,
since they contain no linear terms in δa and δφ. The purely electric, non-static
perturbations are, therefore, governed by the twist equation (22) and the electric
Yang-Mills equation (obtained from variations of Seff with respect to φ).

Using Eq. (22) to introduce the twist potential Y , the fluctuation equations
for the first order quantities δY and δφ assume the form of a self-adjoint system
[19]. Considering perturbations of spherically symmetric configurations, one
can expand δY and δφ in terms of isospin harmonics. In this way one obtains a
Sturm-Liouville problem, the solutions of which reveal the features mentioned
in the last paragraph of Sect. 3.5 [22].

4.5 The Stationary Einstein-Maxwell System

In the Abelian case, both the off-diagonal Einstein equation (22) and the Maxwell
equation (23) give rise to scalar potentials, (locally) defined by

dψ ≡ σ∗̄
(
F̄ + φf

)
, dY ≡ −σ2∗̄f + 2φdψ − 2ψdφ. (24)

Like for the vacuum system, this enables one to apply the Lagrange multiplier
method in order to express the effective action in terms of the scalar fields Y
and ψ, rather than the one-forms a and Ā. As one is often interested in the
dimensional reduction of the EM system with respect to a space-like Killing
field, we give here the general result for an arbitrary Killing field ξ with norm
N :

Seff =
∫
∗̄
(
R̄− 2

|dφ|2 + |dψ|2

N
− |dN |

2 + |dY − 2φdψ + 2ψdφ|2

2 N2

)
, (25)

where ∗̄|dφ|2 ≡ dφ ∧ ∗̄dφ, etc. The electro-magnetic potentials φ and ψ and
the gravitational scalars N and Y are obtained from the four-dimensional field
strength F and the Killing field (one form) as follows:45

dφ = −iξF , dψ = iξ ∗ F, (26)

N = (ξ , ξ) , dY = 2 (ω + φdψ − ψdφ) , (27)

where 2ω ≡ ∗(ξ∧dξ). The inner product 〈 , 〉 is taken with respect to the three-
metric ḡ, which becomes pseudo-Riemannian if ξ is space-like. In the stationary
and axisymmetric case, to be considered in Sect. 6, the Kaluza-Klein reduction
will be performed with respect to the space-like Killing field. The additional
stationary symmetry will then imply that the inner products in (25) have a fixed
sign, despite the fact that ḡ is not a Riemannian metric in this case.

45For an arbitrary two-form β, iξβ is the one-form with components ξµβµν .

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://www.livingreviews.org


25 Stationary Black Holes: Uniqueness and Beyond

The action (25) describes a harmonic mapping into a four-dimensional target
space, effectively coupled to three-dimensional gravity. In terms of the complex
Ernst potentials, Λ ≡ −φ + iψ and E ≡ −N − ΛΛ̄ + iY [52], [53], the effective
EM action becomes

Seff =
∫
∗̄
(
R̄− 2

| dΛ |2

N
− 1

2
| dE + 2Λ̄dΛ |2

N2

)
, (28)

where |dΛ|2 ≡ 〈dΛ , dΛ〉. The field equations are obtained from variations
with respect to the three-metric ḡ and the Ernst potentials. In particular, the
equations for E and Λ become

∆̄E = −〈dE , dE + 2Λ̄dΛ〉
N(E,Λ)

, ∆̄Λ = −〈dΛ , dE + 2Λ̄dΛ〉
N(E,Λ)

, (29)

where −N = ΛΛ̄ + 1
2 (E + Ē). The isometries of the target manifold are ob-

tained by solving the respective Killing equations [139] (see also [107], [108],
[109], [110]). This reveals the coset structure of the target space and provides
a parametrization of the latter in terms of the Ernst potentials. For vacuum
gravity we have seen in Sect. 4.3 that the coset space, G/H, is SU(1, 1)/U(1),
whereas one finds G/H = SU(2, 1)/S(U(1, 1) × U(1)) for the stationary EM
equations. If the dimensional reduction is performed with respect to a space-like
Killing field, then G/H = SU(2, 1)/S(U(2)×U(1)). The explicit representation
of the coset manifold in terms of the above Ernst potentials, E and Λ, is given
by the hermitian matrix Φ, with components

ΦAB = ηAB + 2sig(N)v̄AvB , (v0, v1, v2) ≡ 1
2
√
|N|

(E− 1,E + 1, 2Λ), (30)

where vA is the Kinnersley vector [106], and η ≡ diag(−1,+1,+1). It is straight-
forward to verify that, in terms of Φ, the effective action (28) assumes the
SU(2, 1) invariant form

Seff =
∫
∗̄
(
R̄ − 1

4
Trace〈J , J 〉

)
, with J ≡ Φ−1dΦ , (31)

where Trace〈J , J 〉 ≡ 〈J AB , J BA〉 ≡ ḡij(Ji)AB(Jj)BA. The equations of motion
following from the above action are the three-dimensional Einstein equations
(obtained from variations with respect to ḡ) and the σ-model equations (ob-
tained from variations with respect to Φ):

R̄ij =
1
4

Trace{Ji Jj} , d∗̄J = 0 . (32)

By virtue of the Bianchi identity, ∇̄jḠij = 0, and the definition Ji ≡ Φ−1∇̄iΦ,
the σ-model equations are the integrability conditions for the three-dimensional
Einstein equations.
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5 Applications of the Coset Structure

The σ-model structure is responsible for various distinguished features of the
stationary Einstein-Maxwell (EM) system and related self-gravitating matter
models. This section is devoted to a brief discussion of some applications: We
argue that the Mazur identity [133], the quadratic mass formulas [89] and the
Israel-Wilson class of stationary black holes [102], [145] owe their existence to
the σ-model structure of the stationary field equations.

5.1 The Mazur Identity

In the presence of a second Killing field, the EM equations (32) experience fur-
ther, considerable simplifications, which will be discussed later. In this section
we will not yet require the existence of an additional Killing symmetry. The
Mazur identity [133], which is the key to the uniqueness theorem for the Kerr-
Newman metric [131], [132], is a consequence of the coset structure of the field
equations, which only requires the existence of one Killing field.46

In order to obtain the Mazur identity, one considers two arbitrary hermitian
matrices, Φ1 and Φ2. The aim is to compute the Laplacian (with respect to an
arbitrary metric ḡ) of the relative difference Ψ, say, between Φ2 and Φ1,

Ψ ≡ Φ2Φ−1
1 − 1l. (33)

It turns out to be convenient to introduce the current matrices J1 = Φ−1
1 ∇̄Φ1

and J2 = Φ−1
2 ∇̄Φ2, and their difference J4 = J2 − J1, where ∇̄ denotes

the covariant derivative with respect to the metric under consideration. Using
∇̄Ψ = Φ2 J4Φ−1

1 , the Laplacian of Ψ becomes

∆̄Ψ = 〈∇̄Φ2 , J4〉Φ−1
1 + Φ2 〈J4 , ∇̄Φ−1

1 〉+ Φ2 (∇̄J4) Φ−1
1 .

For hermitian matrices one has ∇̄Φ2 = J †2 Φ2 and ∇̄Φ−1
1 = −Φ−1

1 J
†
1 , which can

be used to combine the trace of the first two terms on the RHS of the above
expression. One easily finds

Trace
{

∆̄Ψ
}

= Trace
{
〈Φ−1

1 J
†
4 , Φ2J4〉+ Φ2 (∇̄J4) Φ−1

1

}
. (34)

The above expression is an identity for the relative difference of two arbi-
trary hermitian matrices. If the latter are solutions of a non-linear σ-model
with action

∫
Trace {J ∧ ∗̄J }, then their currents are conserved [see Eq. (32)],

implying that the second term on the RHS vanishes. Moreover, if the σ-
model describes a mapping with coset space SU(p, q)/S(U(p) × U(q)), then
this is parametrized by positive hermitian matrices of the form Φ = gg†.47

46The second Killing field is of crucial importance to the two-dimensional boundary value
formulation of the field equations and to the integration of the Mazur identity. However,
the derivation of the identity in the two-dimensional context is somewhat unnatural, since
the dimensional reduction with respect to the second Killing field introduces a weight factor
which is slightly veiling the σ-model structure [32].

47We refer to [116], [51], and [10] for the theory of symmetric spaces.
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Hence, the “on-shell” restriction of the Mazur identity to σ-models with coset
SU(p, q)/S(U(p)× U(q)) becomes

Trace
{

∆̄Ψ
}

= Trace〈M ,M†〉, (35)

where M≡ g−1
1 J

†
4g2.

Of decisive importance to the uniqueness proof for the Kerr-Newman metric
is the fact that the RHS of the above relation is non-negative. In order to achieve
this one needs two Killing fields: The requirement that Φ be represented in the
form gg† forces the reduction of the EM system with respect to a space-like
Killing field; otherwise the coset is SU(2, 1)/S(U(1, 1)× U(1)), which is not of
the desired form. As a consequence of the space-like reduction, the three-metric
ḡ is not Riemannian, and the RHS of Eq. (35) is indefinite, unless the matrix
valued one-form M is space-like. This is the case if there exists a time-like
Killing field with LkΦ = 0, implying that the currents are orthogonal to k:
J (k) = ikΦ−1dΦ = Φ−1LkΦ = 0. The reduction of Eq. (35) with respect to
the second Killing field and the integration of the resulting expression will be
discussed in Sect. 6.

5.2 Mass Formulae

The stationary vacuum Einstein equations describe a two-dimensional σ-model
which is effectively coupled to three-dimensional gravity. The target manifold is
the pseudo-sphere SO(2, 1)/SO(2) ≈ SU(1, 1)/U(1), which is parametrized in
terms of the norm and the twist potential of the Killing field (see Sect. 4.3). The
symmetric structure of the target space persists for the stationary EM system,
where the four-dimensional coset, SU(2, 1)/S(U(1, 1)×U(1)), is represented by
a hermitian matrix Φ, comprising the two electro-magnetic scalars, the norm of
the Killing field and the generalized twist potential (see Sect. 4.5).

The coset structure of the stationary field equations is shared by various self-
gravitating matter models with massless scalars (moduli) and Abelian vector
fields. For scalar mappings into a symmetric target space Ḡ/H̄, say, Breiten-
lohner et al. [15] have classified the models admitting a symmetry group which
is sufficiently large to comprise all scalar fields arising on the effective level48

within one coset space, G/H. A prominent example of this kind is the EM-
dilaton-axion system, which is relevant toN = 4supergravity and to the bosonic
sector of four-dimensional heterotic string theory: The pure dilaton-axion sys-
tem has an SL(2, IR) symmetry which persists in dilaton-axion gravity with
an Abelian gauge field [61]. Like the EM system, the model also possesses an
SO(1, 2) symmetry, arising from the dimensional reduction with respect to the
Abelian isometry group generated by the Killing field. Gal’tsov and Kechkin
[63], [64] have shown that the full symmetry group is, however, larger than
SL(2, IR) × SO(1, 2): The target space for dilaton-axion gravity with an U(1)

48In addition to the actual scalar fields, the effective action comprises two gravitational
scalars (the norm and the generalized twist potential) and two scalars for each stationary
Abelian vector field (electric and magnetic potentials).
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vector field is the coset SO(2, 3)/(SO(2) × SO(1, 2)) [62]. Using the fact that
SO(2, 3) is isomorphic to Sp(4, IR), Gal’tsov and Kechkin [65] were also able to
give a parametrization of the target space in terms of 4×4 (rather than 5×5)
matrices. The relevant coset was shown to be Sp(4, IR)/U(1, 1).49

Common to the black hole solutions of the above models is the fact that
their Komar mass can be expressed in terms of the total charges and the area
and surface gravity of the horizon [89]. The reason for this is the following:
Like the EM equations (32), the stationary field equations consist of the three-
dimensional Einstein equations and the σ-model equations,

R̄ij =
1
4

Trace {Ji Jj} , d∗̄J = 0 . (36)

The current one-form J ≡ Φ−1dΦ is given in terms of the hermitian matrix
Φ, which comprises all scalar fields arising on the effective level. The σ-model
equations, d∗̄J = 0, include dim(G) differential current conservation laws, of
which dim(H) are redundant. Integrating all equations over a space-like hyper-
surface extending from the horizon to infinity, Stokes’ theorem yields a set of
relations between the charges and the horizon-values of the scalar potentials.50

The crucial observation is that Stokes’ theorem provides dim(G) independent
Smarr relations, rather than only dim(G/H) ones. (This is due to the fact that
all σ-model currents are algebraically independent, although there are dim(H)
differential identities which can be derived from the dim(G/H) field equations.)

The complete set of Smarr type formulas can be used to get rid of the horizon-
values of the scalar potentials. In this way one obtains a relation which involves
only the Komar mass, the charges and the horizon quantities. For the EM-
dilaton-axion system one finds, for instance [89],(

1
4π
κA
)2

= M2 +N2 +D2 +A2 −Q2 − P 2, (37)

where κ and A are the surface gravity and the area of the horizon, and the
RHS comprises the asymptotic flux integrals, that is, the total mass, the NUT
charge, the dilaton and axion charges, and the electric and magnetic charges,
respectively.51

A very simple illustration of the idea outlined above is the static, purely
electric EM system. In this case, the electrovac coset SU(2, 1)/S(U(1, 1)×U(1))
reduces to G/H = SU(1, 1)/IR. The matrix Φ is parametrized in terms of

49For the generalization to the dilaton-axion system with multiple vector fields we refer to
[66], [68].

50A very familiar relation of this kind is the Smarr formula [161]; see Eq. (40) below.
51The derivation of Eq. (37) is not restricted to static configurations. However, when

evaluating the surface terms, one assumes that the horizon is generated by the same Killing
field which is also used in the dimensional reduction; the asymptotically time-like Killing
field k. A generalization of the method to rotating black holes requires the evaluation of the
potentials (defined with respect to k) on a Killing horizon which is generated by ` = k+ΩHm,
rather than k.
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the electric potential φ and the gravitational potential σ ≡ −kµkµ. The σ-
model equations comprise dim(G) = 3 differential conservation laws, of which
dim(H) = 1 is redundant:

d∗̄
(

dφ
σ

)
= 0, d∗̄

(
dσ
σ
− 2φ

dφ
σ

)
= 0, (38)

d∗̄
((
σ + φ2

) dφ
σ
− φ dσ

σ

)
= 0. (39)

[It is immediately verified that Eq. (39) is indeed a consequence of the Maxwell
and Einstein Eqs. (38).] Integrating Eqs. (38) over a space-like hyper-surface
and using Stokes’ theorem yields52

Q = QH , M =
κ

4π
A + φHQH , (40)

which is the well-known Smarr formula. In a similar way, Eq. (39) provides an
additional relation of the Smarr type,

Q = 2φH
κ

4π
A + φ2

HQH , (41)

which can be used to compute the horizon-value of the electric potential, φH .
Using this in the Smarr formula (40) gives the desired expression for the total
mass, M2 = (κA/4π)2 +Q2.

In the “extreme” case, the BPS bound [75] for the static EM-dilaton-axion
system, 0 = M2+D2+A2−Q2−P 2, was previously obtained by constructing the
null geodesics of the target space [45]. For spherically symmetric configurations
with non-degenerate horizons (κ 6= 0), Eq. (37) was derived by Breitenlohner
et al. [15]. In fact, many of the spherically symmetric black hole solutions with
scalar and vector fields [73], [76], [69] are known to fulfill Eq. (37), where the
LHS is expressed in terms of the horizon radius (see [67] and references therein).
Using the generalized first law of black hole thermodynamics, Gibbons et al. [72]
recently obtained Eq. (37) for spherically symmetric solutions with an arbitrary
number of vector and moduli fields.

The above derivation of the mass formula (37) is neither restricted to spher-
ically symmetric configurations, nor are the solutions required to be static. The
crucial observation is that the coset structure gives rise to a set of Smarr for-
mulas which is sufficiently large to derive the desired relation. Although the
result (37) was established by using the explicit representations of the EM and
EM-dilaton-axion coset spaces [89], similar relations are expected to exist in the
general case. More precisely, it should be possible to show that the Hawking
temperature of all asymptotically flat (or asymptotically NUT) non-rotating
black holes with massless scalars and Abelian vector fields is given by

TH =
2
A

√∑
(QS)2 −

∑
(QV )2 , (42)

52Here one uses the fact that the electric potential assumes a constant value on the horizon.
The quantity QH is defined by the flux integral of ∗F over the horizon (at time Σ), while the
corresponding integral of ∗dk gives κA/4π; see [89] for details.
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provided that the stationary field equations assume the form (36), where Φ is a
map into a symmetric space, G/H. Here QS and QV denote the charges of the
scalars (including the gravitational ones) and the vector fields, respectively.

5.3 The Israel-Wilson Class

A particular class of solutions to the stationary EM equations is obtained by
requiring that the Riemannian manifold (Σ, ḡ) is flat [102]. For ḡij = δij , the
three-dimensional Einstein equations obtained from variations of the effective
action (28) with respect to ḡ become53

4σΛ,i Λ̄,j =
(
E,i +2Λ̄Λ,i

) (
Ē,j +2ΛΛ̄,j

)
. (43)

Israel and Wildon [102] have shown that all solutions of this equation fulfill
Λ = c0 + c1E. In fact, it is not hard to verify that this ansatz solves Eq. (43),
provided that the complex constants c0 and c1 are subject to c0c̄1+c1c̄0 = −1/2.
Using asymptotic flatness, and adopting a gauge where the electro-magnetic
potentials and the twist potential vanish in the asymptotic regime, one has
E∞ = 1 and Λ∞ = 0, and thus

Λ =
eiα

2
(1− E) , where α ∈ IR. (44)

It is crucial that this ansatz solves both the equation for E and the one for Λ:
One easily verifies that Eqs. (29) reduce to the single equation

∆̄ (1 + E)−1 = 0, (45)

where ∆̄ is the three-dimensional flat Laplacian.
For static, purely electric configurations the twist potential Y and the mag-

netic potential ψ vanish. The ansatz (44), together with the definitions of the
Ernst potentials, E = σ − |Λ|2 + iY and Λ = −φ+ iψ (see Sect. 4.5), yields

1 + E = 2
√
σ, and φ = 1−

√
σ. (46)

Since σ∞ = 1, the linear relation between φ and the gravitational potential√
σ implies (dσ)∞ = −(2dφ)∞. By virtue of this, the total mass and the total

charge of every asymptotically flat, static, purely electric Israel-Wilson solution
are equal:

M = − 1
8π

∫
∗dk = − 1

4π

∫
∗F = Q, (47)

where the integral extends over an asymptotic two-sphere.54 The simplest non-
trivial solution of the flat Poisson equation (45), ∆̄σ−1/2 = 0, corresponds to a

53As we are considering stationary configurations we use the dimensional reduction with
respect to the asymptotically time-like Killing field k with norm σ = − (k , k) = −N .

54For purely electric configurations one has F = k ∧ dφ/σ. Staticity implies k = −σdt and
thus dk = −k ∧ dσ/σ.

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://www.livingreviews.org


31 Stationary Black Holes: Uniqueness and Beyond

linear combination of n monopole sources ma located at arbitrary points xa,

σ−1/2(x) = 1 +
n∑
a=1

ma

|x− xa|
. (48)

This is the Papapetrou-Majumdar (PM) solution [143], [128], with spacetime
metric g = −σdt2 + σ−1dx2 and electric potential φ = 1 −

√
σ. The PM

metric describes a regular black hole spacetime, where the horizon comprises n
disconnected components.55 In Newtonian terms, the configuration corresponds
to n arbitrarily located charged mass points with |qa| =

√
Gma. The PM

solution escapes the uniqueness theorem for the Reissner-Nordström metric,
since the latter applies exclusively to space-times with M > |Q|.

Non-static members of the Israel-Wilson class were constructed as well [102],
[145]. However, these generalizations of the Papapetrou-Majumdar multi black
hole solutions share certain unpleasant properties with NUT spacetime [140] (see
also [16], [136]). In fact, the work of Hartle and Hawking [81], and Chruściel and
Nadirashvili [42] strongly suggests that – except the PM solutions – all config-
urations obtained by the Israel-Wilson technique are either not asymptotically
Euclidean or have naked singularities. In order to complete the uniqueness the-
orem for the PM metric among the static black hole solutions with degenerate
horizon, it basically remains to establish the equality M = Q under the assump-
tion that the horizon has some degenerate components. Until now, this has been
achieved only by requiring that all components of the horizon have vanishing
surface gravity and that all “horizon charges” have the same sign [90].

55Hartle and Hawking [81] have shown that all real singularities are “hidden” behind these
null surfaces.
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6 Stationary and Axisymmetric Space-Times

The presence of two Killing symmetries yields a considerable simplification of
the field equations. In fact, for certain matter models the latter become com-
pletely integrable [127], provided that the Killing fields satisfy the Frobenius
conditions. Space-times admitting two Killing fields provide the framework for
both the theory of colliding gravitational waves and the theory of rotating black
holes [37]. Although dealing with different physical subjects, the theories are
mathematically closely related. As a consequence of this, various stationary and
axisymmetric solutions which have no physical relevance give rise to interesting
counterparts in the theory of colliding waves.56

This section reviews the structure of the stationary and axisymmetric field
equations. We start by recalling the circularity problem (see also Sect. 2.1 and
Sect. 3.5). It is argued that circularity is not a generic property of asymptoti-
cally flat, stationary and axisymmetric space-times. If, however, the symmetry
conditions for the matter fields do imply circularity, then the reduction with
respect to the second Killing field simplifies the field equations drastically. The
systematic derivation of the Kerr-Newman metric and the proof of its uniqueness
provide impressive illustrations of this fact.

6.1 Integrability Properties of Killing Fields

Our aim here is to discuss the circularity problem in some more detail. We refer
the reader to Sect. 2.1 and Sect. 3.5 for the general context and for references
concerning the staticity and the circularity issues. In both cases, the task is
to use the symmetry properties of the matter model in order to establish the
Frobenius integrability conditions for the Killing field(s). The link between the
relevant components of the stress-energy tensor and the integrability conditions
is provided by a general identity for the derivative of the twist of a Killing field
ξ, say,

dωξ = ∗ [ξ ∧R(ξ)] , (49)

and Einstein’s equations, implying ξ ∧ R(ξ) = 8π[ξ ∧ T (ξ)].57 For a stationary
and axisymmetric spacetime with Killing fields (one-forms) k and m, Eq. (49)
implies58

d (m, ωk) = −8π ∗ [m ∧ k ∧ T (k)] , (50)

56We refer the reader to Chandrasekhar’s comparison between corresponding solutions of
the Ernst equations [36].

57This follows from the definition of the twist and the Ricci identity for Killing fields,
∆ξ = −2R(ξ), where R(ξ) is the one-form with components [R(ξ)]µ ≡ Rµνξν ; see, e.g. [87],
Chap. 2.)

58Equation (50) is an identity up to a term involving the Lie derivative of the twist of the
first Killing field with respect to the second one (since d (m, ωk) = Lmωk− imdωk). In order
to establish Lmωk = 0 it is sufficient to show that k and m commute in an asymptotically flat
spacetime. This was first achieved by Carter [28] and later, under more general conditions,
by Szabados [170].
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and similarly for k ↔ m.59 By virtue of Eq. (50) – and the fact that the
Frobenius condition m ∧ k ∧ dk = 0 can be written as (m, ωk) = 0 – the
circularity problem is reduced to the following two tasks:

• (i) Show that d (m, ωk) = 0 implies (m, ωk) = 0.

• (ii) Establish m ∧ k ∧ T (k) = 0 from the stationary and axisymmetric
matter equations.

(i) Since (m, ωk) is a function, it must be constant if its derivative vanishes.
As m vanishes on the rotation axis, this implies (m, ωk) = 0 in every domain
of spacetime intersecting the axis. (At this point it is worthwhile to recall that
the corresponding step in the staticity theorem requires more effort: Conclud-
ing from dωk = 0 that ωk vanishes is more involved, since ωk is a one-form.
However, using Stoke’s theorem to integrate an identity for the twist [88] shows
that a strictly stationary – not necessarily simply connected – domain of outer
communication must be static if ωk is closed.60)

(ii) While m∧k∧T (k) = 0 follows from the symmetry conditions for electro-
magnetic fields [27] and for scalar fields [86], it cannot be established for non-
Abelian gauge fields [88]. This implies that the usual foliation of spacetime
used to integrate the stationary and axisymmetric Maxwell equations is too
restrictive to treat the Einstein-Yang-Mills (EYM) system. This is seen as
follows: In Sect.(4.4) we have derived the formula (22). By virtue of Eq. (10)
this becomes an expression for the derivative of the twist in terms of the electric
Yang-Mills potential φk (defined with respect to the stationary Killing field k)
and the magnetic one-form ik ∗ F = σ∗̄(F̄ + φf):

d
[
ωk + 4 t̂r {φk ik ∗ F}

]
= 0. (51)

Contracting this relation with the axial Killing field m, and using again the fact
that the Lie derivative of ωk with respect to m vanishes, yields immediately

d (m, ωk) = 0 ⇐⇒ t̂r {φk (∗F ) (k,m)} = 0 . (52)

The difference between the Abelian and the non-Abelian case lies in the cir-
cumstance that the Maxwell equations automatically imply that the (km)-
component of ∗F vanishes,61 whereas this does not follow from the Yang-Mills
equations. Moreover, the latter do not imply that the Lie algebra valued scalars
φk and (∗F ) (k,m) are orthogonal. Hence, circularity is a generic property of
the Einstein-Maxwell (EM) system, whereas it imposes additional requirements
on non-Abelian gauge fields.

Both the staticity and the circularity theorems can be established for scalar
fields or, more generally, scalar mappings with arbitrary target manifolds: Con-
sider a self-gravitating scalar mapping φ : (M, g) → (N,G) with Lagrangian

59The following is understood to apply also for k↔m.
60While this proves the staticity theorem for vacuum and self-gravitating scalar fields [88],

it does not solve the electrovac case; see Sect. 2.1 and Sect. 3.5 and references therein.
61The Maxwell equation d∗F = 0 and the symmetry property Lk ∗F = ∗LkF = 0 imply the

existence of a magnetic potential, dψ = (∗F )(k, · ). Thus, (∗F )(k,m) = imdψ = Lmψ = 0.
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L[φ,dφ, g,G]. The stress energy tensor is of the form

T = PAB dφA ⊗ dφB + P g, (53)

where the functions PAB and P may depend on φ, dφ, the spacetime metric g
and the target metric G. If φ is invariant under the action of a Killing field ξ –
in the sense that LξφA = 0 for each component φA of φ – then the one-form T (ξ)
becomes proportional to ξ: T (ξ) = P ξ. By virtue of the Killing field identity
(49), this implies that the twist of ξ is closed. Hence, the staticity and the
circularity issue for self-gravitating scalar mappings reduce to the corresponding
vacuum problems. From this one concludes that stationary non-rotating black
hole configuration of self-gravitating scalar fields are static if LkφA = 0, while
stationary and axisymmetric ones are circular if LkφA = Lmφ

A = 0.

6.2 Boundary Value Formulation

The vacuum and the EM equations in the presence of a Killing symmetry de-
scribe harmonic mappings into coset manifolds, effectively coupled to three-
dimensional gravity (see Sect. 4). This feature is shared by a variety of other
self-gravitating theories with scalar (moduli) and Abelian vector fields (see Sect.
5.2), for which the field equations assume the form (32):

R̄ij =
1
4

Trace{Ji Jj} , d∗̄J = 0 , (54)

The current one-form J = Φ−1dΦ is given in terms of the hermitian matrix
Φ, which comprises the norm and the generalized twist potential of the Killing
field, the fundamental scalar fields and the electric and magnetic potentials
arising on the effective level for each Abelian vector field. If the dimensional
reduction is performed with respect to the axial Killing field m = ∂ϕ with norm
X ≡ (m, m), then R̄ij is Ricci tensor of the pseudo-Riemannian three-metric
ḡ, defined by

g = X(dϕ+ a)2 +
1
X
ḡ. (55)

In the stationary and axisymmetric case under consideration, there exists, in
addition to m, an asymptotically time-like Killing field k. Since k and m fulfill
the Frobenius integrability conditions, the spacetime metric can be written in
the familiar (2+2)-split.62 Hence, the circularity property implies that

• (Σ, ḡ) is a static pseudo-Riemannian three-dimensional manifold with met-
ric ḡ = −ρ2dt2 + g̃;

• the connection a is orthogonal to the two-dimensional Riemannian mani-
fold (Σ̃, g̃), that is, a = at dt;

• the functions at and g̃ab do not depend on the coordinates t and ϕ.
62The extension of the circularity theorem from the EM system to the coset models under

consideration is straightforward.
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With respect to the resulting Papapetrou metric [144],

g = X(dϕ+ at dt)2 +
1
X

(
−ρ2dt2 + g̃

)
, (56)

the field equations (54) become a set of partial differential equations on the
two-dimensional Riemannian manifold (Σ̃, g̃):

∆̃ρ = 0 , (57)

R̃ab −
1
ρ
∇̃b∇̃aρ =

1
4

Trace {Ja Jb} , (58)

∇̃a (ρ Ja) = 0 , (59)

as is seen from the standard reduction of the Ricci tensor R̄ij with respect to
the static three-metric ḡ = −ρ2dt2 + g̃.63

The last simplification of the field equations is due to the circumstance that
ρ can be chosen as one of the coordinates on (Σ̃, g̃). This follows from the facts
that ρ is harmonic (with respect to the Riemannian two-metric g̃) and non-
negative, and that the domain of outer communications of a stationary black
hole spacetime is simply connected [44]. The function ρ and the conjugate
harmonic function z are called Weyl coordinates.64 With respect to these, the
metric g̃ can be chosen to be conformally flat, such that one ends up with the
spacetime metric

g = −ρ
2

X
dt2 +X (dϕ+ atdt)

2 +
1
X
e2h
(
dρ2 + dz2

)
, (60)

the σ-model equations

∂ρ (ρJρ) + ∂z (ρJz) = 0, (61)

and the remaining Einstein equations

∂ρh =
ρ

8
Trace {JρJρ − JzJz} , ∂zh =

ρ

4
Trace {JρJz} , (62)

for the function h(ρ, z).65 Since Eq. (58) is conformally invariant, the metric
function h(ρ, z) does not appear in the σ-model equation (61). Therefore, the
stationary and axisymmetric equations reduce to a boundary value problem for
the matrix Φ on a fixed, two-dimensional background. Once the solution to Eq.
(61) is known, the remaining metric function h(ρ, z) is obtained from Eqs. (62)
by quadrature.

63Since Φ is a matrix valued function on (Σ̃, g̃) one has Jt = 0 and ∗̄J = −ρ dt ∧ ∗̃J .
64In order to introduce Weyl coordinates one has to exclude critical points of ρ. This was

first achieved by Carter [30] using Morse theory; see, e.g. [135]. A more recent, very direct
proof was given by Weinstein [182], taking advantage of the Riemann mapping theorem (or,
more precisely, Caratheodory’s extension of the theorem; see, e.g. [5]).

65It is not hard to verify that Eq. (61) is the integrability condition for Eqs. (62); see also
the end of Sect. 4.5.
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6.3 The Ernst Equations

The Ernst equations [52], [53] – being the key to the Kerr-Newman metric –
are the explicit form of the circular σ-model equations (61) for the EM system,
that is, for the coset SU(2, 1)/S(U(2)× U(1)).66 The latter is parametrized in
terms of the Ernst potentials Λ = −φ + iψ and E = −X − ΛΛ̄ + iY , where
the four scalar potentials are obtained from Eqs. (26) and (27) with ξ = m.
Instead of writing out the components of Eq. (61) in terms of Λ and E, it is
more convenient to consider Eqs. (29), and to reduce them with respect to the
static metric ḡ = −ρ2dt2 + g̃ (see Sect. 6.2). Introducing the complex potentials
ε and λ according to

ε =
1− E
1 + E

, λ =
2 Λ

1 + E
, (63)

one easily finds the two equations

∆̃ζ + 〈dζ , dρ
ρ

+
2 (ε̄dε+ λ̄dλ)
1− |ε|2 − |λ|2

〉 = 0, (64)

where ζ stands for either of the complex potentials ε or λ, and where the Lapla-
cian and the inner product refer to the two-dimensional metric g̃.

In order to control the boundary conditions for black holes, it is convenient
to introduce prolate spheroidal coordinates x and y, defined in terms of the
Weyl coordinates ρ and z by

ρ2 = µ2
(
x2 − 1)(1− y2

)
, z = µxy , (65)

where µ is a constant. The domain of outer communications, that is, the upper
half-plane ρ ≥ 0, corresponds to the semi-strip S = {(x, y)|x ≥ 1 , |y| ≤ 1}.
The boundary ρ = 0 consists of the horizon (x = 0) and the northern (y = 1)
and southern (y = −1) segments of the rotation axis. In terms of x and y, the
Riemannian metric g̃ becomes (x2−1)−1dx2 +(1−y2)−1dy2, up to a conformal
factor which does not enter Eqs. (64). The Ernst equations finally assume the
form (εx ≡ ∂xε, etc.)(

1− |ε|2 − |λ|2
) {
∂x(x2 − 1)∂x + ∂y(1− y2)∂y

}
ζ

= −2
{

(x2 − 1)
(
ε̄εx + λ̄λx

)
∂x + (1− y2)

(
ε̄εy + λ̄λy

)
∂y
}
ζ, (66)

where ζ stand for ε or λ. A particularly simple solution to the Ernst equations
is

ε = px+ i qy , λ = λ0 , where p2 + q2 + λ2
0 = 1, (67)

with real constants p, q and λ0. The norm X, the twist potential Y and the
electro-magnetic potentials φ and ψ (all defined with respect to the axial Killing
field) are obtained from the above solution by using Eqs. (63) and the expres-
sions X = −Re(E) − |Λ|2, Y = Im(E), φ = −Re(Λ), ψ = Im(Λ). The off-
diagonal element of the metric, a = atdt, is obtained by integrating the twist

66Again, we consider the dimensional reduction with respect to the axial Killing field.
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expression (10), where the twist one-form is given in Eq. (27).67 Eventually,
the metric function h is obtained from Eqs. (62) by quadrature.

The solution derived in this way is the “conjugate” of the Kerr-Newman
solution [37]. In order to obtain the Kerr-Newman metric itself, one has to
perform a rotation in the tϕ-plane: The spacetime metric is invariant under
t→ ϕ, ϕ→−t, if X, at and e2h are replaced by kX, k−1at and ke2h, where
k ≡ a2

t − X−2ρ2. This additional step in the derivation of the Kerr-Newman
metric is necessary because the Ernst potentials were defined with respect to the
axial Killing field ∂ϕ. If, on the other hand, one uses the stationary Killing field
∂t, then the Ernst equations are singular at the boundary of the ergo-region.

In terms of Boyer-Lindquist coordinates,

r = m (1 + px), cosϑ = y, (68)

one eventually finds the Kerr-Newman metric in the familiar form:

g = −∆
Ξ
[
dt− α sin2ϑdϕ

]2
+

sin2ϑ

Ξ
[
(r2 + α2)dϕ− αdt

]2
+ Ξ

[
1
∆

dr2 + dϑ2

]
,

(69)
where the constant α is defined by at ≡ α sin2ϑ. The expressions for ∆, Ξ and
the electro-magnetic vector potential A show that the Kerr-Newman solution
is characterized by the total mass M , the electric charge Q, and the angular
momentum J = αM :

∆ = r2 − 2Mr + α2 +Q2, Ξ = r2 + α2 cos2ϑ. (70)

A =
Q

Ξ
r
[
dt− α sin2ϑdϕ

]
. (71)

6.4 The Uniqueness Theorem for the Kerr-Newman solu-
tion

In order to establish the uniqueness of the Kerr-Newman metric among the
stationary and axisymmetric black hole configurations, one has to show that
two solutions of the Ernst equations (67) are equal if they are subject to the
same boundary and regularity conditions on ∂S, where S is the semi-strip S =
{(x, y)|x ≥ 1 , |y| ≤ 1} (see Sect. 6.3.) For infinitesimally neighboring solutions,
Carter solved this problem for the vacuum case by means of a divergence identity
[29], which Robinson generalized to electrovac space-times [151].

Considering two arbitrary solutions of the Ernst equations, Robinson was
able to construct an identity [152], the integration of which proved the unique-
ness of the Kerr metric. The complicated nature of the Robinson identity dashed
the hope of finding the corresponding electrovac identity by trial and error meth-
ods.68 In fact, the problem was only solved when Mazur [131], [133] and Bunting

67The Hodge dual in Eq. (10) now refers to the decomposition (55) with respect to the
axial Killing field.

68See, e.g. [31].
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[25] independently succeeded in deriving the desired divergence identities by us-
ing the distinguished structure of the EM equations in the presence of a Killing
symmetry. Bunting’s approach, applying to a general class of harmonic map-
pings between Riemannian manifolds, yields an identity which enables one to
establish the uniqueness of a harmonic map if the target manifold has negative
curvature.69

The Mazur identity (34) applies to the relative difference Ψ = Φ2Φ−1
1 − 1l of

two arbitrary hermitian matrices. If the latter are solutions of a σ-model with
symmetric target space of the form SU(p, q)/S(U(p)×U(q)), then the identity
implies70

Trace
{

∆̄Ψ
}

= Trace〈M ,M†〉, (72)

where M≡ g−1
1 J

†
4g2, and J †4 is the difference between the currents.

The reduction of the EM equations with respect to the axial Killing field
yields the coset SU(2, 1)/S(U(2)× U(1)) (see Sect. 4.5), which, reduces to the
vacuum coset SU(2)/S(U(1)×U(1)) (see Sect. 4.3). Hence, the above formula
applies to both the axisymmetric vacuum and electrovac field equations, where
the Laplacian and the inner product refer to the pseudo-Riemannian three-
metric ḡ defined by Eq. (55). Now using the existence of the stationary Killing
symmetry and the circularity property, one has ḡ = −ρ2dt2 + g̃, which reduces
Eq. (72) to an equation on (Σ̃, g̃). Integrating over the semi-strip S and using
Stokes’ theorem immediately yields∫

∂S
ρ ∗̃Trace {dΨ} =

∫
S
ρTrace〈M ,M†〉 η̃, (73)

where η̃ and ∗̃ are the volume form and the Hodge dual with respect to g̃. The
uniqueness of the Kerr-Newman metric follows from the facts that

• the integrand on the RHS is non-negative.

• The LHS vanishes for two solutions with the same mass, electric charge
and angular momentum.

The RHS is non-negative because of the following observations: First, the
inner product is definite, and η̃ is a positive volume-form, since g̃ is a Rieman-
nian metric. Second, the factor ρ is non-negative in S, since S is the image
of the upper half-plane, ρ ≥ 0. Last, the one-forms J4 and M are space-like,
since the matrices Φ depend only on the coordinates of (Σ̃, g̃).

In order to establish that ρTrace {dΨ} = 0 on the boundary ∂S of the semi-
strip, one needs the asymptotic behavior and the boundary and regularity con-
ditions of all potentials. A careful investigation71 then shows that ρTrace {dΨ}
vanishes on the horizon, the axis and at infinity, provided that the solutions
have the same mass, charge and angular momentum.

69We refer the reader to [32] for a discussion of Bunting’s method.
70See Sect. 5.1 for details and references.
71We refer to [182] for a detailed discussion of the boundary and regularity conditions for

axisymmetric black holes.
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7 Conclusion

The fact that the stationary electrovac black holes are parametrized by their
mass, angular momentum and electric charge is due to the distinguished struc-
ture of the Einstein-Maxwell equations in the presence of a Killing symmetry.
In general, the classification of the stationary black hole space-times within a
given matter model is a difficult task, involving the investigation of Einstein’s
equations with a low degree of symmetries. The variety of black hole config-
urations in the SU(2) Einstein-Yang-Mills system indicates that – in spite of
its beautiful and intuitive content – the uniqueness theorem is a distinguished
feature of electrovac space-times. In general, the stationary black hole solutions
of self-gravitating matter fields are considerably less simple than one might have
expected from the experience with the Einstein-Maxwell system.
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online version see: P.T. Chruściel, et al., “On the Topology of Sta-
tionary Black Holes”, (October, 1994), [Online Los Alamos Archive
Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/
gr-qc/9410004. 3, 8, 63

[45] Clément, G., and Gal’tsov, D.V., “Stationary BPS Solutions to Dilaton-
Axion Gravity”, Phys. Rev. D, 54, 6136–6152, (1996). For a related online
version see: G. Clément, et al., “Stationary BPS Solutions to Dilaton-
Axion Gravity”, (July, 1996), [Online Los Alamos Archive Preprint]: cited
on 11 November 1997, http://xxx.lanl.gov/abs/hep-th/9607043. 4,
52

[46] Coleman, S., “The Uses of Instantons”, in Zichichi, A., ed., The Whys of
Subnuclear Physics, 11 November 1997, (Plenum Press, New York, 1979).
16

[47] DeFelice, F., and Clarke, C.J.S., Relativity on Curved Manifolds, (Cam-
bridge University Press, Cambridge, 1990). 33

[48] Deser, S., “Absence of Static Solutions in Source-Free Yang-Mills Theory”,
Phys. Lett. B, 64, 463–465, (1976). 16

[49] Deser, S., “Absence of Static Einstein-Yang-Mills Excitations in Three
Dimensions”, Class Quantum Grav., 1, L1–L4, (1984). 16

[50] Droz, S., Heusler, M., and Straumann, N., “New Black Hole Solutions
with Hair”, Phys. Lett. B, 268, 371–376, (1991). 3, 15

[51] Eichenherr, H., and Forger, M., “More about Non-Linear Sigma-Models
on Symmetric Spaces”, Nucl. Phys. B, 164, 528–535, (1980). 47

[52] Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational
Field Problem”, Phys. Rev., 167, 1175–1178, (1968). 4.3, 45, 6.3

[53] Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational
Field Problem II”, Phys. Rev., 168, 1415–1417, (1968). 4.3, 45, 6.3

[54] Forgacs, P., and Manton, N.S., “Space-Time Symmetries in Gauge Theo-
ries”, Commun. Math. Phys., 72, 15–35, (1980). 4.4

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/gr-qc/9304009
http://xxx.lanl.gov/abs/gr-qc/9410004
http://xxx.lanl.gov/abs/gr-qc/9410004
http://xxx.lanl.gov/abs/hep-th/9607043
http://www.livingreviews.org


M. Heusler 46

[55] Friedman, J.L., Schleich, K., and Witt, D.M., “Topological Censorship”,
Phys. Rev. Lett., 71, 1486–1489, (1993). 8

[56] Galloway, G.J., “On the Topology of Black Holes”, Commun. Math. Phys,
151, 53–66, (1993). 8

[57] Galloway, G.J., “On the Topology of the Domain of Outer Communica-
tion”, Class. Quantum Grav., 12, L99–L101, (1995). 3, 8

[58] Galloway, G.J., “A ’Finite Infinity’ Version of the FSW Topological Cen-
sorship”, Class. Quantum Grav., 13, 1471–1478, (1996). 3, 8

[59] Galloway, G.J., and E., Woolgar, “The Cosmic Censor forbids Naked
Topology”, Class. Quantum Grav., 14, L1–L7, (1997). For a related
online version see: G.J. Galloway, et al., “The Cosmic Censor for-
bids Naked Topology”, (September, 1996), [Online Los Alamos Archive
Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/
gr-qc/9609007. 8

[60] Gal’tsov, D.V., “Square of General Relativity”, (August, 1996), [Online
Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.
lanl.gov/abs/gr-qc/9608021. 4.3

[61] Gal’tsov, D.V., “Geroch-Kinnersley-Chitre Group for Dilaton-Axion
Gravity”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on
11 November 1997, http://xxx.lanl.gov/abs/hep-th/9606041. 48

[62] Gal’tsov, D.V., “Integrable Systems in String Gravity”, Phys. Rev. Lett.,
74, 2863–2866, (1995). For a related online version see: D.V. Gal’tsov, “In-
tegrable Systems in String Gravity”, (October, 1994), [Online Los Alamos
Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/
abs/hep-th/9410217. 48

[63] Gal’tsov, D.V., and Kechkin, O.V., “Ehlers-Harrison-Type Transforma-
tions in Dilaton-Axion Gravity”, Phys. Rev. D, 50, 7394–7399, (1994).
For a related online version see: D.V. Gal’tsov, et al., “Ehlers-Harrison-
Type Transformations in Dilaton-Axion Gravity”, (July, 1994), [Online
Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/hep-th/9407155. 48

[64] Gal’tsov, D.V., and Kechkin, O.V., “Matrix Dilaton-Axion for the Het-
erotic String in three Dimensions”, Phys, Lett. B, 361, 52–58, (1995).
For a related online version see: D.V. Gal’tsov, et al., “Matrix Dilaton-
Axion for the Heterotic String in three Dimensions”, (July, 1995), [On-
line Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/hep-th/9507164. 48

[65] Gal’tsov, D.V., and Kechkin, O.V., “U-Duality and Simplectic Formu-
lation of Dilaton-Axion Gravity”, Phys. Rev. D, 54, 1656–1666, (1996).

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/gr-qc/9609007
http://xxx.lanl.gov/abs/gr-qc/9609007
http://xxx.lanl.gov/abs/gr-qc/9608021
http://xxx.lanl.gov/abs/gr-qc/9608021
http://xxx.lanl.gov/abs/hep-th/9606041
http://xxx.lanl.gov/abs/hep-th/9410217
http://xxx.lanl.gov/abs/hep-th/9410217
http://xxx.lanl.gov/abs/hep-th/9407155
http://xxx.lanl.gov/abs/hep-th/9407155
http://xxx.lanl.gov/abs/hep-th/9507164
http://xxx.lanl.gov/abs/hep-th/9507164
http://www.livingreviews.org


47 Stationary Black Holes: Uniqueness and Beyond

For a related online version see: D.V. Gal’tsov, et al., “U-Duality and
Simplectic Formulation of Dilaton-Axion Gravity”, (July, 1995), [On-
line Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/hep-th/9507005. 48

[66] Gal’tsov, D.V., and Letelier, P.S., “Ehlers-Harrison Transformations and
Black Holed in Dilaton-Axion Gravity with Multiple Vector Fields”, Phys.
Rev. D, 55, 3580–3592, (1997). For a related online version see: D.V.
Gal’tsov, et al., “Ehlers-Harrison Transformations and Black Holed in
Dilaton-Axion Gravity with Multiple Vector Fields”, (December, 1996),
[Online Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/gr-qc/9612007. 49

[67] Gal’tsov, D.V., and Letelier, P.S., “Interpolating Black Holes in Dilaton-
Axion Gravity”, Class. Quantum Grav., 14, L9–L14, (1997). For a related
online version see: D.V. Gal’tsov, et al., “Reissner-Nordström Type Black
Holes in Dilaton-Axion Gravity”, (August, 1996), [Online Los Alamos
Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/
abs/gr-qc/9608023. 4, 52

[68] Gal’tsov, D.V., and S.A., Sharakin, “Matrix Ernst Potentials for EMDA
with Multiple Vector Fields”, Phys. Lett. B, 399, 250–257, (1997). For a
related online version see: D.V. Gal’tsov, et al., “Matrix Ernst Potentials
for EMDA with Multiple Vector Fields”, (February, 1997), [Online Los
Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.
lanl.gov/abs/hep-th/9702039. 49

[69] Garfinkle, D., Horowitz, G.T., and Strominger, A., “Charged Black Holes
in String Theory”, Phys. Rev. D, 43, 741–775, (1991). Erratum-ibid. 45,
3888. 13, 52

[70] Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”,
J. Math. Phys., 12, 918–924, (1971). 4

[71] Geroch, R., “A Method for Generating New Solutions of Einstein’s Equa-
tions”, J. Math. Phys., 13, 394–404, (1972). 4

[72] Gibbons, G., Kallosh, R., and Kol, B., “Moduli, Scalar Charges, and the
First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–
4995, (1996). For a related online version see: G. Gibbons, et al., “Moduli,
Scalar Charges, and the First Law of Black Hole Thermodynamics”, (July,
1996), [Online Los Alamos Archive Preprint]: cited on 11 November 1997,
http://xxx.lanl.gov/abs/hep-th/9607108. 52

[73] Gibbons, G.W., “Anti-gravitating Black Hole Solutions with Scalar Hair
in N = 4 Supergravity”, Nucl. Phys. B, 207, 337–349, (1982). 4, 3.1,
26, 52

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/hep-th/9507005
http://xxx.lanl.gov/abs/hep-th/9507005
http://xxx.lanl.gov/abs/gr-qc/9612007
http://xxx.lanl.gov/abs/gr-qc/9612007
http://xxx.lanl.gov/abs/gr-qc/9608023
http://xxx.lanl.gov/abs/gr-qc/9608023
http://xxx.lanl.gov/abs/hep-th/9702039
http://xxx.lanl.gov/abs/hep-th/9702039
http://xxx.lanl.gov/abs/hep-th/9607108
http://www.livingreviews.org


M. Heusler 48

[74] Gibbons, G.W., “Self-Gravitating Magnetic Monopoles, Global Mono-
poles and Black Holes”, in Barrow, J.D., Henriques, A.B., Lago,
M.T.V.T., and Longair, M.S., eds., The Physical Universe: The Inter-
face Between Cosmology, Astrophysics and Particle Physics, 110–133,
(Springer-Verlag, Berlin, 1990). Lecture Notes in Physics, 383. 16

[75] Gibbons, G.W., and Hull, C.M., “A Bogomol’nyi Bound for General Rel-
ativity and Solitons in N = 2 Supergravity”, Phys. Lett., 109, 190–194,
(1992). 52

[76] Gibbons, G.W., and Maeda, K., “Black Holes and Membranes in Higher
Dimensional Theories with Dilaton Fields”, Nucl. Phys. B, 298, 741–775,
(1988). 13, 26, 52

[77] Greene, B.R., Mathur, S.D, and O’Neill, C.M., “Eluding the No-Hair Con-
jecture: Black Holes in Spontaneously Broken Gauge Theories”, Phys.
Rev. D, 47, 2242–2259, (1993). For a related online version see: B.R.
Greene, et al., “Eluding the No-Hair Conjecture: Black Holes in Sponta-
neously Broken Gauge Theories”, (November, 1992), [Online Los Alamos
Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/
abs/hep-th/9211007. 3

[78] Hajicek, P., “General Theory of Vacuum Ergospheres”, Phys. Rev. D, 7,
2311–2316, (1973). 9

[79] Hajicek, P., “Stationary Electrovac Space-times with Bifurcate Horizon”,
J. Math. Phys., 16, 518–527, (1975). 9

[80] Harnad, J., Vinet, L., and Shnider, S., “Group Actions on Principal Bun-
dles and Invariance Conditions for Gauge Fields”, J. Math. Phys., 21,
2719–2740, (1980). 19, 4.4

[81] Hartle, J.B., and Hawking, S.W., “Solutions of the Einstein-Maxwell
Equations with Many Black Holes”, Commun. Math. Phys., 26, 87–101,
(1972). 55

[82] Hawking, S.W., “Black Holes in General Relativity”, Commun. Math.
Phys., 25, 152–166, (1972). 10

[83] Hawking, S.W., “Particle Creation by Black Holes”, Commun. Math.
Phys., 43, 199–220, (1975). 2

[84] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space
Time, (Cambridge University Press, Cambridge, 1973). 2, 5, 2.1, 7, 9,
20, 22

[85] Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions
of Sigma Models”, Class. Quantum Grav., 10, 791–799, (1993). 21

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/hep-th/9211007
http://xxx.lanl.gov/abs/hep-th/9211007
http://www.livingreviews.org


49 Stationary Black Holes: Uniqueness and Beyond

[86] Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solu-
tions of Self-gravitating Harmonic Mappings”, Class. Quantum Grav.,
12, 2021–2036, (1995). For a related online version see: M. Heusler,
“The Uniqueness Theorem for Rotating Black Hole Solutions of Self-
gravitating Harmonic Mappings”, (March, 1995), [Online Los Alamos
Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/
abs/gr-qc/9503053. 24, 60

[87] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University
Press, Cambridge, 1996). 5, 16, 32, 33, 34, 38, 57

[88] Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys.
Acta, 69, 501–528, (1996). For a related online version see: M. Heusler,
“No-Hair Theorems and Black Holes with Hair”, (January, 1996), [Online
Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.
lanl.gov/abs/gr-qc/9610019. 16, 21, 59, 60

[89] Heusler, M., “Mass Formulae for a Class of Non-rotating Black Holes”,
Phys. Rev. D, 56, 961–973, (1997). For a related online version see:
M. Heusler, “Bogomol’nyi Type Equations for a Class of Non-rotating
Black Holes”, (March, 1997), [Online Los Alamos Archive Preprint]: cited
on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9703015. 5,
49, 50, 52, 52

[90] Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”,
Class. Quantum Grav., 14, L129–L134, (1997). For a related online ver-
sion see: M. Heusler, “On the Uniqueness of the Papapetrou-Majumdar
metric”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 11
November 1997, http://xxx.lanl.gov/abs/gr-qc/9607001. 2.3, 55

[91] Heusler, M., “Uniqueness Theorems for Black Hole Space-Times”, in Hehl,
F., Metzler, R., and Kiefer, K., eds., Black Holes: Theory and Observa-
tions, to appear, (Springer-Verlag, Berlin, 1998). 39

[92] Heusler, M., Droz, S., and Straumann, N., “Stability Analysis of Self-
Gravitating Skyrmions”, Phys. Lett. B, 271, 61–67, (1991). 15

[93] Heusler, M., Droz, S., and Straumann, N., “Linear Stability of Einstein-
Skyrme Black Holes”, Phys. Lett. B, 285, 21–26, (1992). 15

[94] Heusler, M., and Straumann, N., “The First Law of Black Hole Physics for
a Class of Nonlinear Matter Models”, Class. Quantum Grav., 10, 1299–
1322, (1993). 21, 43

[95] Heusler, M., and Straumann, N., “Mass Variation Formulae for Einstein-
Yang-Mills Higgs and Einstein Dilaton Black Holes”, Phys. Lett. B., 315,
55–66, (1993). 43

[96] Heusler, M., and Straumann, N., “Staticity, Circularity, and the First Law
of Black Hole Physics”, Int. J. Mod. Phys. D, 3, 199–202, (1994). 21

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/gr-qc/9503053
http://xxx.lanl.gov/abs/gr-qc/9503053
http://xxx.lanl.gov/abs/gr-qc/9610019
http://xxx.lanl.gov/abs/gr-qc/9610019
http://xxx.lanl.gov/abs/gr-qc/9703015
http://xxx.lanl.gov/abs/gr-qc/9607001
http://www.livingreviews.org


M. Heusler 50

[97] Heusler, M., Straumann, N., and Zhou, Z-H., “Self-Gravitating Solutions
of the Skyrme Model and their Stability”, Helv. Phys. Acta, 66, 614–632,
(1993). 3, 15

[98] Horowitz, G.T., “Quantum States of Black Holes”, (April, 1997), [Online
Los Alamos Archive Preprint]: cited on 11 November 1997, http://
xxx.lanl.gov/abs/gr-qc/9704072. To be published in Black Holes and
Relativity, ed. Wald, R.M. 3

[99] Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev.,
164, 1776–1779, (1967). 2.2, 3.2

[100] Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun.
Math. Phys., 8, 245–260, (1968). 2.2, 3.2

[101] Israel, W., “Dark Stars: The Evolution of an Idea”, in Hawking, S.W.,
and Israel, W., eds., 300 Years of Gravitation, 199–276, (Cambridge
University Press, Cambridge, 1987). 1

[102] Israel, W., and Wilson, G.A., “A Class of Stationary Electromagnetic
Vacuum Fields”, J. Math. Phys., 13, 865–867, (1972). 5, 5.3, 53, 55

[103] Jacobson, T., and Venkatarami, S., “Topological Censorship”, Class.
Quantum Grav., 12, 1055–1061, (1995). 8

[104] Jadczyk, A., “Symmetry of Einstein-Yang-Mills Systems and Dimensional
Reduction”, J. Geom. Phys., 1, 97–126, (1984). 4.4

[105] Kay, B.S., and Wald, R.M., “Theorems on the Uniqueness and Thermal
Properties of Stationary, Nonsingular, Quasi-free States on Space-times
with a Bifurcate Horizon”, Phys. Rep., 207, 49–136, (1991). 38

[106] Kinnersley, W, “Generation of Stationary Einstein-Maxwell Fields”, J.
Math. Phys., 14, 651–653, (1973). 45

[107] Kinnersley, W, “Symmetries of the Stationary Einstein-Maxwell Field
Equations. I”, J. Math. Phys., 18, 1529–1537, (1977). 45

[108] Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary
Einstein-Maxwell Field Equations. II”, J. Math. Phys., 18, 1538–1542,
(1977). 45

[109] Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary
Einstein-Maxwell Field Equations. III”, J. Math. Phys., 19, 1926–1931,
(1978). 45

[110] Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary
Einstein-Maxwell Field Equations. IV”, J. Math. Phys., 19, 2037–2042,
(1978). 45

Living Reviews in Relativity (1998-6)
http://www.livingreviews.org

http://xxx.lanl.gov/abs/gr-qc/9704072
http://xxx.lanl.gov/abs/gr-qc/9704072
http://www.livingreviews.org


51 Stationary Black Holes: Uniqueness and Beyond

[111] Kleihaus, B., and Kunz, J., “Static Regular and Black Hole Solutions
with Axial Symmetry in EYM and EYMD Theory”, (October, 1997),
[Online Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/gr-qc/97100047. 18, 24

[112] Kleihaus, B., and Kunz, J., “Static Axially Symmetric Einstein Yang-
Mills Solutions: 1. Regular Solutions”, (July, 1997), [Online Los Alamos
Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/
abs/gr-qc/9707045. 26

[113] Kleihaus, B., and Kunz, J., “Axially Symmetric Multi-Sphalerons in
Yang-Mills Dilaton Theory”, Phys. Lett. B, 392, 135–140, (1997). For
a related online version see: B. Kleihaus, et al., “Axially Symmetric
Multi-Sphalerons in Yang-Mills Dilaton Theory”, (September, 1996), [On-
line Los Alamos Archive Preprint]: cited on 11 November 1997, http:
//xxx.lanl.gov/abs/gr-qc/9609108. 26

[114] Kleihaus, B., and Kunz, J., “Static Axially Symmetric Solutions of Ein-
stein Yang-Mills Dilaton Theory”, Phys. Rev. Lett., 78, 2527–2530, (1997).
For a related online version see: B. Kleihaus, et al., “Static Axially
Symmetric Solutions of Einstein Yang-Mills Dilaton Theory”, (Decem-
ber, 1996), [Online Los Alamos Archive Preprint]: cited on 11 November
1997, http://xxx.lanl.gov/abs/gr-qc/9612101. 26

[115] Kleihaus, B., and Kunz, J., “Static Black Hole Solutions with Axial Sym-
metry”, Phys. Rev. Lett., 79, 1595–1598, (1997). For a related online
version see: B. Kleihaus, et al., “Static Black Hole Solutions with Axial
Symmetry”, (April, 1997), [Online Los Alamos Archive Preprint]: cited
on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9704060. 4,
25

[116] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry,
Vol. II, (Interscience, Wiley, New York, 1969). 42, 47

[117] Kramer, D., Stephani, H., MacCallum, M., and Herlt, E., Exact Solutions
of Einstein’s Equations, (Cambridge University Press, Cambridge, 1980).
4
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