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We examine the existence and stability of spatially localized “bumps”
of neuronal activity in a network of spiking neurons. Bumps have been
proposed in mechanisms of visual orientation tuning, the rat head di-
rection system, and working memory. We show that a bump solution
can exist in a spiking network provided the neurons �re asynchronously
within the bump. We consider a parameter regime where the bump solu-
tion is bistable with an all-off state and can be initiated with a transient
excitatory stimulus. We show that the activity pro�le matches that of a
corresponding population rate model. The bump in a spiking network
can lose stability through partial synchronization to either a traveling
wave or the all-off state. This can occur if the synaptic timescale is too
fast through a dynamical effect or if a transient excitatory pulse is ap-
plied to the network. A bump can thus be activated and deactivated with
excitatory inputs that may have physiological relevance.

1 Introduction

Neuronal activity due to recurrent excitations in the form of a spatially
localized pulse or bump has been proposed as a mechanism for feature
selectivity in models of the visual system (Somers, Nelson, & Sur, 1995;
Hansel & Sompolinsky, 1998), the head direction system (Skaggs, Knieram,
Kudrimoti, & McNaughton, 1995; Zhang, 1996; Redish, Elga, & Touretzky,
1996), and working memory (Wilson & Cowan, 1973; Amit & Brunel, 1997;
Camperi & Wang, 1998). Many of the previous mathematical formulations
of such structures have employed population rate models (Wilson & Cowan,
1972, 1973; Amari, 1977; Kishimoto & Amari, 1979; Hansel & Sompolinsky,
1998). (See Ermentrout, 1998, for a recent review.)

Here, we consider a network of spiking neurons that shows such struc-
tures and investigate their properties. In our network we �nd localized
time-stationary states (bumps), which may be analogous to the structures
measured in the experiments of Colby, Duhamel, and Goldberg (1995) and
Funahashi, Bruce, and Goldman-Rakic (1989). The network is bistable, with
the bump and the “all–off” state both being stable. Note that the neurons
are not intrinsically bistable, as in Camperi and Wang (1998), and the bump
solutions do not arise from a Turing–Hopf instability, like that studied by
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Bressloff and Coombes (1998) and Bressloff, Bressloff, and Cowan (1999);
there is no continuous path in parameter space connecting a bump and
the all-off state. A time-stationary solution is one that corresponds to asyn-
chronous �ring of neurons where the �ring rate is constant at each spatial
point but the rate depends on spatial location. We show that the activity
pro�le of the bumps of our model is the same as that of a corresponding
population rate model.

However, bumps predicted by the rate model to be stable may in fact
be unstable in a model that includes the spiking dynamics of the neurons.
The rate model implicitly assumes asynchronous �ring and considers only
the dynamics of the �ring rate. As the synaptic decay time is increased in
the spiking network, the bump can lose stability as a result of temporal
correlation or “partial synchronization” of neurons involved in the bump.
If the initial conditions are symmetric, then this synchronization causes the
input to the neurons to drop below the threshold required to keep it �ring,
leading to cessation of oscillation of the neurons and consequently the rest
of the bump. However, for generic initial conditions or with the inclusion of
noise, the bump destabilizes to a traveling wave. For fast enough synapses,
the wave cannot exist. If some heterogeneity in the intrinsic properties of
the neuron is included, then the bump can be “pinned” to a �xed location;
the traveling wave does not form, and the bump loses stability to the all-off
state.

This instability provides a mechanism for the termination of a bump, as
would be required at the end of a memory task (e.g., the delayed saccade
task discussed by Colby et al., 1995): if many of the neurons involved in the
bump can be caused to �re approximately simultaneously and the synaptic
timescale is short, there will not be enough input after this coincident �ring
to sustain activity, and the network will switch to the all-off state.

2 Neuron Model

We consider a network of N integrate-and-�re neurons whose voltages, vi,
obey the differential equations

dvi

dt
D Ii ¡ vi C

X

j,m

Jij

N
a(t ¡ tm

j ) ¡
X

l

d(t ¡ tl
i), (2.1)

where the subscript i indexes the neurons, tm
j is the mth �ring of neuron j,

de�ned by the times that vj (t) crosses the threshold, which we have set to 1,
Ii is the input current applied to neuron i, andd(¢) is the Dirac delta function,
which resets the voltage to zero. The function a(t) is a postsynaptic current
and is nonzero only for t > 0. The connection weight between neuron i and
neuron j is Jij. The sum over m and l extends over the entire �ring history of
the neurons in the network, and the sum over j extends over the network.
Each time the voltage crosses the threshold from below the neuron is said to



Stationary Bumps in Networks of Spiking Neurons 1475

“�re.” The voltage then immediately resets to vi D 0, and a synaptic pulse
a(t) is sent to all connected neurons.

In our examination of bump solutions, we will consider subthreshold
input (Ii < 1) and a weight matrix that is translationally invariant (i.e., Jij
depends on only |i ¡ j|). It is of the lateral inhibition form (locally excitatory
butdistally inhibitory); this type of connectivitymatrix can be shown to arise
from a multilayer network with both inhibitory and excitatory populations
if the inhibition is fast, as shown by Ermentrout (1998).

We can formally integrate equation 2.1 to obtain the spike response form
(Gerstner, 1995; Gerstner, van Hemmen, & Cowan, 1996; Chow, 1998). This
form will allow us to relate the bump pro�le for the integrate-and-�re net-
work to the pro�le of a rate model similar to that studied by Amari (1977).
Suppose that neuron i has �red in the past at times tl

i, where l D 0, ¡1, ¡2,
. . . , ¡1. The neuron most recently �red at t0

i . We consider the dynamics for
t > t0

i . Integrating equation 2.1 yields

vi (t) D Ii(1 ¡ e¡(t¡t0
i )) C

X

j,m

Jij

N

Z t

t0i
es¡ta(s ¡ tm

j ) ds. (2.2)

By breaking up the integral in equation 2.2 into two pieces, we obtain

vi (t) D Ii(1 ¡ e¡(t¡t0
i )) C

X

j,m

Jij

N

Z t

¡1
es¡ta(s ¡ tm

j ) ds ¡ e¡(t¡t0i )

£
X

j,m

Jij

N

Z t0
i

¡1
es¡t0

i a(s ¡ tm
j ) ds, (2.3)

from which we obtain the spike response form

vi (t, s) D Ii ¡ [Ii C ui(s)]e¡(t¡s) C ui(t), t > s, vi(s, s) D 0, (2.4)

where

ui(t) D
X

j,m

Jij

N
2 (t ¡ tm

j ), (2.5)

and

2 (t) D
Z t

0
es¡ta(s)ds. (2.6)

We normalize 2 (t) so that
R 1

0 2 (t) dt D 1. Note that for low rates of �ring,
[I C ui (s)]e¡(t¡s) ’ e¡(t¡s).
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Figure 1: The weight function Jij D NJ(|i ¡ j| /N) for i D 50 and N D 100, where
J(z) D 5[1.1w(1/28, z) ¡ w(1/20, z)], and w(a, z) D (ap )¡1/2 exp(¡z2 /a).

2.1 Numerical Methods. We performed numerical simulations of the
integrate-and-�re network using the spike response form equation 2.2. We
step equation 2.2 forward using a �xed time step, D t, until one or more of
the voltages is above threshold (set to be 1). Assume that vi([n C 1]D t) > 1
while vi(nD t) < 1, for some n. At this point, a backward linear interpolation
in voltage is made to determine the approximate �ring time of neuron i. To
determine the approximate correct value of vi([n C 1]D t), we make an Euler
step from the approximate last �ring time of neuron i to time [n C 1]D t,
using equation 2.1 for the slope. The equations are then stepped forward
again.

The domain is the unit interval with periodic boundary conditions, and
the weight function involves a difference of gaussians (see Figure 1 for an
example). For the synaptic pulse, a(t), we take

a(t) D b exp (¡bt), (2.7)

so that

2 (t) D
b[e¡t ¡ e¡b t]

b ¡ 1
. (2.8)

The parameter b affects the rate at which the postsynaptic current decays.
Noise is added to the network as current pulses to each neuron of the form

Irand(t) D 6(e¡10t ¡ e¡15t),
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where t ¸ 0. The arrival times of these pulses have a Poisson distribution
with mean frequency 0.05, and there is no correlation between pulse arrival
times for different neurons.

3 Existence of the Bump State

We examine the existence of bump solutions of the spike response system
described by equation 2.4. A bump solution is spatially localized with spa-
tially dependent average �ring rate of the participating neurons. The �ring
rate is zero outside the bump and rises from zero at the edges to a maximum
in the center. The �ring times of the neurons are uncorrelated, so the bump
is a localized patch of incoherent or asynchronous �ring. The state coexists
with the homogeneous non�ring (all-off) state.

It is convenient to de�ne the activity of neuron i as

Ai(t) D
X

l

d(t ¡ tl
i), (3.1)

where the sum over l is over all past �ring times. Our activity differs from
the population activity of Gerstner (1995), which considers the activity of
an in�nite pool of neurons at a given spatial location. We can then rewrite
the synaptic input 2.5 in terms of the activity as

ui(t) D
X

j

Jij

N

Z 1

0
2 (s)Aj(t ¡ s) ds. (3.2)

Consider stationary asynchronous solutions to the spike response equa-
tions. Many authors have studied the spatially homogeneous asynchronous
state with various coupling schemes (Abbott & Van Vreeswijk, 1993; Treves,
1993; Gerstner, 1995, 1998, 2000). Our approach is similar to that of Gerstner
(1995, 1998, 2000). We �rst rewrite the activity as

Ai(t) D A0
i C D Ai(t), (3.3)

where

A0
i D lim

t !1

1
t

Z t

0
Ai(r)dr. (3.4)

Substituting equation 3.1 into 3.4 then yields A0
i D limt !1 n(t )/t , where

n(t ) is the number of times neuron i �red in the time interval t . Thus, A0
i is

the mean �ring rate of neuron i.
We now insert equation 3.3 into 3.2 to obtain ui (t) D u0

i C Dui(t), where

u0
i D

X

j

Jij

N
A0

j , (3.5)
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and

Dui(t) D
X

j

Jij

N

Z 1

0
2 (s)DAj(t ¡ s)ds (3.6)

(recall that
R 1

0 2 (s) ds D 1). Wede�ne the asynchronous state to be onewhere
Dui (t) is zero in the limit of in�nite network size N. In the asynchronous
state, the input to neuron i is a constant and given by u0

i . This implies that
the �ring times of the neurons are uncorrelated. For a �nite system, Du(t)
will contribute �uctuations that scale as N¡1/2.

We now derive the self-consistent equations for the asynchronous state.
Substitute ui(t) D u0

i into equation 2.4; the local �ring period (A0
i )¡1 will be

given by

vi((A0
i )¡1 C s, s) D 1 D Ii ¡ [Ii C u0

i ]e¡(A0
i )¡1

C u0
i . (3.7)

Solving equation 3.7 yields

A0
i D G[u0

i ], (3.8)

where

G[z] D
»

0, z · 1 ¡ I
¡1/ ln

£ ICz¡1
ICz

¤
, z > 1 ¡ I.

(3.9)

(A plot of G[z] can be seen in Figure 2.) This form is similar to the usual neu-
ral network rate equation (Amari, 1977; Kishimoto & Amari, 1979; Hansel
& Sompolinsky, 1998; Ermentrout, 1998) except that the gain function we
have derived is a result of the intrinsic neuronal dynamics of our model
(Gerstner, 1995). Combining equations 3.5 and 3.8, we obtain the condition
for a stationary asynchronous solution:

u0
i D

X

j

Jij

N
G[u0

j ]. (3.10)

For a �nite sized system, the time-averaged �ring rate of the neurons follows
a pro�le given by A0

j D G[u0
j ].

We �rst consider mean-�eld solutions to equation 3.10. We assume that
u0

i D u0, Ii D I and
P

Jij/N D J, yielding

u0 D JG[u0]. (3.11)

If I > 1 (oscillatory neurons), then there are no solutions if J is too large
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Figure 2: A multiple (J) of the gain function G[z] (see equation 3.9) (solid line)
for I D 0.2 and J D 2, and the diagonal (dashed). The threshold occurs at
z D 1 ¡ I, when 1 is the voltage threshold for the integrate-and-�re neuron.
The intersection of the dashed line and the gain function gives the mean-�eld
solution to equation 3.11.

and one solution if J is small enough. For I < 1 (excitatory neurons), equa-
tion 3.11 has one solution at u0 D 0 if J is too small and two solutions if J is
large enough (See Figure 2, which shows the case J D 2.) These two states
correspond to an “all-off” state and an “all-on” state, respectively.

3.1 Bump State. In order for a bump to exist, a solution to equation 3.10
for u0

i must be found such that u0
i C Ii is above threshold (u0

i C Ii > 1) in
a localized region of space. We show example �gures of such solutions in
Figures 3 and 4. Amari (1977) and Kishimoto & Amari (1979) proved that
such a solution can exist for a class of gain functions G[z]. Similar to the
mean-�eld solution, we �nd that for subthreshold input (Ii < 1), the all-off
state always exists, and the bump state can exist if the weight function has
enough excitation.We will discuss stability of thebump in section4. Stability
will be affected by the synaptic timescale, the weight function, the amount
of applied current, and the size of the network. For a �nite-sized system,
we show in the appendix that the individual neurons in a bump do not �re
with a �xed spatially dependent period. These �nite-sized �uctuations act
as a source of noise.

As noted by Gerstner (1995, 1998), the spike response model can be
connected to classical neural network or population rate models (Wilson
& Cowan, 1972; Amari, 1977; Hop�eld, 1984). If we choose 2 (s) D e¡s,
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which is true for a(t) D d(t), and assume near-synchronous �ring so that
Ai(t) ’ G[ui(t)], then by differentiating equation 3.2 with respect to time we
obtain:

d
dt

ui(t) D ¡ui(t) C
X

j

JijG[uj(t)]. (3.12)

This is the classical neural network or population rate model. Amit and
Tsodyks (1991), Gerstner (1995), and Shriki, Sompolinsky, and Hansel (1999)
have previously shown that networks of spiking neurons can be represented
with rate models provided there does not exist a large degree of synchrony.
The condition for a stationary solution for equation 3.12 is identical to equa-
tion 3.10. If the synapse has a more complicated time course such as a dif-
ference of exponentials, then a higher-order rate equation could be derived
(Ermentrout, 1998). The activity is a functional of the input as well as a
function of time. The assumption made in deriving equation 3.12 is that the
explicit time dependenceof theactivity is weakcompared to thedependence
on the input ui(t). This is valid only for weakly synchronous or correlated
�ring. For strongly synchronous �ring, the explicit time dependence of the
activity would dominate the functional dependence on the inputs.

3.2 Numerical Simulations. We compare stationary bump pro�les ob-
tained from both equation 3.12 and a network of integrate-and-�re neurons.
A space-time raster plot of the �ring times of a stationary bump from a sim-
ulation of a network of 100 integrate-and-�re neurons is shown in Figure 3.
The network was switched into the bump state by applying a transient spa-
tially localized current for suf�cient time to excite the bump. This state has a
large basin of attraction; as long as neurons are excited in a localized region,
the network relaxes into a bump of the form shown in Figure 3. The raster
plot shows that the bump is localized in space and persists for many �ring
times. The neurons in the center of the bump �re much faster than those
near the edges.

Figure 4 shows the pro�le of the average �ring rate (activity) for the
integrate-and-�re system, equation 2.2, with three different values of b and
no noise. The solid line corresponds to the theoretically predicted pro�le
from equation 3.10. This corresponds to the stable stationary solution of
the corresponding rate model, equation 3.12, with the gain function, equa-
tion 3.9. The comparison for small b (i.e., slow synapses) is excellent; as b is
increased, the agreement lessens but is still very good. We also have found
bumps in networks of conductance-based neurons (results not shown; see
Gutkin, Laing, Chow, Colby, & Ermentrout, 2000, for an example). We �nd
that the existence of a bump solution for a network of spiking neurons to
be robust.
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Figure 3: An example of a stationary bump. The dots represent the �ring times
of a network of 100 neurons. Noise in the form of random current pulses with a
mean frequency of 0.05 as discussed in section 2.1 was included in the simulation.
Parameter values used were b D 1.5, I D 0.9, and Jij, as in Figure 1.

4 Stability and the Synaptic Timescale

In order for the bump to be observable, it must be stable to perturbations.
A stability analysis of the spike response system can be performed by con-
sidering the linear behavior of small perturbations around the stationary
bump state. However, for the spatially inhomogeneous bump, this com-
putation is quite involved. Instead, we infer the conditions for stability of
the bump from a stability analysis of the homogeneous asynchronous state
of the spike response model and con�rm our conjectures with numerical
simulations.

Stability of the bump state has previously been examined in a �rst-order
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Figure 4: Activity pro�le (mean �ring rate) for b D 2.5 (±), b D 1.5 (C ), and b D
0.5 (£) for the integrate-and-�re network and for the rate model, equation 3.12,
(solid line). I D 0.9, and the weight function is as in Figure 1. Note that for smaller
b, the agreement between the �ring-rate model and the integrate-and-�re model
is better. The errors in the activity values are all less than 0.01.

rate model. Amari (1977) and Kishimoto and Amari (1979) found for saturat-
ing gain functions that the stability of the bump in the rate model depended
on a relationship between the weight function and the applied current.
Hansel and Sompolinsky (1998) found the stability constraints for a model
with a simpli�ed weight function on a periodic domain and a piecewise
linear gain function. However, as discussed in section 3.1 the rate model is
valid only for in�nitely fast synapses and asynchronously �ring neurons. If
correlations develop between �ring times of neurons, the rate model is no
longer valid.

It has been shown previously for homogeneous networks (Abbott & Van
Vreeswijk, 1993; Treves, 1993; Gerstner, 1995, 1998, 2000) that the asyn-
chronous state of a network of integrate-and-�re neurons is unstable to
oscillations with fast excitatory coupling. Gerstner (1998, 2000) has shown
that oscillations will develop at harmonics of the average �ring rate (activ-
ity). The addition of noise helps to stabilize the asynchronous state. How-
ever, for low to moderate levels of noise, a fast enough synapse can still
cause an instability. These calculations are based on perturbing the station-
ary asynchronous state for an in�nite number of neurons using a Fokker-
Planck or related integral formalism. We note that there are two sources
of noise in the simulations: the randomly arriving currents, Irand, and the
�uctuations due to the �nite size of the network. The latter is a manifes-
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tation of unpredictability in a high-dimensional, deterministic, dynamical
system.

The integrate-and-�re network has a parameter, b , that controls the
timescale of the synaptic input. We �nd that varying b has a profound
effect on the stability of the bump solution. If b is slowly increased (i.e., the
synaptic timescale is slowly shortened) while all other parameters are held
constant, the bump will eventually lose stability. The initial location of a
bump is determined by the spatial structure of the initial current stimula-
tion. If the initial condition is symmetric and no noise is added, the bump
will remain in place and then lose stability directly to the all-off state at a
critical value of b . However, as a result of the invariance of the network un-
der spatial translations, a bump is marginally stable with respect to spatial
translation; there is a continuum of attractors parameterized by their spa-
tial location rather than a �nite set of isolated attractors. A consequence of
this marginal stability is that a bump may “wander ” under the in�uence of
noise or �nite size �uctuations. With asymmetric initial conditions or noise,
the bump will begin to wander as b is increased (see Figure 5). (Figure 10
shows the bump wandering for a �xed value of b .)

At a larger value of b , the wandering bump loses stability to a traveling
wave. Note that the wave speed increases as b increases. The same type
of behavior was observed for larger networks (results not shown). If the
wave hits an obstruction, it will switch to the all-off state. The bump can be
pinned in place if a small amount of disorder or heterogeneity is included
in the input current. In Figure 6 we have added disorder by randomly
choosing the �xed currents, Ii , keeping the average of these values across
the network equal to the value used in Figure 5. The bump migrates to a
local maximum in the current and remains there. For suf�ciently large b , it
destabilizes into the all-off state, as in Figure 6. The pinning due to disorder
is suf�ciently strong that traveling waves cannot persist. Note that small
patches of neurons can be activated by noise, but they cannot persist if b is
too large.

We conjecture that the loss of stability in the bump for large b is due to
a loss of stability of the asynchronous bump state due to the synchronizing
tendency of the neurons with fast excitatory coupling, as is seen in the
homogeneous network. Integrate-and-�re neurons belong to what is known
as type I or class I neurons (Hansel, Mato, & Meunier, 1995; Ermentrout,
1996). It is known that for type I neurons, fast excitation has a synchronizing
tendency, whereas slow excitation has a desynchronizing tendency (Van
Vreeswijk, Abbott, & Ermentrout,1994; Gerstner, 1995; Hansel et al., 1995).
Chow (1998) showed that a network with heterogeneous input is still able
to synchronize.

The stationary bump corresponds to an asynchronous network state
where the neurons receive heterogeneous input. For fast enough excita-
tory coupling, the asynchronous state might lose stability, and oscillations
will develop. The synchronous oscillations need not be exceptionally strong.
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Figure 5: Bump destabilization due to quasi-static increase of b . Here, b is lin-
early increased in time from b D 3.1 at the top of the �gure to b D 8.3 at the end.
The weight function is J(z) D 5[1.16w(1/28, z) ¡ w(1/20, z)] (see the caption of
Figure 1 for de�niton of w), I D 0.8, and the noise is as in Figure 3. The bump
loses stability �rst to wandering and then to a traveling wave.

All that is required is that large enough oscillations develop and induce a
traveling wave. For symmetric initial conditions, the symmetry prevents
the formation of a traveling wave. The neurons oscillate in place, and for
enough synchronization, the synaptic input is not at a high enough level
to push some of the neurons in the bump above threshold, when it is time
for them to �re. The bump solution would then collapse and switch the
network to the all-off state. This also occurs for the case with heterogene-
ity. The pinned bump develops stationary oscillations and switches to the
all-off state.

For a �xed weight function, we �nd that when I is at a value for which
the rate model predicts the bump to be stable, the bump in the integrate-
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Figure 6: Bump destabilization due to quasi-static increase of b with disorder
added to the static background current. The range of b , the weight function, the
noise, and the average value of I are as in Figure 5. Disorder pins the bump and
prevents the formation of a traveling wave.

and-�re network is stable for small b , but becomes unstable as b increases.
This is shown in Figure 7, where we show the region of the I ¡ b plane in
which there is a stable bump solution in the integrate-and-�re network with
no noise for N D 100. The stability region, as well as the size and shape of
the bump, depends on the applied current I, the weight function J(x), and
the size of the network, but is unchanged by adding noise of the intensity
used in other simulations in this article.

The �nite size �uctuations are important for the dynamics. Figure 8
shows a plot of ui(t) at the center of a bump containing 100 neurons for
two different values of b . The traces show noisy oscillations at a given fre-
quency around an average value. The dominant frequency of the oscillations
is at the neuron’s average �ring rate. As b increases, the amplitude of the
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Figure 7: Numerically obtained stability boundary (circles) for a bump in the
noise-free integrate-and-�re for Jij as in Figure 1 and N D 100, as a function of
I and b . The bump is stable below the curve marked by circles. The solid line
shows the existence region for the bump in the rate model: it exists to the right
but not to the left of the line. Above the curve marked by circles, the bump exists
and is stable in the rate model but unstable in the integrate-and-�re model. As
discussed in the text, the curve marked by circles will move to larger b as N is
increased. This curve is not signi�cantly changed when noise of the level used
in the other simulations shown is added.

noisy oscillations increases. We conjecture that the increase in the size of the
oscillations is partially due to the dynamical synchronizing effect described
above. For small N, the noisy oscillations are dominated by �nite size �uc-
tuations, but for large N, it will be dominated by the synchronizing effect of
the fast excitation. We believe that the destabilizing effect of the oscillations
will be present even for in�nite N. While increasing N does decrease the
size of the �uctuations, this is more than compensated by the increase in
oscillation size due to increasing b . In Figure 9 we plot the maximum value
of b for which a bump is stable as a function of N for various noise values.
The plot shows that the stability boundary asymptotes for a �xed value of
b for large values of N. This plot suggests that for any N, there is a �nite
b above which the bump is no longer stable even in the presence of noise.
As expected, the bump can tolerate higher levels of b as the noise level
increases, although the maximum b seems to saturate as noise increases.

From Figures 4 and 8, we see that as b is increased, the activity and
mean value of u at each neuron decrease slightly despite the fact that we
have compensated the synaptic strength so the integrated synaptic input is
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in the network for I D 0.91, Jij as in Figure 1, and the mean frequencies of the
random current pulses have values: no noise (±), 0.05 (£), 0.1 (¤), and 0.2 (¦).
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constant. We believe that this small decrease is a result of the �uctuations
in the input due to the �nite number of neurons and the synchronizing
dynamical effect. The termination of the bump as b is increased is not due
to this overall decrease in synaptic input. If the coupling weight is increased
to keep the mean value of u constant (by multiplying J(z) by a factor slightly
greater than 1), the bump is still seen to terminate as b is increased. Indeed,
numerical results suggest that the mean value of u decreases linearly (albeit
weakly) with b , while its standard deviation increases at a faster than linear
rate (results not shown).

5 Initiating and Terminating Bumps

Since bumps are thought to be involved in such areas as working memory
(Colbyet al., 1995;Funahashi et al., 1989) and head direction systems (Redish
et al., 1996;Zhang, 1996), understanding their dynamics on a timescale much
longer than the period of oscillation of the individual neurons is important.
In particular, being able to “turn on” and “turn off” a bump is of interest.
Since the input current I is subthreshold, the network is bistable, the two
stable states being the bump and the all-off state, where none of the neurons
�res. Turning the bump on is simply a matter of shifting the system from
the all-off state into the basin of attraction of the bump. This is done by
applying a spatially localized input current to the already existing uniform
current for a short period of time—on the order of �ve oscillation periods
of the neuron in the center of the bump (whose activity is highest), as is
shown in Figure 10. Note that the bump persists after the stimulation has
been removed.

As we have seen, partially synchronizing the neurons cancause the bump
to terminate. One mechanism for causing some of the neurons to synchro-
nize is to apply a brief, strong, excitatory current to most or all of the neu-
rons involved in the bump. This will cause a number of the neurons to
�re together (i.e., be temporarily synchronized), leading to termination of
the bump if the synapse is fast enough. An example is shown in Figure 10,
where a short stimulus is applied to all of the neurons involved in the bump,
although not to all of the neurons in the network. The stimuli to turn on and
turn off the bump are both excitatory; the stimulus to turn off a bump does
not have to be inhibitory, although that is also successful.

The reason the bump turns off is a dynamical effect. An alternate means
of turning off the bump with excitation is to use the lateral inhibition in
the network. If the parameters are tuned correctly, then a strong excitatory
input to all of the neurons in the network will induce enough inhibition
to reduce the synaptic input below threshold and extinguish the bump. As
discussed in section 4, the bump is seen to wander in Figure 10. A small
amount of disorder could prevent this occurrence by pinning the bump to
a given location. We explore the initiation and termination of the bumps
more carefully in a companion publication. (Gutkin et al., 2000).
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Figure 10: Turning on and off a bump with excitation. The plot on the left
shows the �ring times and that on the right shows the input current (maximum
amplitude above background 0.4). The coupling weight is as in Figure 1, b D 2.4,
I D 0.9, and noise is as in Figure 3.

6 Discussion and Conclusion

We have shown that a one-dimensional network of spiking neurons can sus-
tain spatially localized bumps of activity and that the pro�les of the bumps
agree with those predicted by a corresponding population rate model. How-
ever, when the synapses occur on a fast timescale, bumps can no longer be
sustained in the network. They either lose stability to traveling waves or
completely switch off. We also �nd that heterogeneity or disorder can pin
the bumps to a single location and keep them from wandering. We conjec-
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ture that the loss of stability of the bump is due to partial synchronization
between the neurons. It is known for homogeneous networks of type 1
neurons that fast excitatory synapses have a synchronizing tendency. We
use this instability to turn off bumps with a brief excitatory stimulus to
synchronize the neurons partially.

For thenetworksizes that we haveprobed, we have foundthatbumps can
be sustained by synapses with decay rates as fast as three to four times the
�ring rate of the fastest neurons in the bump. If we consider neurons in the
cortex to be �ring at approximately 40Hz, this would correspond to synaptic
decay times of the order of 5 to 10 ms, which is not unreasonable. Results
with conductance-based neurons have found that the synaptic timescale
can be speeded up to well within the AMPA range and still sustain a bump
state (Gutkin et al., 2000). We also �nd that as the network size increases,
the bump may tolerate faster synapses. While the stability of the bump
depends crucially on the synaptic timescale, the activity pro�le of the bump
depends on only the connection weights and the gain function. Thus, it may
be possible to make predictions on the connectivity patterns of experimental
cortical systems from the �ring rates of the neurons within the bump and
the �ring rate (F-I) curve of individual neurons.

If these recurrent bumps are involved in working memory tasks, then our
results lead to some experimental predictions. For example, if it is possible
to speed up the excitatory excitations in the cortex pharmacologically, bump
formation and hence working memory may be perturbed. A brief applied
stimulus applied to the cortical area where the working memory is thought
to be held may also disrupt a working memory task.

Among other authors who have produced similar work are Hansel and
Sompolinsky (1998), Bressloff et al. (1999), and Compte, Brunel, and Wang
(1999). Hansel and Sompolinsky (1998) consider a rate model similar to that
studied by Amari (1977) and Kishimoto and Amari (1979), using a piece-
wise linear gain function (our G[z]) and retaining only the �rst two Fourier
components of the weight function J, which allows them to make analytic
predictions about the transitions between different types of behavior. They
also show the existence of a bump in a networkof conductance-based model
neurons and show that bumps can follow moving spatially localized current
stimulations, a feature that may be relevant for head-direction systems such
as those studied by Redish et al. (1996) and Zhang (1996).

Bressloff and Coombes (1998) and Bresslof et al. (1999) study pattern
formation in a network of coupled integrate-and-�re neurons, but their sys-
tems consider suprathreshold input (Ii > 1) so that the all-off state is not a
solution. They �nd that by increasing the coupling weight between neurons,
the spatially uniform synchronized state (all neurons behave identically) be-
comes unstable through a Turing-Hopf bifurcation, leading to spatial pat-
terns similar to those shown in Figure 4. They �nd bistability between a
bump and a spatially uniform synchronized state, whereas we �nd bista-
bility between a bump and the all-off state. This difference is crucial if the
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system is to be thought of as modeling working memory as investigated by,
among others, Colby et al. (1995) and Funahashi et al. (1989).

Compte et al. (1999) have demonstrated the existence of a bump attractor
in a two-layer network of excitatory and inhibitory integrate-and-�re neu-
rons. Their network involves strong excitation and inhibition in a balanced
state. It is possible that a corresponding rate model could be found for this
network to obtain the shape of the pro�le. They were also able to switch the
bump off and on with an excitatory stimulus. However, it is believed that
their switching-off mechanism is due to the inhibitory input induced from
the excitation provided.

We have also observed bumps in two-dimensional networks. A number
of other authors, including Fohlmeister, Gerstner, Ritz, and van Hemmen
(1995) and Horn and Opher (1997), have investigated two-dimensional net-
works of integrate-and-�re neurons, but not in the context of bumps. Prelim-
inary investigations (results not shown) indicate that bumps can be initiated
and terminated in two-dimensional networks in exactly the same fashion
as for one-dimensional networks. We emphasize that while the bumps are
spatially localized, they need not be contiguous. It may be such that a certain
amount of disorder in the synaptic connectivity would lead to a bump that
is distributed over a given region. This disorder may ever confer some ben-
e�cial effects by breaking the translational symmetry and keep the bump
from wandering when under the in�uence of stochastic �ring. We hope to
elucidate these effects in the future.

Appendix: Nonperiodicity of Bump Solutions

Here we show that locally periodic solutions are not possible for a bump in
a �nite-sized integrate-and-�re network. We consider the ansatz of periodic
�ring given by tmi

i D (w i ¡ mi)Ti, where wi is a phase, mi is an integer, and
Ti is the local �ring period. We suppose that the neuron previously �red
at t¡1

i and will next �re at t0
i . We now substitute this ansatz into the �ring

equation, equation 2.4, to obtain

1 D Ii ¡ [Ii ¡ ui(t¡1
i )]e¡Ti C ui(t0

i ), (A.1)

where

ui(t) D
Z

Jij
X

mj

2 (t ¡ (wj ¡ mj)Tj). (A.2)

In order to �nd a solution for Ti that is constant in time, we require ui(t)
to be constant or Ti periodic in t. However,

P
mj

2 (t ¡ (wj ¡ mj)Tj) ´ f (t)
is Tj periodic and Tj is not constant in j for a bump solution. This implies
that ui (t) cannot be Ti periodic for all i (except for in�nite N or for highly
singular cases where all the periods are rationally related). Hence, a locally
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periodic bump solution is not possible for the �nite-sized spike response
model and hence for the integrate-and-�re network.
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