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STA TIONARY CONFIGURATIONS OF POINT VORTICES 

KEVIN ANTHONY O'NEIL 

ABSTRACT. The motion of point vortices in a plane of fluid is an old problem of fluid 
mechanics, which was given a Hamiltonian formulation by Kirchhoff. Stationary 
configurations are those which remain self-similar throughout the motion. 

Results of two types are presented. Configurations which are in equilibrium or 
which translate uniformly are counted using methods of algebraic geometry, which 
establish necessary and sufficient conditions for existence. 

Relative equilibria (rigidly rotating configurations) which lie on a line are studied 
using a topological construction applicable to other power-law systems. Upper and 
lower bounds for such configurations are found for vortices with mixed circulations. 

Arrangements of three vortices which collide in finite time are well known. 
One-dimensional families of such configurations are shown to exist for more than 
three vortices. 

Stationary configurations of four vortices are examined in detail. 

The motion of point vortices in a plane of fluid is an old problem of fluid 
mechanics, which was given a Hamiltonian formulation by Kirchhoff. Stationary 
configurations are those which remain self-similar throughout the motion, and are of 
considerable physical interest. 

It is known that a configuration of vortices in equilibrium must have total vortex 
angular momentum O. A converse is proved, namely that for almost every choice of 
circulations with zero vortex angular momentum, there are exactly (n - 2)! equi-
librium configurations. A similar statement is proved for rigidly translating config-
urations with total circulation zero. The proofs involve ideas from algebraic geome-
try. 

Relative equilibria (rigidly rotating configurations) were studied by Palmore in the 
case of positive circulations. Upper and lower bounds for the number of collinear 
relative equilibria for arbitrary circulations are obtained by means of a topological 
construction which is applicable to other power-law systems. 

Arrangements of three vortices which collide in finite time are well known. 
One-dimensional families of such configurations are shown to exist for n vortices, 
n :;;. 3. 

Stationary configurations of four vortices are examined in detail. 

CHAPTER O. INTRODUCTION 

The motion of point vortices in the plane is an old problem in fluid mechanics. It 
was first given a Hamiltonian formulation by Kirchhoff (1876), who proved that n 
vortices with distinct positions (x;,y;) (i=l, ... ,n) in the (x,y) plane, and 
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384 K. A. O'NEIL 

nonzero real circulations K; satisfy 

(1) 
dx; aH K·-=-

I dt ay;' 
dy; aH K·--= --

I dt ax; 

where 

H = -~ E K;K)n[(x; - X)2 +(y; _ y)2] , 

Equations (1) can be given exact Hamiltonian form by making the substitutions 

Then (1) becomes the usual Hamiltonian equations with canonical coordinates qi 
and momenta Pi: 

(2) 

By performing the differentiations indicated in (1), one finds the velocity of the 
ith vortex: 

(2) 

where 

di~ = (Xi - X)2 + (Yi _ y)2, 

and the prime on the summation indicates omission of the term with I = j. The 
position of the ith vortex may be given by the complex number z, = X, + iy,; then 
we find that the velocity ~ of the Ith vortex is 

dz, .,\,' K j ( .,\,' K j 
~=dt=l£... 2" Z,-Z)=l£... 

dlj z, - Zj 

DEFINITION 0.1. The local dynamical system of n point vortices in the plane, with 
positions z, and circulations K, (l = 1, ... , n) is given by the flow of the vector field 

~ = (yCf)E' =K=) =-

on the set {z = (zl"",zn) E Cnlz, -=1= z}'V1 -=1= j}. The point K = (K1, ... ,Kn ) ERn 

is called the choice of circulations, and each K, is nonzero unless otherwise noted. 
Historically, particular attention has been given to the following class of vortex 

motions. 
DEFINITION 0.2. (Zl"'" Zn) is stationary if there is a constant wEe so that the 

velocities and positions satisfy 

~ - VJ = w(z, - z), 'V I,j. 

The geometric meaning of stationary is that the shape of the arrangement of 
points Zl"." Zn in the plane is preserved by the motion. One sees this by checking 
that the ratio of any two intervortex distances dlj/d rs is independent of time. 
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STA TIONARY CONFIGURATIONS OF POINT VORTICES 385 

Proposition 1.1.4 proves that Z is stationary iff it is one of the following types of 
motion. 

DEFINITION 0.3. (a) Z is an equilibrium if VI = ... = Vn = O. 
(b) Z is rigidly translating if VI = ... = Vn = V =1= 0 for some V E C. (The 

vortices are said to move with common velocity v.) 
(c) Z is a relative equilibrum if there exist constants 0 =1= A E R, Zo E C, so that 

V, = iA(Z, - zo) 'V I. 
(d) Z is a col/apse if there exist constants w, Zo E C so that V, = w(z, - zo) 'V I, 

and Re( w) =1= o. 
It is easy to see that if Z is stationary then so is any other geometrically similar 

arrangement of vortices z', that is, z' differs from Z only by translation, rotation, 
and change of scale. 

DEFINITION 0.4. Z is equivalent to z' if for some a, b E C with b =1= 0, z[ = 
b(z, + a) 'VI. The equivalence class [z] of z is called a configuration. The configura-
tion space is the set 

N= {[(zI, ... ,zJllz,EC; z,=I=zj'VI=I=J}. 

The property of being stationary is well defined on the configuration space. It 
follows from Proposition 1.1.4 that if z is stationary then [z] is independent of time; 
the motion is "stationary" in configuration space. 

In Chapter 1, configuration space is identified in a natural way with a subset of 
(n - 2)-dimensional complex projective space, pn-2. If the positions ZI' ..• ' zn are 
collinear then configuration space is a corresponding subset of real projective space 
Rpn-2. 

Main results. Define the total circulation to be (J = L,K" and the (total) vortex 
angular momentum to be L = L,<jK,Kj . It is well known (see Lemma 1.2.1) that if z 
is an equilibrium then L = 0, and if z is rigidly translating then (J = O. For the 
3-vortex system, the converse is also true: There are always equilibria or rigidly 
translati.ng configurations when K satisfies the appropriate condition. For larger n, 
almost nothing is known about these configurations; all that appears in the literature 
is a highly symmetrical class of equilibria described by Havelock (1931). The 
following converse to the above necessary conditions is proved in Chapter 5. 

THEOREM 5.1.1 (RESP., 5.2.1). For almost every K = (K I , ..• , Kn) satisfying L = 0 
(resp. (J = 0), there are exactly (n - 2)! (resp. (n - I)!) equilibrium (resp. rigidly 
translating) configurations. 

The almost-everywhere condition is made precise in Chapter 5. 
These theorems are proved by considering the set of stationary configurations 

with w = 0 as a subvariety of a certain space. In order to show this, lemmas of a 
technical nature are proved in Chapter 3 which allow us to separate this set from the 
"diagonal" (see Definition 1.1.6). The projection from the stationary configurations 
to the choice of circulations is an etale map. The number of stationary configura-
tions is found by a repeated application of the implicit function theorem. 
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386 K. A. O'NEIL 

Relative equilibrum configurations are so called because the motion vanishes in 
some rotating reference frame. The study of such configurations was termed "vortex 
statics" by Kelvin (1910), who, with Thompson (1883) found relative equilibria of 
identical vortices. Havelock (1931) studied vortices arranged in two concentric rings. 
If all circulations have the same sign, relative equilibria are the only stationary 
configurations possible. Palmore (1982) investigated this case and found that many 
relative equilibria must occur. 

Aside from special solutions found in Havelock and in Novikov and Sedov (1979), 
the only relative equilibria known to exist when the "i have mixed signs are those 
found by analytical continuation, from the all-positive case to one or more weak 
negative circulations. 

In Chapters 6 and 7, the projective-space setting is exploited to prove continua-
tion-type theorems which hold, not for "sufficiently weak" negative circulations, but 
for circulations satisfying a finite number of inequalities. The tool used is the degree 
of a component of configuration space, given by the topological degree of a map of 
spheres. The useful property of the degree is established in Propositions 6.3.3 and 
7.2.2, and lower bounds for the number of collinear relative equilibria are produced 
in Theorems 6.3.5 and 7.2.3. Chapter 6 concludes with Theorem 6.5.1, giving the best 
possible upper bound for the number of collinear relative equilibria. 

The final class of stationary configurations is the collapse configuration. Collapses 
of 3 vortices were demonstrated by Grobli (1877); Synge (1949) proved that the 
collapse configurations form a circle in configuration space. Again, there is nothing 
known for higher n besides the special solutions found in Novikov and Sedov (1979). 

In Chapter 7 it is proved that almost every collinear relative equilibrium with 
L = 0 lies on a family of collapsing configurations, for every n ;;;. 3. Thus, vortex 
collapse is not merely a phenomenon of simple vortex systems. 

Chapter 8 is devoted to the 4-vortex system, where an explicit formula for 
equilibria is derived. Collinear relative equilibria are shown to exist" for almost every 
choice of circulations having L = 0; these results (Theorem 8.3.3) are presented in a 
graph in Figure 6. Finally, Theorem 8.4.1 proves that for every choice of circulations 
having C1 = 0, there are at least four relative equilibria. 

CHAPTER 1. STATIONARY CONFIGURATIONS 

1.1. The N-vortex system. Given n vortices in the plane C with distinct positions 
Z1' ••• , zn and circulations /(1"'" "n' each ", E R - {O}, then the velocity of the lth 
vortex is given by 

(See the Introduction, or Sommerfeld (1964), p. 158, Lamb (1932), p. 219, Batchelor 
(1967), p. 530.) 
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STATIONARY CO~FIGURATIONS OF POINT VORTICES 

DEFINITION 1.1.1. The following quantities are defined: 

Total circulation 
Total vortex angular momentum 
Moment of vorticity 
Center of vorticity 

(when a =1= 0) 

Size 

LEMMA 1.1.1. The following identities hold: 
(11) LKtfJ = 0, 
(12) LKtZtfJ = iL. 

a = LKt 
L = Lt<jKtKj 
M = LKtZt 
C = Mia 

387 

PROOF. LKFt = Lto#jKtK/(Zt - Z) = 0, since the (lj) term cancels the (jl) term. 
In (12), 

the latter by reindexing. Take the average of the two: 

as desired. 
The translate by a of (Zl' ... ' zn) is the point (Zl + a, ... , Zn + a). Note that since 

LKt(Zt + a) = LKtZt + aa, M is translation-invariant iff a = 0. It is similar to 
check that S is translation-invariant iff M = ° and a = 0. Also, since a 2 - 2L = 
LKl > 0, the quantities a and L cannot vanish simultaneously. 

Identity (11) says that M is preserved by the motion. If two complex numbers are 
viewed as vectors in E2, with standard inner product ( , ), then (u, v) = Re(uv). 
Thus, 

So S is preserved by the motion. 
Recall the following definitions. 
DEFINITION 1.1.2. Z = (Zl' ... ' zn) is called stationary if there is a constant wEe 

so that fJ - lj = w(Zt - z) VI,}. 
DEFINITION 1.1.3. (a) z is an equilibrium if Vl = ... = v" = 0. 
(b) Z is rigidly translating if Vl = ... = Vn =1= 0. 
(c) Z is a relative equilibrium if 3 A E R, Zo E C, with ° =1= A, so that fJ = 

iA(Zt - zo) 'V I. 
(d) Z is collapsing if 3 wEe, Zo E C such that Vt = w(Zt - zo) V I, and Re( w) =1= O. 

PROPOSITION 1.1.4. Z is stationary iff it satisfies one of the conditions given in 
Definition 1.1.3. 
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PROOF. If Z is as in (a)-(d), then Z is clearly stationary. So assume Vi - Vj = 
w(z[- z)"i//,j. If w = 0 then Z is an equilibrium or is rigidly translating. Next, 
suppose w =1= O. First, assume (J =1= O. From Vi - Vj = w(z[ - z), we find 

crV[ = L ")Vi - Vj) = w{ crz[ - M). 
j 

Thus Vi = w(z[ - C), as in (c) or (d) above. 
If cr = 0, pick Zo = Z[ - Vi/w. Since Vi - wz[ = Vj - WZj for all I, j, the point Zo 

does not depend on the choice of index. Moreover Vi = w(z[ - zo), and the 
proposition is proved. 

We thus see that Definition 1.1.3 categorizes all stationary points. 
DEFINITION 1.1.5. z, z' E en are equivalent if z; = c(z[ + a) "i/ I, for some c, 

a E e, with c =1= O. The equivalence class of z is denoted by [z] and called a 
configuration. The configuration space is the set 

N= {[zl, ... ,znllz[Ee; z[=I=zj"i/I=I=j}. 

Note that Z - z' if the positions of the vortices differ only by translation, rotation, 
and scale. It is convenient to identify the configuration space N with a certain subset 
of complex projective space. If cr =1= 0, we may take as the representative of an 
equivalence class the unique translate having M = O. Then N is the following subset 
of pn-l: 

{[ zl" .. , zn] E pn-11 M = 0 and Z[ =1= zj"i/ I =1= j } . 

When cr = 0, M is translation invariant. We may take as representative the 
translate having Zl = O. Then N is identified with 

{[Zl"'" znJ E pn-11 Zl = 0; Z[ =1= zj"i/ 1=1= j}. 

DEFINITION 1.1.6. The diagonal il is the collection of hyperplanes in pn-l where 
two or more vortices coincide: 

il = {[Zl'"'' znJ E pn-11 Z[ = Zj for some 1=1= j}. 

From the above, we see that N = pn-2 - il. From Proposition 1.1.4 one concludes 
that for stationary z, [z] is independent of time. Thus the motion is "stationary" ~n 
projective space. 

If the vortices are collinear, we may take Im(z[) = 0 "i/ I. The configuration space 
is then the corresponding subset of real projective space Rpn-2. 

1.2. Reduction of the problem. The identities of Lemma 1.1.1 can be used to 
reduce the number of equations needed to define stationary configurations, as well 
as to find necessary conditions for them. 

LEMMA 1.2.1. Every equilibrium has circulations satisfying L = 0; every rigidly 
translating configuration has circulations satisfying cr = O. 

PROOF. If V1 = ... = Vn = 0, (12) becomes iL = O. If V1 = ... = Vn = V =1= 0, 
where V is the common velocity, then (II) reads 0 = crV so cr = O. 

REMARK. Chapter 5 is devoted to proving a converse to this lemma. 
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STATIONARY CONFIGURATIONS OF POINT VORTICES 389 

PROPOSITION 1.2.2. Let L = o. If V, = 0 for (n - 2) choices of index I, then 
~ = 0'11. 

PROOF. The ordering of the vortices is unimportant; assume V3 = ... = Vn = O. 
By Lemma 1.1.1, 

(Il) "IVI + "2V2 = O. 
(12) "IZIVI + "Zz2VZ = 0. 

Since ZI '* Zz, the homogeneous linear system has unique solution VI = V2 = 0. This 
proves the proposition. 

PROPOSITION 1.2.3. Let 0 = o. If ~ = iLl M for (n - 2) choices of index I, then 
V, = iLIM VI. 

PROOF. Again, we may assume V3 = ... = Vn = iLIM = V. 
(Il) "I(VI - V) + "2(VZ - V) = L"'(~ - V) = o. 
(12) "IZI(VI - V) + "zzz(Vz - V) = LK,zA~ - V) = iL - VM = O. 

Since ZI '* zz, the result follows. 
These propositions show that finding equilibrium configurations is equivalent to 

finding the common zeros of n - 2 homogeneous rational functions of z" namely, 
~, on pn-2; finding rigidly translating configurations is equivalent to finding the 
common zeros of n - 2 rational functions ~ + iLIM on pn-Z . . These functions 
have poles in the set 11, so the stationary configurations are the common zeros of 
n - 2 homogeneous polynomials-the numerators of the rational functions-in 
pn-2 - 11. This is the setting for Bezout's theorem, and this problem is addressed in 
Chapter 5. 

Next consider the stationary configurations with w '* O. The following lemma 
establishes some necessary conditions. 

LEMMA 1.2.4. Suppose ~ - Jij = w(z, - z) V I,j, and w '* O. Then 
(a) If 0 = 0, then M = O. 
(b) If M = 0, then for any 0, iL = wS. In particular, if L '* 0 then w = iLlS 

while if L = 0 then S = O. 
(c) If L '* 0 then Re( w) = 0, and z is a relative equilibrium. 

PROOF. From ~ - Jij = w(z, - z) we find that 
o~ = I: "j(~ - Jij) = w{ oz, - M). 

j 

If 0 = 0, then 0 = wM, proving (a). Next, 
~M -iL = I: KjZj(~ - Jij) = wI: KjZiZ,- z) = w{z,M -S). 

j j 

Setting M = 0 completes (b). Lastly, (c) is a consequence of (b). 

PROPOSITION 1.2.5. Assume L,* 0, 0'* 0, and M = o. If ~ = i(LIS)z, for 
n - 2 choices of index I, then V, = i(LIS)z, VI, and z is a relative equilibrium. 

PROOF. Fix w = iLlS. We may assume V, = wz" 1= 3, ... , n. Use Lemma 1.1.1: 
(Il) 
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(12) 

Since ZI *- Z2' the proposition follows. 

PROPOSITION 1.2.6. Let IJ = O. If VI - ~ = (iLIS)(ZI - z[) for n - 3 choices of 
index I, and M = 0, then VI - ~ = i(LIS)(ZI - z[) \;fl, and Z is a relative equi-
librium. 

PROOF. Let W = iLlS, and write D[ = (VI - ~) - w(ZI - z,), 2 ,;:;; I,;:;; n. We 
may assume D4 = ... = Dn = O. Then 

(11) 

K2D2 + K3 D3 = L K[[VI - V[- W{ZI - z[)] = IJ{VI - WZI) + wM = O. 

(12) 

K2Z2D2 + K3 Z3D3 = L K[Z, [VI - ~ - W{ZI - Z,)] 

= M{VI - WZ I) - iL + wS = O. 

Since ZI *- Z2' we conclude that D2 = D3 = 0, completing the proof. 

PROPOSITION 1.2.7. Suppose L = 0 and M = O. If VIZ, - ~ZI = 0 for n - 3 
values of index I, and S = 0, then VIZ[ - ~ZI = 0 \;f I, and Z is a relative equilibrium 
or col/apse. 

PROOF. Assume D[ = VIZ, - ~ZI = 0 for I = 4, ... , n. 
(11) 

(12) 

Since Z3 *- Z2' the proposition holds. 
The above facts reduce the number of equations needed to find stationary 

configurations having W *- O. 
If L *- 0 and IJ *- 0, it suffices to find the common zeros of n - 2 functions of the 

form (~- i(LIS)z[) in pn-2. These are not rational functions of Z since they also 
involve Z. However, they are complex-valued and one would expect the solution set 
in pn-2 to have dimension O. 

When IJ = 0, one of the above functions may be replaced by the first-degree 
polynomial M. In other words, we may restrict our domain to the hyperplane pn-3 
in pn-2 having M = O. Again one expects the solution set to have dim~nsion O. 

When L vanishes, however, relative equilibria and collapse configurations are 
given by the common zeros of n - 3 complex valued functions VIZ[ - V[ZI and the 
real valued function S. Thus one expects the solution set to have dimension 1. This 
is found to be the case in Chapter 7. 
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STATIONARY CONFIGURATIONS OF POINT VORTICES 391 

1.3. Nondegeneracy. To reduce repetition in the sequel, we make a definition. 
DEFINITION 1.3.1. The defining functions of stationary configurations are as 

follows: 
(a) for equilibria, fl = VI+2' 1= 1, ... , n - 2; 
(b) for rigidly translating configurations, fl = ~+2 + iL/M, 1= 1, ... , n - 2; 
(c) for relative equilibria (with L =1= 0, a =1= 0), fl = Vi+2 - iL/SZI+2, 1= 1, ... , 

n - 2; 
(d) relative equilibria (a = 0): f1 = M; fl = (V1 - Vi+2) - iL/S(zl - ZI+2)' 1= 

2, ... ,n - 2; 
(e) relative equilibria and col/apse, L = 0: f1 = S; fl = V1ZI+2 - Vi+2z1' 1= 

2, ... ,n - 2. 
Thus by §1.2 the stationary configurations are the zero sets of the respective 

defining functions. 
We obtain an affine neighborhood U of a point Z in pn-2 - Il as follows. Some 

local choice of coordinates (for instance, euclidean coordinates on P n -1) gives a 
neighborhood U c en-2 of a representative Z E en. Thus the defining functions are 
locally functions of these coordinates .i1, ••• , .in' U is homeomorphic to a neighbor-
hood of Z found by keeping two positions fixed (e.g., Zl and Z2) and allowing the 
remaining Zi to range through a suitably small neighborhood. So we may think of 
the defining functions as locally being functions of n - 2 of the positions ZI' 

In Chapter 4 we will make use of the implicit function theorem. The next 
definition is given with this in rind. 

DEFINITION 1.3.2. A stationary configuration [z] E N is nondegenerate if there is 
a neighborhood U E en - 2 of a representative Z of [z] so that the gradients of the 
real and imaginary parts of the defining functions fl are independent at z. 

For equilibria and rigidly translating configurations, the defining functions fl are 
analytic in a neighborhood of the stationary configuration. So [z] is nondegenerate 
iff the matrix afl/azj is nonsingular at z; the Zj are any local coordinates, e.g., 
Z3"'" zn' 

For relative equilibria with L =1= 0, the defining functions are not analytic. Let 
ZI = XI + iYt- Then nondegeneracy of [z] is equivalent to the nonsingularity of the 
(2n - 4) by (2n - 4) real Jacobian matrix of the functions {Re(f/)' Im(f/)}' 

Should the configuration be collinear, the matrix "splits": 

so that nondegeneracy is equivalent to the nonvanishing at Z of the determinants 

(1) 

We now find a rational function of Z which is nonzero at a collinear configuration 
whenever the determinants of (1) are. Write 
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where P'j' q'j are rational functions of Z and z. Let PIj' ii'j be the same functions 
but "forgetting" conjugation. Then the rational function of z alone, IPIj + ii'jl . 
IPIj - ii,), agrees with the product of the determinants in (1) on collinear configura-
tions. 

Finally, for case (e) of Definition 1.3.1, there are only 2n - 5 real vectors to 
consider since S is real valued. So nondegeneracy is not expressed using a determi-
nant. To restrict attention to relative equilibria only, we may add the condition that 
Re( w) = 0. Then, as in the preceding paragraph, we can find a rational function of 
z, the nonvanishing of which implies nondegeneracy at a collinear relative equi-
librium. 

We may sometimes wish to restrict our implicit function theorem argument to real 
projective space. This motivates the following definition. 

DEFINITION 1.3.3. A collinear stationary configuration [z] is nondegenerate as a 
collinear configuration (or nondegenerate in Rpn-2) if the first determinant of (1) is 
not zero at z. 

It is easy to check that this determinant is not zero if laj;;az) * 0, where the It 
are obtained from f, by" forgetting" conjugation. 

The advantage of having such rational functions of z will become evident in 
Chapters 5-7. In that setting stationary configurations appear as points on a 
quasi-projective variety in a suitable product space. The rational functions are then 
nonzero on all but a subvariety of codimension one, so that almost every stationary 
configuration is nondegenerate. 

1.4. Relative equilibria as critical points. In Palmore (1982) it is proved that the 
critical points of the Hamiltonian H restricted to the subset of en where M = ° and 
S = constant are exactly the relative equilibria. For completeness, we repeat this 
calculation here. 

Recall that H = - 1L'<jK,Kjlnlz, - zi. The derivative DH acts on a tangent 
vector v = (VI" .. , Vn) at a point z E en as follows: 

K,Kj 
DH{v)=-'L 2(Z,-Zj'V,-v) 

I<j Iz, - zjl 
where ( , ) is the usual scalar product. Rearranging, 

K,Kj 
DH{v)=-'L 2(Z,-Zj'v,) 

l"pjlz,-zjl 

( 
I k ) = -'L K, 'L ) ,v, 

I .i z, - Zj 

= - ~ K,\ ~' , v). 
Thus z is a critical point of H iff it is an equilibrium. Now, z is a critical point of H 
restricted to a level surface of the function S iff grad H is proportional to grad S, 
that is, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STATIONARY CONFIGURATIONS OF POINT VORTICES 393 

for some A E R. This is exactly the definition of a relative equilibrium (or equi-
librium, if A = 0). 

Now define the real-valued function 

- 1" [IZI-zlj 1 H = - -2 £... I<.II<.} In = H + -2 L In I S I· 
I<} lSI 

This function is convenient because it is well defined on the subset of pn-2 - .:l 
where S =I=- 0. 

REMARK. Although it is not important in the sequel, the functions Hand il define 
the same Hamiltonian dynamical system, as is easily checked by comparing the 
partial derivatives in equations (1) of the Introduction. 

It is easy to see that the critical points of il are exactly the equilibria and relative 
equilibra: 

Dil(v) = DH(v) + ~ ~DS(V) = -L I<.I( : - ~ZI'Vi)' 

Thus the critical points are those which satisfy (*) above, with A = L/S. This is a 
necessary condition when L =I=- 0. If L = 0, then H = il and the relative equilibria 
are the critical points of H restricted to the set S = 0. 

If a = 0, we know from Lemma 1.1.6 that relative equilibria have M = 0. This is 
not the entire configuration space, but it turns out that if il is restricted to the set 
M = 0, then the critical points are exactly the relative equilibria: critical points 
satisfy 

Vi = i(L/S)(zl - p) 
where p = (S/L)(lll + i1l 2 ) for some Lagrange multipliers Ill' 1l2' This observation 
is used in §8.4. 

CHAPTER 2. THE 3-VORTEX SYSTEM 
This chapter contains two lemmas concerning the existence of 3-vortex stationary 

configurations which are needed in Chapter 5. 

LEMMA 2.1. If (1<.1,1<.2,1<.3) satisfy L = ° then there is exactly one nondegenerate 
equilibrium configuration [Zl' Z2' z31 = [0,1, -1<.3/1<.21. Moreover, for such configura-
tions, the meromorphic function 

has exactly two simple zeros. 

V(z) = iL I<./(z - zl) 
I 

PROOF. By Proposition 1.2.2, z is an equilibrium iff 

0= iVl = 1<.2 + 1<.3/z3· 
So the only equilibrium configuration is as stated. N ondegeneracy is given by the 

nonvanishing of a single derivative, and is easily checked. 
The function V( z) is rational with a quadratic polynomial in the numerator. It is 

trivial to check that its discriminant is negative, proving the existence of two simple 
zeros of V. 
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LEMMA 2.2. If ("1' "2' '(3) satisfy (J = 0 then the only rigidly translating configura-
tions are the two equilateral configurations. If " = (1,1, -2) then these solutions are 
nondegenerate and the function V( z) - iLl M has exactly three simple zeros. 

PROOF. By Lemma 1.1.2, z is rigidly translating iff the single equation VI - V2 = 0 
is satisfied. Set z = (0,1, Z3); the above equation reduces to 1/(1 - Z3) + 11z3 = 1. 

The only solutions are Z3 = !(1 ± i[3), the equilateral triangle configurations. 
Nondegeneracyis checked as above. To show that the function V(z) - iLIM = P IQ 
has simple zeros, we examine the numerator P, a cubic polynomial, which simplifies 
to 

-2( zi + 2) - (Z3 - 1)(z3 + 1)(z3 - 3). 

Its derivative is quadratic, so one may find the roots of P' and check that they are 
not roots of P. Thus P has three distinct simple roots, as claimed. 

CHAPTER 3. STATIONARY CONFIGURATIONS AND THE DIAGONAL 

3.1. Introduction. Stationary configurations are the zeros of rational functions with 
poles on A. It is of interest to see how close these zeros can be to A. In this chapter it 
is proved that if " is regular (as defined below) then there is a neighborhood of A in 
pn-2 containing no stationary configurations. Consequently the set of stationary 
configurations is a closed subset of a compact set, hence compact. The existence of 
such a neighborhood is needed to show that the degree of a component of 
configuration space (see §6.3) is well defined. The compactness shows that the sets of 
equilibrium configurations and rigidly translating configurations are projective varie-
ties. See Propositions 3.2.3,3.2.5, and 3.3.3; this also plays a role in Chapter 5. 

DEFINITION 3.1.1. " = ("1" .. , len) E (C - {O})" is called e-regular if, for every 
proper subset I of {1, ... , n}, 

(Here L/ denotes summation over indices in /.) 
" is called regular if" is e-regular, and if L/ ", *- 0 for every IS; {1, ... , n}. 
Note that we allow the ,,[ to take on complex values; this generalization is not 

needed until Chapter 5. Also note that Lemma 1.2.1 holds for complex ", as well. 
DEFINITION 3.1.2. For Z E C", define 

1 
p(z) = ( _ 1) L Iz[ - zJ 

n n 1<) 

This is the average intervortex distance. For IS; {1, ... , n}, define p/(z) in the 
obvious way. 

DEFINITION 3.1.3. The set B" for e > 0, is given as follows. Let [z] E N, and pic~ 
a representative z E C" with Llz[1 2 = 1. Then [z] E B. if there is 0 < e' < e, and a 
partition of {l, ... , n} into equivalence classes II U ... U I r , r < n, so that Iz[ - z) 
< (e,)2 if I - j, and Iz, - z)1 > e if I ~ j. An equivalence class I j with more than one 
element will be called a subcollection. 
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Note that B. is an open subset of pn-2 which contains a. The idea of the 
following lemmas is to show that if e is small and [z] E B. is a stationary 
configuration, then the subcollections of [z] are very nearly equilibria or rigidly 
translating configurations. 

The lemmas depend on a series of estimates, in which constants appear, depending 
only on I/CII and n, and obvious in context. Rather than spell them out each time, we 
will simply write C1, C2 , etc. Examination of the proofs will show they hold if Vi is 
replaced by ~ throughout. This is used in Proposition 3.3.3. 

3.2. Equilibria and rigidly translating configurations. 

LEMMA 3.2.1. Suppose /C is e-regular and L * O. Then the function f = p( z )LiVil, 
which is well defined on N, is bounded away from 0 on N: 

f([z]»b>O \1[Z] EN 

for some fixed b. Moreover, (*) holds with the same bound b if /C is replaced by /C' 
sufficiently near /C in en. 

PROOF. By induction. Clearly it is true for n = 2; so assume the lemma holds for 
fewer than n vortices. Now, LIViI = 0 only if z is an equilibrium. Since L * 0, there 
is no such z, and f is bounded away from 0 on the compact set pn-2 - BE for all 
e > O. Now consider some point [z] E B., with normalized representative z satisfy-
ing Llzl12 = 1. Let I be a subcollection with IZI - zjl < e2 \11,j E I. For I E I, 
define 

so that IVi - V/I < Cl/e for some constant C1. Now, 

LIViI> L IVi 1 ~ L W; 1- C2/e, 
I I 

for some constant C2• However, p/(z) < e2 , and p/(z)L/iV/I> b > 0 for some 
constant b by the induction hypothesis. So 

L WI I> b/e2 - C2/e 
which tends to 00 as e ~ O. So for e sufficiently small, f achieves its minimum in 
pn-2 _ B., and is bounded away from O. Moreover, the inequalities are valid for /C' 
if LI/C I - /CII is sufficiently small. 

LEMMA 3.2.2. Suppose /C is e-regular. Then for e sufficiently small, B. contains no 
equilibrium configurations. 

PROOF. In Lemma 3.2.1 we proved, independent of L, that LiVII * 0 in BE for e 
sufficiently small. 

PROPOSITION 3.2.3. If /C is e-regular, then there are a finite number of equilibrium 
configurations. 
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PROOF. Let TI, = TIN /z, - z). Then P, = ~TI, is a homogeneous polynomial, 
and the set 

is a projective variety containing all equilibrium configurations, plus possibly some 
points on 1:::.. We may write V = Vd U Va' where Vd = V n I:::. and Va = V - I:::. = V 
- B. for e sufficiently small. Now Va contains only the equilibrium configurations, 
and Va is compact. Hence Va is a projective variety (Shafarevich (1977), p. 371). 
Since Va n I:::. = 0 and I:::. contains a hyperplane, Va is finite (Shafarevich (1977), p. 
50). This concludes the proof. 

The number of points in Va is found in Chapter 5. 
We may treat the rigidly translating configurations the same way. Note that 

[IV, - ljl = ° only if z is rigidly translating or an equilibrium. 

LEMMA 3.2.4. If " is regular, L *- 0, and (J *- 0, then p(z)[IV, - ljl is bounded 
away from ° on N, and the same bound holds for a neighborhood of" in C n • If" is 
regular then B. contains no rigidly translating configurations for e sufficiently small. 

PROOF. Identical to the proofs of Lemmas 3.2.1 and 3.2.2, save for the substitution 
of [W, - ljl for [IV,I and regular for e-regular. 

PROPOSITION 3.2.5. 'If " is regular, then there are a finite number of rigidly 
translating configurations. 

PROOF. Let V = V(P,M + iLTI" 1= 1, ... , n). If Va = V-I:::., then Va is com-
pact, contains all rigidly translating configurations, and is disjoint from a hyper-
plane. Therefore Va is finite. 

3.3. Relative equilibria. Suppose that V, = iAz, V I, for some 0 *- A E R. Observe 
that f, = [jl(v, - lj)/V,I *- 0 except at equilibria and rigidly translating configura-
tions. 

LEMMA 3.3.1. Assume" is regular, and that Land (J are both nonzero. Let 

if V, *- 0, 

if V, = 0. 

Then f, is a continuous ROO-valued function on N, and for every I, f, is bounded away 
from ° on N. The same bound applies if " is changed to Ie' sufficiently near. 

PROOF. By induction. The lemma obviously holds for n = 2, so assume it holds for 
fewer than n vortices. The f, are continuous functions, even when VI = 0, for since 
(J *- ° and L *- 0, at least one numerator must be nonzero. Thus each f, is bounded 
away from ° on the compact set pn-2 - B •. 

So let [z 1 E B., and fix I. It will suffice to show that f, > b for some b > 0 as 
e -+ 0. Either I -+- j for all j, or I E I a subcollection. 
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First, suppose the former. Then IJ-fl < Cl/e for some Cl . There must be a 
subcollection I, and by Lemma 3.2.1 there is j E I so that IJljI > C2/e 2 , and 
therefore I Vjl > C21 e2 - C31 e > C41 e2 for e sufficiently small. So 

fl > 11 - VjIJ-f I> 11 - C4/Clei 
which goes to 00 as e ~ O. So this case is settled. 

Next suppose I E I which contains other elements. According to Lemma 3.2.1, 
there is j E I so that IJljI > Csle 2 , so IVjI > Csle 2 - C61e > 2Cs/3e 2 for e suffi-
ciently small. If IJ-fl < Cs/2e 2, then 

fl > 11 - VjIJ-f1 > 11 - 4/31 
so fl is bounded away from O. If, on the other hand, IJ-fl ;;;. Cs/2e 2 , 

/ J-f ~ Vj /;;;./ J-f~; JIj /(1 + C6e), 

so 

The first factor on the right is bounded away from 0 by the induction hypothesis, so 
fl is also as e ~ O. This completes the proof. 

LEMMA 3.3.2. Suppose" is regular, L *" 0, and [z] satisfies J-f = iAzl for alll, 
o *" A E R. Then for e sufficiently small, B. contains no such [z]. 

PROOF. First assume that lSI> e, so IAI < ILl/e. Suppose that [z] E B., and I is a 
subcollection. Then 

LIJ-fI=IAILlzll< Cl/e 
f f 

for some Cl • But Pf(Z) < e2 and " is regular so that L!VII > ble2 for some constant 
b *" 0, and IJ-f - VII < C2/e. So 

ble2 - C31 e < L I J-f 1< Cl/e, 
f 

a contradiction for e sufficiently small. So [z] fE BE" 
Now (for any S), if [z] E BE' we may assume that there is a sub collection I, so 

that IZII > el2 for I E I: otherwise there is only one subcollection, so there must be 
a j such that IZjl > II rn (since LlzI12 = 1) and IZI - z) > e for I*" j. Then 
IVjI < C41e and IAI < Csle, and the previous argument applies. 

So assume there is I with IZII > el2 for I E I, and thus !VII = IAzl1 *" O. Now for 
I, j E I, 

11 - VjIJ-f 1= 11 - zjzll < 2e 

SO that 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



398 K.A. O'NEIL 

for every I E I. However I~ - VII < C7/e so that 

II ~ I V; I CgI e f, = L. 1 - TTl < C6e + -- . 
I '" IV; I 

By Lemma 3.2.1, we can find I E I so that I~I > C9/e 2 , and finally ff' < C6e + ClOe. 
By the induction hypothesis, this contradicts Lemma 3.3.1 for e sufficiently small. 

This proposition will be used in Chapters 6 and 7. We also have an analog of 
Proposition 3.2.3 for collinear relative equilibria. 

PROPOSITION 3.3.3. If K is regular, then the number of collinear relative equilibria is 
finite. 

PROOF. First note that Lemma 3.3.2 holds if V is replaced by V. So for e 
sufficiently small, B. contains no common zeros of the functions F, = Vi - iAz,. So 
if V = V( F,n" I = 1, ... , n) and Va = V - D.., we find that Va is finite. But 
Fi( z) = 0 'V I if Z is a collinear relative equilibrium, so Va contains all such 
configurations. 

This proposition is strengthened in Theorem 6.5.1, which gives a best possible 
upper bound for the number of points in Va' 

CHAPTER 4. THE RESTRICTED n-VORTEX SYSTEM AND 
THE IMPLICIT FUNCTION THEOREM 

4.1. The restricted n-vortex system. 
DEFINITION 4.1.1. A restricted n-vortex system is an n-vortex system with one 

circulation, usually K n , equal to O. 
Since a zero vortex does not affect the other vortices, we may remove the zero 

vortex from a restricted n-vortex stationary configuration to find an (n - I)-vortex 
stationary configuration. Conversely, given an (n - I)-vortex stationary configura-
tion, we can find a restricted n-vortex stationary configuration by properly plaCing 
the zero vortex. 

LEMMA 4.1.2. If [a 1, ••• , an-d is an (n - I)-vortex equilibrium with circulations 
(K 1, ••• , Kn- 1), then [a1, ••• , an-I' zn] is a restricted n-vortex equilibrium configuration 
for exactly n - 2 values of Zn E C, counted according to multiplicity as zeros of Vn. 

PROOF. Clearly [a 1, ••• , an-I' zn] satisfies VI = 
{a 1, ... , an-d· So we must find zn so that 

= Vn - 1 = 0 for all Z E C -

where P and Q are polynomials in zn' and deg(P) = n - 2. The zeros of v" are 
exactly the zeros of P and are distinct from a1, ••• , an-I' Therefore Vn = 0 for n - 2 
values of Zn' counted with their multiplicities as zeros of Vn. 

LEMMA 4.1.3. If [a 1, •.. , an-d is an (n - I)-vortex rigidly translating configura-
tion then [a1, ••• , an-I' zn] is a restricted n-vortex rigidly translating configuration for 
exactly n - 1 values of Zn' counted according to multiplicity as zeros of v" - iLl M. 
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PROOF. Similar to the preceding lemma. Certainly [a1, .•• , an-I' zn] satisfies 
VI = ... Vn- 1 = iLIM for all zn E C - {a1, •.. , an-d. We need merely solve 

L 
M 

P 
Q' 

where P and Q are polynomials and deg(P) = n - 1. The n - 1 zeros of P are also 
zeros of Vn - iLl M. 

DEFINITION 4.1.4. The (fluid) flow associated to an n-vortex system is the 
function 

V(Z} = iL =K:,:::::i =-

The modified (fluid) flow is the function V(z) - iLIM. 
In the fluid mechanical system of n vortices, the flow is a time-dependent vector 

field giving the velocity of the fluid at each point not at a vortex. The modified flow 
is the flow viewed from a moving frame of reference. 

Thus there are n - 2 distinct restricted n-vortex equilibria associated with an 
(n - I)-vortex equilibrium iff the associated flow has only simple zeros, or equiva-
lently, n - 2 distinct zeros. A similar statement holds for rigidly translating config-
urations with distinct zeros of the modified flow; there are n - 1 associated 
restricted configurations. 

LEMMA 4.1.5. If (a1, .•• , an-I) is a non degenerate (n - I)-vortex equilibrium 
(resp., rigidly translating configuration) with circulations (K1, ••• , Kn- 1), and the 
associated flow (resp., modified flow) has only simple zeros, then each associated 
restricted n-vortex equilibrium (resp., rigidly translating configuration) is non degener-
ate. 

PROOF. We prove the statement for equilibria; the other statement is proved 
similarly. Let (a1, •.. , an-I' an) be a restricted n-vortex equilibrium. It is nondegen-
erate if 

o*I~~I(al, ... ,aJ, 3 ~ I, j ~ n. 

Since Kn = 0, we have aV;/azn = 0 for all I < n. Thus the above determinant is 
equal to 

3~/,j<n. 

The first factor is nonzero if an is a simple zero of the flow associated with the 
(n - I)-vortex equilibrium (a 1, ••• , an-I). The second factor is nonzero iff the 
(n - 1 )-vortex system is nondegenerate. This proves the lemma. 

Now consider collinear relative equilibria. Suppose (K1, ••• , K n - 1) has K[ > 0 VI, 
and that [a 1, ••. , an-d is a collinear relative equilibrium, satisfying Ji't = iAZ[ VI, 
where necessarily A = LIS> O. Then the flow V(z) is pure imaginary for z E R. 
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The graph of 1m V(z) for Z E R looks like this: 

\ 
Thus 1m V( z) meets the line AZ exactly once in each component of R-

{a 1, • .• , a n _ d, a total of n times. 
So we have proved the following lemma. 

LEMMA 4.1.6. Let [a1, .•• , an-d be a collinear relative equilibrium ofn - 1 positive 
vortices. Then [a l , ... , an-I' Zn] is a restricted n-vortex collinear relative equilibrium 
for exactly one value of Z n in each component of R - {a1,···, an -I}' 

If we allow not one, but m, zero vortices, each (n - I)-vortex collinear relative 
equilibrium is associated with not n but (;:,) restricted collinear relative equilibria. 

4.2. The implicit function theorem. The link between stationary configurations of 
the restricted n-vortex problem and those of the n-vortex system with one weak 
circulation is the following. 

IMPLICIT FUNCTION THEOREM. Let f: U X V -+ Rn be a smooth function, where 
U c Rm, VeRn are open sets. Write f = (/1>"" fn). Assume that (a, b) E U X V, 
f(a, b) = 0, and laftlax)(a, b) '* 0 where the Xj are coordinates on V. Then there 
exist open sets U' c U, V' c V, containing a and b respectively, and a smooth function 
g: U' -+ V', having g(a) = b, and so that for all (u, v) E U' X V', feu, v) = 0 ~ 
g(u) = v. 

Thus f-l(O) is locally a smooth submanifold of U X V at (a, b), and the 
projection (u, v) ~ u is a coordinate chart on f- 1(0) (') U' X V'. The theorem 
remains true if R is replaced by C, Xj by Zj' and "smooth" by "complex analytic", 
throughout. 

In outline, the theorem is applied as follows. Let U parametrize the circulations 
K" and let V be a neighborhood in cn-2 of a restricted n-vortex stationary 
configuration. For the f, we choose the defining functions. Then the function g 
associates to each choice of circulations a stationary configuration. This method is 
known as "analytical continuation"; g is said to "continue" the restricted n-vortex 
stationary configuration, away from Kn = O. 

DEFINITION 4.2.1. Let 

Kf = {(K1, ... ,KJ E cnlKI = 1; LK,Kj = O}, 

K; = {(Kl>"" Kn) E CnlKl = 1; LK, = O}. 

Note that Kl = 1 is no restriction, since a change in the circulations by a factor of 
A simply reparametrizes the time variable t by I/A. 
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LEMMA 4.2.2. Suppose [a I, ... , an] is a nondegenerate equilibrium configuration 
(resp., rigidly translating configuration). Let V be a neighborhood of [a I, ... , an] in N. 
Then 3 open U C K£ (resp., K;) and a complex analytic map g: U ~ V so that, for 
each u E U V = ... = V = 0 (resp VI = ... = V = iLjM) substituting" = u , 1 n·' n , 
and z = g(u). In particular, if u ERn, then g(u) is an equilibrium configuration 
(resp., rigidly translating configuration). Moreover, each such configuration is nonde-
generate. 

PROOF. We prove the lemma only for equilibria; the other case is similar. Set 
f = (~, ... , v,,); this function is analytic in z/ and K/. Since (a I, ... , an) is nonde-
generate, 

3 ~ I, j ~ n, 

by definition. The implicit function theorem applies, and proves the lemma. Nonde-
generacy is clear because it is given by the nonvanishing of a continuous function of 
u which is nonzero at (a I, ... , an). 

Note that by starting with a nondegenerate restricted n-vortex equilibrium or 
rigidly translating configuration, we can continue the circulation of the zero vortex 
away from zero. 

LEMMA 4.2.3. Let Uo = ("1' ... ' "J be a choice of circulations which is regular and 
for which every equilibrium (resp., rigidly translating configuration) is nondegenerate. 
Let g/: U/ ~ Jtf, I = 1, ... , r be continuations of these configurations as in Lemma 
4.2.2. Then there is an open ball B,(uo) about U o in K£ (resp., K;) such that for any 
u E B,(uo), each z = (zI, ... ,zn) satisfying VI = ... = Vn = 0 (resp., = iLjM) 
also satisfies z = g/(u) for some l. That is, near Uo the only equilibria (resp., rigidly 
translating configurations) are those obtained by continuation from uo. 

PROOF. By Lemmas 3.2.2 and 3.2.4, a neighborhood B,(uo) exists about U o in K£ 
such that all equilibria are contained in a compact subset N' of configuration space 
N. Let E be the compact set N' X B,{uo), and W= WI U ... uw,.. Then W 
contains all the equilibria over Uo and all equilibria obtained by continuation from 
these. The set {[ z ] I VI = ... = Vn = O} is closed, hence compact, in E - W; and it 
is disjoint from the closed set (N' X {uo}) - W. Thus the sets have positive 
distance, and the proof is complete. 

N' 
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One additional fact about continued solutions is needed, 

LEMMA 4.2.4. Let g: V ~ V be a continuation of an equilibrium configuration 
(resp., rigidly translating configuration) (a l , ... , an) with circulations Uo = 

(KI' ... , K n- l , 0). Suppose the (n - I)-vortex configuration has only simple zeros of the 
flow (resp., modified flow). Then there exists a deleted neighborhood V' of Uo such that 
for u E V', g(u) also has only simple zeros. 

PROOF. Postponed until the next section. 
We now can apply the implicit function theorem repeatedly, to prove the 

following fact about the n-vortex system. 

LEMMA 4.2.5. For every n ~ 3 there is an open subset of K£ such that for every 
choice of circulations in it, there are exactly (n - 2)! equilibrium configurations, each 
of which is nondegenerate and has only simple zeros of the flow. 

LEMMA 4,2.6. For every n ~ 3 there is an open subset of K; such that for every 
choice of circulations in it, there are exactly (n - I)! rigidly translating configurations, 
each of which is nondegenerate and has only simple zeros of the modified flow. 

PROOF. We will prove Lemma 4.2.5; the other proof is similar. The claim is true 
for n = 3, as was shown in Lemma 2.1. So assume it holds for fewer than n vortices; 
we need to prove it for n. 

By the induction hypothesis, there exists a choice of circulations (KI, ... , K n - l ) for 
which there are exactly (n - 3)! nondegenerate equilibria. Each configuration has 
n - 2 distinct zeros of the associated flow, so there are a total of (n - 2)! 
nondegenerate restricted n-vortex equilibria. Each may be continued over an open 
neighborhood of (KI , ... , Kn-l' 0), which may be restricted if necessary so that the 
continued equilibria are the only equilibria (Lemma 4.2.3), are nondegenerate, and 
have simple zeros of the associated flow (Lemma 4.2.4). This completes the induc-
tion, and the proof. 

REMARK. In the preceding proof, all but the first three circulations are very small, 
because they were continued from zero. This restriction is eliminated in the next 
chapter. 

4.3. Bifurcation of zeros. In §3.I we saw that each nondegenerate (n - I)-vortex 
equilibrium with distinct zeros of the associated flow gives rise to n - 2 nondegener-
ate restricted n-vortex equilibria. Each of these can be continued to nondegenerate 
n-vortex equilibria, the associated flow of which having (according to multiplicity) 
n - 1 zeros. Since the zero vortex was continued to a weak vortex, the flow does not 
change much away from a disk around z n' We would expect the new zero to be 
found in this disk. That this is true can be seen in Figures 1 and 2. On a sufficiently 
small circle around a simple zero of the flow, the flow (as a vector field) has index 
-1. Thus there are four points on the circle where the flow is tangent to the circle, 
and a weak vortex placed at the center of the circle will cancel this flow at two 
points, causing two zeros of the new flow. 
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FIGURE 1. Flow near simple zero is - z. 

FIGURE 2. Putting a weak + vortex at ° results in two zeros on the dotted line. 

LEMMA 4.2.4. Let g: V ~ V be a continuation of an equilibrium configuration 
(resp., rigidly translating configuration) (aI' ... , an) with circulations (KI' ... , Kn- I, 0). 
Suppose the (n - l)-vortex configuration (K I , ... , Kn- I) has only simple zeros of the 
associated flow (resp., modified flow). Then there exists a deleted neighborhood V' of 
U o so that for u E V', g( u) has only simple zeros of the flow (resp., modified flow). 

PROOF. We prove the lemma for equilibria; the rigidly translating case is similar. 
The proof is an application of Rouche's theorem. Let t parametrize a complex line 
through uo. The continuation gives expressions for ZI"'" Zn' KI , ..• , Kn as functions 
of t. We may assume Kn = t. 

Since (a I , ... , an-I) is a (n - I)-vortex equilibrium when t = 0, and zn IS a 
simple zero of the flow, we may factor 

P = iVn = (_K_I_ + ... + Kn-I )(Z - Z ) '" (z - Z _ ) 
n n n Z - ZI Z - Zn-I 1 n 1 

=h(z)(z-zJ 
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with h(zn) =1= 0 when t = O. The flow of the n-vortex system has numerator 

p(z) = (_K_1_ + ... + Kn- 1 + _t_)(z - Zl)'" (z - zn) 
Z-Zl z-zn_1 z-zn 

= h(z)(z - zn)2 + t(z - Zl) ... (z - Zn-1)' 
So Zn is a double zero of P when t = 0, and P(zn) =1= 0 if t =1= 0, for It I sufficiently 
small. 

Consider the rational function P obtained by dividing P(z) by -(z - Zl) ... 
(z - zn-1): 

p(Z) = h(z}(z - zn)2 - t 
with h a rational function of t and z, and h(zn) = 1 when t = 0 (by reparametriz-
ing t if necessary). For simplicity, let zn = O. For fixed t, we wish to compare the 
functions 

11 (z) = h (z ) Z 2 - t and 12 (z) = Z 2 - t 
on the circle y of radius r = IVtl/l0 about the point Vt. The object of the 
comparison will be to allow the use of Rouche's theorem, which will imply that 12 
and 11 (and hence the n-vortex flow) have the same number of zeros within y, 
namely one. 

First, 111 - 121 = (Ih(z) - 11) ·lzI2. On y, Izi < 1.1Vt. Since h is a rational 
function of t, Ih(z) - 11 is bounded by It I times a constant depending on Idhldtl 
evaluated at Zn = 0, t = O. Thus 1/2 - It! < C1t2 for some constant C1. 

Next, 1/21 = I(Vt + rO)2 - tl = Itl'IOIS + 02/1001 on y, where 101 = 1. Thus 
1/21 ~ Itl/lO. Comparing these estimates, III - 121 < 1/21 on y for It I sufficiently 
small. Since the zeros of 11 are isolated, if 11 has a zero on y, then the circle may be 
shrunk slightly without disturbing the inequalities. Rouche's theorem then states that 
11 and 12 have exactly one zero inside y. The same argument applies to a similar 
circle around - Vt. 

Since the location of the other (simple) zeros of the flow are continuous functions 
of t, for It I sufficiently small, we have proved that the zeros of the flow associated to 
g( t) are distinct, simple zeros when t =1= O. This holds for every complex line through 
uo, and the lemma is proved. 

CHAPTER 5. EQUILIBRIA AND RIGIDLY TRANSLATING CONFIGURATIONS 

5.1. Equilibria of n vortices. It was noted in Chapter 1 that equilibrium configura-
tions for a given choice of circulations K are given by the intersection of a projective 
variety V(P1, ... , Pn ) with the open set pn-2 - il; the homogeneous polynomials PI 
are the numerators of the rational functions ~. If L = 0 then V(P1,···, Pn) = 

V(P1, ••• , Pn - 2 ), so the variety is the common zero set of n - 2 homogeneous 
polynomials in pn-2. This is the setting for Bezout's theorem, which says that if 
V(P1, ... , Pn- 2) is finite, then it contains exactly deg(P1)··· deg(Pn-2) points, 
counted according to multiplicity. This will be seen for the 4-vortex case in §8.1, 
where two quadratic polynomials are found to have two common zeros on il and 
two in pn-2 - il. These latter points are equilibrium configurations. 
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Unfortunately, for n > 4 the variety V(P1, •.. , Pn) contains a line in !::.. For 
example, with n = 5, V(P1, P2, P3) contains the projective line {Z1 = Z2 = Z3}. SO 
Bezout's theorem gives no information about any other zeros that might lie in 
pn-2 _ !::.. 

By Lemma 4.2.5, at least for some choices of circulations, there are exactly 
(n - 2)! nondegenerate equilibrium configurations. The next theorem extends this 
result to almost every choice of circulations satisfying the necessary condition 
LKfKJ = O. In this sense it is a converse to the first part of Lemma 1.2.1. 

The proof is based on the observation that the Pi are homogeneous in z and in the 
Ki , if they are considered as complex variables. Since only conjugates of the 
circulations appear, we will replace Ki by Ki throughout; then V(P1, ••• , Pn) is a 
variety in pn-2 X K L. The results of Chapter 3 allow us to separate out the "excess 
intersection" in !::. X KL; then the nature of the fiber of the projection pn-2 X KL 
--+ K L is examined. 

THEOREM 5.1.1. For n ~ 3, there exists a subvariety X n - 1 C KL of codimension 1 
such that for every choice of circulations K E KL - X n - 1, there exist exactly (n - 2)! 
equilibrium configurations, which are nondegenerate and have distinct zeros of the flow. 

PROOF. Let U c KL be the subset of circulations that are e-regular. This set is 
open in both the analytic and Zariski topologies. By Lemma 3.2.2; for each K E U 
there is a neighborhood U1(K) C U containing K and U2(K) C pn-2 containing!::. so 
that U2(K) X U1(K) C pn-2 X U contains no equilibrium configurations. Thus!::. X 
U is contained in an analytic open set disjoint from V(P1, ••• , Pn ) - !::. X U:= Va. 
Thus Va is Zariski-closed in pn-2 X U. 

The projection 7T: Va ~ 7T(Va) C U onto the second factor takes Zariski closed sets 
to closed sets (Shafarevich (1977), p. 45). Therefore 7T(Va) is closed in U. By Lemma 
4.2.5, 7T(Va) contains an analytic open set W of dimension n - 2; since KL is 
irreducible, 7T( Va) = U. Since dim 7T -1( n) = 0 for all u E W, dim Va = n - 2 and 7T 

is a map between varieties of the same dimension (Shafarevich (1977), p. 60). 
On Va' J = laPtlaz) is a form, nonzero on 'I7- 1(W) C Va. Thus Va(J) = {p E 

Va I J(p) = O} has codimension one in Va' as does 7T(Va(J» C U. The Zariski open 
set U - 7T(Va(J» is the set of regular values of 7T, considered as a smooth map 
between manifolds of the same dimension. Then the number of points in the inverse 
image is locally constant on U - 7T(Va(J». Since this set is connected, #7T-1(n) = 
(n - 2)! by Lemma 4.2.5. 

To complete the proof, consider the form R = Res(f, 1'), where 

f = (z :\1 + ... + z :nzJ(z - Zl) ... (z - zJ 
and Res is the resultant. If R(p) =/= 0 for some p E Va' then the configuration p has 
distinct zeros of the flow. Since R =/= 0 on 7T-1(W), 7T(Va(R» has codimension one in 
U. Setting 

completes the proof. 
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REMARK. The geometric proof also has an algebraic form. Once Va is established 
as a variety, Lemma 4.2.5 combines with Proposition 3.17 of Mumford, Algebraic 
geometry I, p. 46, which is proved over the field of complex numbers, to prove 
Theorem 5.1.1. Alternatively, 7T is a flat morphism of smooth varieties (since all 
fibers have the same dimension), and therefore all fibers have the same number of 
points (cf. Milne, Etale cohomology, Chapter 1). 

5.2. Rigidly translating configurations. Since rigidly translating configurations are 
contained in 

V= ((M~+ iL)II{, 1= I, ... ,n - 2) E pn-2 

we would expect to use Bezout's theorem. Again, however, there is excess intersec-
tion in Ll. The same proof as in Theorem 5.1.1, combined with Lemma 4.2.6, gives 

THEOREM 5.2.1. For n ~ 3, there exists a subvariety yn-l C K: of codimension one 
such that for every choice of circulations K E K: - yn-l, there are exactly (n - I)! 
rigidly translating configurations which are nondegenerate and have distinct zeros of the 
modified flow. 

CHAPTER 6. COLLINEAR RELATIVE EQUILIBRIA WITH L =1= 0 

6.1. Critical points in configuration space. In Chapter 1 it was shown that relative 
equilibria are exactly the critical points of the modified Hamiltonian 

2 
_ = _1.. ~ Iz{ - zjl 

H 2 £.., K {K) In ---"--
{<) lsi 

This function has IHI -+ 00 on a subset of D = Ll u V(S), where V(S) = {S = O} 
C pn-2. 

If we restrict to the space of collinear configurations, we find that D divides 
Rpn-2 into components. The components of Rpn-2 - Ll can be identified with the 
equivalence class of the permutation (J of {I, ... , n} which gives the ordering of 
(zl"'" zn) along the real line; the equivalence relation is that (Jl - (J2 if (Jl(i) = (J2(i) 
or (Jl(i) = (J2(n + 1 - i) for all 1 ~ i ~ n. The components of Rpn-2 - Ll are 
further divided by the hypersurface V(S); the two components may be distinguished 
by the sign of S. 

Suppose that K{ > 0 for all I. Then V(S) = 0, and Rpn-2 - Ll has nl/2 
components. Moreover, H -+ 00 on the boundary of each component, so H must 
have a minimum in each component. Direct calculation shows that every critical 
point of H must be a maximum. We conclude that there are precisely nl/2 collinear 
relative equilibria, each nondegenerate (Palmore (1982), p. 717). 

6.2. One negative vortex. If one circulation is negative, then V( S) =1= 0, and H 
does not necessarily go to 00 at the diagonal set. To illuminate the general case, 
consider the following example. 

Let K = (1,1,1, -.6) be a choice of circulations for a 4-vortex collinear system. We 
may identify configuration space with Rp2 by choosing for a representative of 
[Zl' Z2' Z3' Z4] the translate [x, y, z, w] having w = O. Then (x, y, z) E R3; we may 
normalize by scaling so that x 2 + y2 + Z2 = 1. Then RP2 is obtained by identifying 
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antipodal points, or equivalently, restricting to the subset {z ~ O}, and identifying 
antipodal points on the equator {z = O}. Figure 3 shows the projection of this set 
onto the (x, y) plane, as well as the image of the diagonal set ~. Figure 4 shows 
V(S). 

Now the boundary of the component marked (*) in Figure 4 is made up of four 
parts. On V(S) and {y = O}, fI ..... -00. On the other two, fI ..... 00. Therefore, fI 
must have a saddle point in this component. The same is true for the other 
components of Rpn-2 - D in the first quadrant of the (x, y) plane having S> O. 
Thus there are at least six collinear relative equilibria. 

We now generalize to the n-vortex system. 

THEOREM 6.2.1. Suppose (K1, ••• , Kn) is a choice of n circulations with Kn the only 
negative one, so that L is positive. Let s be the integer so that KI + Kn > 0 holds for 
exactly s choices of 1< n. Then there are at least s(n - 2)! collinear relative equilibria. 

PROOF. There are exactly s(n - 2)! components of Rpn-2 - ~ having order 
(n, I, ... ), with KI + Kn > O. We will show that each such component C contains at 
least one critical point of fl. 

FIGURE 3. Configuration space with diagonals (n = 4). 

~--V(S) 

FIGURE 4. The set V(S) = {S = O}. 
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Since S is negative at the point of ac (the boundary of C) where Zl = Z2 = 
= Z n -1 and S is positive at any point of ac where z, = Z n' the set C is divided into 
two parts by the hypersurface V( S), Let C + be the part having S positive, 

Now examine the behavior of iI(p), p E C+, as p approaches the boundary 
ac+. Since L > 0, iI ~ -00 as p ~ V(S) n ac+= Cl. Also iI ~ -00 as p nears 
the subset C2 of ac + where z, and Zn coincide. Cl and C2 are disjoint, since S is 
bounded away from zero on C2• 

On the other hand, since K, > ° for 1< n, iI ~ 00 as p nears any point in ac+ 
not in Cl U C2 . 

If n = 4, it follows that C must contain a saddlepoint, as in the example 
preceding the theorem. For larger n, a C + - ( C 1 U C2 ) is connected. We conclude 
that, for iI restricted to C+, iI-l((-oo, aD has two components for sufficiently small 
a, iI-l([b, (0» has one component for b sufficiently large, and iI is continuous on 
the compact set H- l ([ a, b D. SO by critical point theory iI must contain a critical 
point in iI-lela, bD c C+. This critical point is a collinear relative equilibrium, and 
the theorem is proved. 

6.3. The degree of a component of Rpn-2 - Ll. Let C be a component of 
Rpn-2 - Ll, with boundary ac and closure C = C U ac. Since Ll contains a 
hyperplane disjoint from ac, we may consider an affine neighborhood Rn-2 of C in 
Rpn-2, in which C appears as a bounded component of the complement of a finite 
number of hyperplanes. Thus C is a bounded, convex subset of Rn-2, homeomor-
phic to the open unit ball E, and ac is homeomorphic to aB = sn-3. 

Suppose K = (K], ... , Kn) is a regular choice of circulations, with L =/= 0. Accord-
ing to Lemma 3.3.2, there is an open neighborhood U of ac in C which contains no 
zeros of the vector field grad fI. Pick an interior point Po of C (e.g., the centroid) 
and let ft: ex [0, 1] ~ C be the straight-line contraction of C to Po; fo = id and 
fl == Po· For e sufficiently small, f,(aC) c U and f,(aC) can be smoothed in U to a 
set N diffeomorphic to sn-3. The vector field grad iI is nonzero on N, but 
undefined on N n {S = o}. However, the unit vector field V = (grad iI)/llgrad iIll 
is well defined on all of N: since L =/= 0, grad iI ~ -Lz/S near {S = O}, so that V 
has a removable singularity there. 

DEFINITION 6.3.1. The degree of C, deg C, is the degree of the map N ~ sn-3 
given by V. 

We must check that deg C does not depend on the choice of smoothing N. If N' is 
another choice then N is homotopic to N' along the contraction because V is 
defined in U; this gives a homotopy between f: N ~ sn-3 and /': N ~ sn-3. 
Consequently the degree is the same. 

The significance of this degree is that if deg C =/= ° then C contains a zero of grad 
iI, that is, a collinear relative equilibrium configuration. 

DEFINITION 6.3.2. Krn = {K E Rn I Kl = 1; K is regular}. 

PROPOSITION 6.3.3. Fix some component C of Rpn-2 - Ll. The map Krn - K£ ~ Z 
taking K ~ deg C is constant on connected components. 
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PROOF. Let K, K' be two regular choices of circulations with L *- 0, contained in 
the same component of Krn - K£. This component is clearly path-connected, so let 
y(t) be a smooth path with y(O) = K, y(I) = K'. The image y([O, 1]) is compact. 

It follows from Lemma 3.3.2 that there is an open set U C C containing ~ which 
contains no zero of grad iI, for any choice of circulations in y([O, 1]). Let N be a 
smoothing of ac in U, and to each t E [0,1] associate the integer deg t C. Thus y 
provides a smooth path in Z between dego C and deg i C, so dego C = deg i C. 

Hence to compute the degree of a component for some choice of circulations K we 
may compute the degree for some other K' in the same component. If the component 
adjoins a restricted system (some K{ = 0) the implicit function theorem comes into 
play. 

LEMMA 6.3.4. Assume K{ > 0 for 1= 1, ... , P and m :s;; p + 1. Then there exists 
e > 0 so that if 0 *- IK{I < e, 1= p + 1, ... , P + m, then there are at least p!j2 . 
( P;:' I) nondegenerate collinear relative equilibria of the (p + m )-vortex system with 
circulations (K 1, ••• , Kp+m). There is exactly one solution per component C" of Rpn-2 
- ~ having no adjacent negative vortices, and deg C" *- o. 

PROOF. Begin with a simple extension of Lemma 4.1.6 to the case of m, rather 
than one, zero vortex. Precisely, let (a1, ••• , ap ) be·a p-vortex collinear relative 
equilibrium with circulations (K1, .•• , Kp). There is exactly one such configuration in 
each of the p!j2 components of RPp-2 - ~. By Lemma 4.1.6 we may position a 
zero-vortex at exactly p + 1 points to produce restricted (p + I)-vortex relative 
equilibria, one point in each component of R - {a 1, ..• , an}. Given m zero-vortices 
we find (P;:' I) configurations (aI' ... , a P' ap+ l' ... , a p+m) which satisfy V; = {},z{ \;f I, 
for some A E R. 

f 
Next we apply the implicit function theorem to the map U X V ~ RPp+m-2, 

where U C RP+m-2 is a neighborhood in RPp+m-2 of (a l , ... , ap+m)' or alterna-
tively, a neighborhood in RP+m-2 of (a 3 , ••• , ap+m); and V is a neighborhood of 
o E Rm which parametrizes the circulations K p + I' ... , K P + m· For f = (f3'· .. , fp + m), 
we take f{ = Im[V; - i(LjS)ztl. The nondegeneracy condition of the implicit func-
tion theorem is satisfied at (a 1, ••• , ap+m) because aftlazj = 0 and afjjazj *- 0 at 
(a 1, ••• , ap+m) for j > p, I*- j, and (a 1, ••• , ap) is a nondegenerate collinear relative 
equilibrium. 

The implicit function theorem then implies existence of continuations as claimed 
in the lemma. For suitably small e, the continued solutions are the only solutions in 
their respective components. Finally, if the component C" contians a single nonde-
generate collinear relative equilibrium, then deg C" = ± 1. This concludes the proof. 

Lemma 6.3.4 combined with Proposition 6.3.3 give 

THEOREM 6.3.5. Suppose K = (KI, ... , Kn) lies in K c K; - K£, K a connected 
component. If K contains a point of the form (KI , ... , Kp' 0, ... ,0) with K{ > 0 for 
1 :s;; I :s;; p, and p ;;?; nj2, then the n-vortex system with choice of circulations K has at 
least p!j2(~~;) collinear relative equilibrium configurations. 
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PROOF. By Lemma 6.3.4, the claimed number of collinear relative equilibria 
continue from (KI' ... , Kp ' 0, ... ,0) into the component K. Thus for every K E K at 
least this number of components of Rn - 2 - t:,. have nonzero degree. This proves the 
theorem. 

EXAMPLE. Consider K = (1, ... ,1, Kn)' For Kn > 0, there are n!j2 collinear relative 
equilibria; by Lemma 6.3.4, the same is true for negative Kn when IKnl is sufficiently 
small. It is easy to check that K is regular for -1/2 < Kn < 0; therefore n!j2 is a 
lower bound for the number of collinear relative equilibria when Kn > -1/2. For 
Kn> -1, Theorem 6.2.1 applies, and we find a lower bound of (n - I)! collinear 
relative equilibria. The results of this chapter give no information if K n ~ -1. 

6.4. Nondegeneracy of collinear relative equilibria. Let Ff = (~S - iL )TI" and i, 
be obtained from F, by "forgetting" complex conjugation. The i, are polynomials 
of degree n, and i, = ° 'VI for collinear relative equilibrium configurations. 

THEOREM 6.4.1. Let 

and 

Xl = {K E K rn - KZ I there exist collinear relative 

equilibria for choice of circulations K } 

X2 = {K E Xl I some collinear relative equilibrium is degenerate} C Xl' 

Then X 2 is a subvariety of Xl with codimension ~ 1. 

PROOF. Let 

U = {K E CnlKn = 1, and K is regular, with L =#= O}. 

Define V C pn-2 X U by V = V(i" 1= 1, ... , n). As in Theorem 5.1.1 and 5.2.1, 
Va = V - (t:,. X U) is a variety, which projects to U. If w is this projection and p is 
the restriction to real circulations, p ( w( Va» = Xl' 

According to §1.3, there is a form J on Va' not identically 0, which vanishes on 
degenerate collinear relative equilibria. Therefore Va(J) has codimension 1 in Va' 
and X 2 = p( w(Va(J») has codimension at least 1 in Xl' 

6.5. An upper bound for collinear relative equilibria. In this section we find an 
upper bound for the number of collinear relative equilibrium configurations associ-
ated with a regular choice of circulations. This upper bound is achieved when all 
circulations are positive. 

THEOREM 6.5.1. If K is a regular choice of n circulations, with (J =#= 0, and L =#= 0, 
ihen there are no more than n!j2 collinear relative equilibrium configurations. 

PROOF. Using the notation of the preceding theorem, we have the projection of 
varieties w: Va --> U. As in Theorems 5.1.1 and 5.2.1, #w-1(u) is constant for u 
belonging to a connected Zariski-open subset of U. The theorem is proved by 
computing this number for a specific u. 
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We proceed by induction. First consider n = 3: 

PI = [( "2 + "3 )("Izl + "2zi + "3Zn - L](ZI - Z2)(ZI - Z3)' Zl - Z2 ZI - Z3 

SO PI is a cubic polynomial, homogeneous in (ZI' z2' z3), which vanishes at all 
collinear relative equilibria. On configuration space pI -~, PI is a cubic poly-
nomial in one variable. If ", > 0 for all I, PI = 0 has as solutions exactly the three 
collinear relative equilibria. Thus #'1T- I (u) = 3 for some choice of u. 

Now assume that for some choice of positive circulations ("1" .. , len), V(PI,· .. , Pn) 
has exactly n!j2 points, all collinear. Each is associated with n + 1 nondegenerate 
restricted (n + I)-vortex collinear relative equilibria. By means of the implicit 
function theorem we continue these solutions to find a choice of n + 1 positive 
circulations for which {p, = 0; I = 1, ... , n + I} has exactly (n + 1)!j2 solutions, 
all collinear. This completes the induction, and the proof. 

CHAPTER 7. COLLINEAR RELATIVE EQUILIBRIA AND 
COLLAPSE CONFIGURATIONS WITH L = 0 

7.1. One negative vortex. We know from Chapter 1 that relative equilibria with 
L = 0 are exactly the critical points of H restricted to the set Xn = {S = O} C pn-2 
- ~. Consider now the collinear configurations. In "Rpn-2 -~, Xn is a hyper-
surface of codimension 1. Since ~ divides Rpn-2 into components, it does the same 
to Xn • Each component has a characteristic ordering of {l, ... , n}, but not every 
ordering is associated with a nonempty component of Xn • 

THEOREM 7.1.1. Suppose ", > 0 for 1= 1, ... , n - 1, len < 0, and L = O. Then 
there are at least s(n - 2)! collinear relative equilibrium configurations, where s is the 
number of pairs (I, n) such that", + "n > O. 

PROOF. Consider any component C of Xn having ordering (n, I, ... ) where 
", + len > O. There are s(n - 2)! such components. Let C be the component of 
Rpn-2 - ~ with the same ordering, i.e., C c C. Since S < 0 at the point (ZI = 
... = zn-I) of ac and S > 0 at the points where (z, = zn) in ac, we see that Cis 
nonempty. It is also easy to see that z, *" zn for all of ac, so that H --+ 00 

everywhere on ac. Therefore C must contain a maximum of H, which is a collinear 
relative equilibrium configuration. 

7.2. Continuation of relative equilibria. We now prove analogs of Proposition 6.3.3, 
Lemma 6.3.4, and Theorem 6.3.5. The only difficulty is that the components of Xn 
are not constant as the circulations", are varied. 

Suppose that C is a component of Xn , contained in the component C of 
Rpn-2 - ~. We may take C to be a convex set in Rn-2, bounded by hyperplanes. 
Since grad S*"O on C, C is homeomorphic to an open (n - 3)-ball, and ac to 
S n - 4. The function H is defined on C, and grad( Hie) is a vector field on C. If " is 
regular, there is a neighborhood U of ac in C which contains no zeros this vector 
field, so that V = grad(H I d/ligrad(H I dll is well defined on U. As in §6.3, we may 
smooth ac within U to N ::0 sn+4. 
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DEFINITION 7.2.1. The degree of C is the degree of the map N ..... sn-4 given by 
V. 

As before, we find that deg C is independent of the smoothing chosen. If 
deg C =1= 0 then C contains a collinear relative equilibrium. 

THEOREM 7.2.2. Suppose ", ,,' are two points in Krn n Ki, and y is a path 
connecting them; write "t = y(t), "0 = " and "1 = ,,'. Let (J be a permutation of 
{I, ... , n}, and let Ct be the component of Xn associated with [(J]. If Ct =1= 0 ';;It E [0,1], 
then degCo = degC1. 

PROOF. It suffices to show that the degree is locally constant along the path y. Fix 
r E [0,1]; for It - rl < e we have a neighborhood U of aCral in e[a] which contains 
no zeros of grad(H I s-o); and for e sufficiently small there is a homotopy along 
grad S between the hypersurfaces Ct. Along with the path y, this provides a 
continuous map into Z, t ~ deg Ct. This proves the theorem. 

THEOREM 7.2.3. Let ", ,,' E Krn n Ki, with ,,= ("1' ... , "n)' ,,' = 
("1"'" "p+1' 0, ... ,0); ", > 0 for I ~ p, "p+1 < 0; n - 1 ~ 2p. Suppose ", ,,' are 
joined by a path in Krn n Ki, so that every nonempty component of Xn with circulations 
" is nonempty all along y. Then for choice of circulations ", there are at least 
s(p - 1)!(n_ ~-1) collinear relative equilibrium configurations, where s is the integer 
so that ", + "p+1 > 0 for s choices of I ~ p. 

PROOF. We show that the minimum number s(p - 1)!(n- ~-1) of components 
have nonzero degree at some point along the path; the result then follows from the 
preceding theorem. 

Consider first the (p + I)-vortex system ("1"'" "p+1)' By Theorem 7.1.1, there 
are at least s( p - I)! collinear relative equilibria, with the negative vortex at one 
end. For such a configuration, satisfying ~ = iAZ, ';;I I, the graph of the flow V(z) 
looks like this 

'. 

+ + n 
Thus there are at least p solutions to the equation V(z) = iAz, and each solution is 
unique in its component of R - {z1, ... ,zp+d· Therefore one obtains (n- ~-1) 

restricted n-vortex relative equilibria. 
It is proved in the next section (Theorem 7.3.1) that the set of circulations 

("1' ... , "p+ 1) for which these restricted relative equilibria are nondegenerate (that is, 
satisfy the nondegeneracy condition of the implicit function theorem) is open and 
dense in K rn n K£. We may assume then that they are nondegenerate-otherwise 
we perturb ,,' slightly, and move the path from" to ,,' accordingly. 
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We may therefore continue these restricted solutions slightly along the path to K, 
so that the continued solutions are unique in their components of Xn • The degrees of 
these components are nonzero, and the theorem is proved. 

REMARK. The L = 0 circulation set K £ is in no sense" near" the positive-circula-
tion set, so that relative equilibria cannot be continued from relative equilibria with 
all positive circulations. Therefore Theorem 7.1.1 is essential in providing stationary 
configurations which can be continued. 

7.3. Nondegeneracy of collinear relative equilibria. As in Theorem 6.4.1, let 
K = (K1, ... ,Kn)and 

Fn - 2 = s. 
Then denote by F/, the rational function of z and K given by "forgetting" 
conjugation in F/. Then Ff = F/ = 0 V I at collinear relative equilibria. 

THEOREM 7.3.1. Let 

Y1 = {K E Krn n K£ I there exist collinear relative equilibria, with circulations K}, 

Y2 = {K E Y1 I some collinear relative equilibrium is degenerate} . 

Then Y2 c Y1 is a subvariety of codimension ~ 1. 

PROOF. As in Theorem 6.4.1, 

is a variety, where 

U = {K E C n I Kl = 1, K is regular, L = o}. 

Moreover Va contains all collinear relative equilibria. 
By §1.3, there are forms on Va' not identically zero, which vanish at p E Va only if 

'1T( p) E Y2 , '1T the projection onto the last factor. Thus Y2 has codimension ~ 1 in 
Y1, as claimed. 

7.4. Collapse configurations. In §1.2 it was conjectured that when L = 0 the set of 
collapse configurations has dimension one. This can be put on a firm basis by the 
following. 

THEOREM 7.4.1. Let n > 3. For each K E K£, except for a subvariety of codimen-
sion 1, every collinear relative equilibrium solution lies on a one-dimensional family of 
col/apse configurations. Each family is a submanifold except at a finite number of 
points. 

PROOF. Let Ff = ~zn - Vnz/, 3 ~ I ~ n - 1, and Fn = r.K/Zl. By taking the real 
and imaginary parts, we obtain 2n - 4 real functions. As in the preceding theorem, 
it follows that for each K E K£ (except for a subvariety of codimension one) the 
corresponding Jacobian determinant is nonzero at every collinear relative equi-
librium. Thus the gradients are independent and we may find a tangent vector 
v = r.(a/a/ax) + b/a/ay) satisfying DF/(v) = 0, 3 ~ I ~ n - 1; D(ReFn)(v) 
= 0, D(Im Fn)( v) =1= o. It is easy to check that some bj =1= 0, and that DF/( v') = 0 
VI < n where v' = r.b/a/ay), that is, v' is the "imaginary part" of v. It follows 
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that vf is tangent to the defining functions {F3 , ••• , Fn - l , S} of collapse configura-
tions, and the first statement of the theorem follows by the implicit function 
theorem. 

If X is the collapse family, we see that X is a I-dimensional algebraic variety. The 
singular points of X form a subvariety of codimension ~ 1, so that X is smooth at 
all but a finite number of points. The second statement of the theorem follows, and 
the theorem is proved. 

REMARK. If n = 3 then the set of collapsing configurations is precisely the circle 
where S vanishes. 

CHAPTER 8. THE 4-VORTEX SYSTEM 

8.1. The 4-vortex equilibria. In Chapter 2 the 3-vortex equilibrium equation was 
solved explicitly. The 4-vortex case can be solved similarly, except that there are two 
quadratics rather than a single linear equation. 

THEOREM 8.1.1. There are exactly two solutions to the 4-vortex equilibrium problem 
when L = 0: [Zl"'" Z4] with 

2K4 + K2 ± K20 -K2Z1 
ZI = Z2 = Z3 = 1, z4 = O. 

2(K2 + K3 + K4 ) , KI + K3 z 1 ' 

PROOF. By Proposition 1.1, we must solve the system {V3 = 0, V4 = O}. Since the 
equations are invariant under translation, set Z4 = O. We seek solutions [Zl' Z2' z3] in 
p2 to 

o = ~ + K2 + K4 0 = Kl + K2 + K4. 
Zl Z2 z3 ' z3 - zl z3 - z2 Z3 

Clearing the denominators gives the homogeneous polynomials 
(*) 0 = K1Z2Z3 + K2 Z1Z 3 + K3Z 1Z 2 , 

0= K1Z3(Z3 - Z2) + K2 Z 3 (Z3 - Zl) + K4(Z3 - ZI)(Z3 - Z2)' 

Solutions to (*) will satisfy the original system unless Zl' Z2' Z3' Zl - Z2' or Z2 - Z3 

vanishes. 
First find the solutions at infinity by setting Z3 = 0: (*) reduces to 0 = Z I Z2' SO 

there are two such solutions, [1,0,0] and [0, 1,0]. These are not solutions to the 
original problem, since these points lie on the diagonal. 

Next, if z3 "* 0 we may set it to 1. We find that (*) becomes 
0= K1Z 2 + K2Z1 + K3Z l Z 2 , 0 = Kl Y2 + K2Yl + K4YtY2' 

where Yj = 1 - Zj' Rearranging, 
Z2(K1 + K3ZI) + K2 Z l = 0, Y2(K l + K4Yl) + K2Yt = O. 

Multiply the top equation by (Kl + K4 Yl)' the bottom by (Kl + K3Zl), and add; use 
the fact that Zj + Yj = 1, 

(Kl + K4Yl)(Kl + K3Z l ) + K2[Zl(Kl + K4Yt) + Yl(Kl + K3Z I )] = O. 
This is quadratic in Zl' 

zf( -K3K4 - K2K4 - K2 K3) 

+ ZI (-KlK4 + KlK3 + K3 K4 + K1K2 + K2K4 + K2 K3 - K1K 2 ) 

+(Kf + K1K4 + K1K2) = o. 
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Since L = 0, this reduces to 

Z{(K2 + K3 + K4 ) + ZI(-2K4 - K2) +(KI + K2 + K4 ) = 0. 
The discriminant D reduces to -3K~. SO the solutions follow from the quadratic 
formula. 

Note that in the proof we could as easily have solved for Z2' 

Z2 = (2K 4 + KI 4= KIV-3)/2(KI + K3 + K4)· 

It is easy to check that ZI and Z2 lie either on the line of slope 

{3(K3 + K4 )/(K3 - K4 ) 

through the point (1 + i{3)/2 or on the conjugate of this line. If K3 = K4 , then 
Rez l = Rez 2 = 1/2. The formulas indicate that if KI ~ 00, then ZI ~ 00 and 
Z2 ~ (1 + i{3)/'i., so that Z2' z3' Z4 form an equilateral triangle with total circula-
tion ~ 0. Thus the 3-vortex rigidly translating configurations can be interpreted as 
a limiting case of 4-vortex equilibria, with one circulation very large. 

Note also that if one circulation is set to zero, the formulas give two solutions to 
the reduced 4-vortex equilibrium problem. Thus the 3-vortex equilibria have simple 
zeros of the flow field, as was claimed in Chapter 2. 

8.2. Four-vortex rigidly translating configurations. When the to.tal circulation is 
zero, to find rigidly translating configurations, it suffices to solve the two equations 
VI = V 2 = iL/M. If Z = (0,1, Z3' Z4) then these read 

-K 2 - K3/Z 3 - K4/Z4 = KI + K3/Y3 + K4/Y4 = L/M, 

where Yi = 1 - Zj. Clearing the denominators, 

0= LZ3Z4 + (K2 + K3 Z 3 + K4Z4)(K2Z3Z4 + K3 Z 4 + K4 Z 3 ), 

0= LY3Y4 + (K2 + K3 Z 3 + K4 Z 4 )(KI Y3Y4 + K3Y4 + K4Y3)· 

Each cubic equation is only quadratic in each variable, so we may solve each 
equation for Z3' using the quadratic formula. Equating these gives a single equation 
in terms of the single variable Z4. This can be solved numerically (by Newton's 
method, for instance) to find rigidly translating configurations for any specific 
choice of circulations. 

If we choose K = (1, -1, a, -a) and Z = (-1,1, x, -x), the symmetry simplifies the 
equations: independently of x, VI = V 2 and V3 = V 4 hold. We need only solve 
VI = V3: 

1 1 a 1 a a 
x + 1 x-I 2x 2 1 + x x-I 

which reduces to ° = 4x( ax - 1) - (a + x)( X 2 - 1), a single cubic equation. So 
long as lal =1= 1, there is at least one real root, corresponding to a collinear rigidly 
translating configuration. Again, this single equation can be easily solved numeri-
cally. 

8.3. Vortex angular momentum 0. It was seen in Chapter 1 that when L = 0, 
relative equilibria and collapsing configurations lie on the hyper surface {S = a}. We 
would like to describe this hypersurface. 
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Let (Zl' ... , zn) E en and suppose K, > 0 for 1= 1, ... , j and K, < 0 for 1= j + 
1, ... , n. We may assume 0'* 0 (since L = 0), and that 0> 0 (otherwise multiply 
the circulations by -1). Define 

c,=~, c+= (c1 , ••. ,cj ) E Rj, 

c_= (cj + 1 , ... ,cn ) E Rn-j, 

u,= c,z" u+ = (u1 , •.. , uj ) E e j , 

u_= (u j +1 , •.. ,uj ) E en - j , 

j n 

0+= L K" 0_= L (-K,). 
j+l 

(Note that 0 = 0+ - 0_ and IIc ±112 = 0 ±.) The equations S = 0, M = 0 can then be 
written 

where the "dot product" is simply LC,U, and is complex-valued. We may write the 
decomposition u ± = a ±c ± + v ±' where a ± E e, and v ±' C ± = O. Note that v + lies 
in a (j - 1 )-dimensional subspace and v _ in a (n - j - I)-dimensional subspace. 

It is easily verified that 

II u ± ,,2 = I a ± 12" C ± 112 + II v ± ,,2 = I a ± 120 ± + "v ± 112 
and the equation M = 0 becomes a + 0 + = a _ 0 _. The relation S = 0 is now of the 
form 

2 2 2 2 
la+1 o++IIv+II =la_1 o_+IIv_II. 

Using M = 0, we obtain 

(1) 

PROPOSITION 8.3.1. Assume the n-vortex system has circulations (K1"'" Kn), with 
o > 0 and K, > 0 for I ~ j. Let 

Xn = {[ Z l' ... , Z n1 E P n - 21 M = 0; S = o}. 
Then: (a) X2 = 0, 

(b) X3 ::::: Sl ifj = 2; X3 = 0 otherwise, 
(c) X4 ::::: S3 ifj = 2 or 3; X4 = 0 otherwise. 

PROOF. (a) is obvious. If n = 3, then in the case j = 1 we find that v + = 0 and (1) 
implies that X3 = 0. If j = 3, the right-hand side of (1) is zero, and X3 = 0. 
Taking j = 2, however, means that v _ = 0 and so the nonzero solutions of (1) have 
a _ '* O. Therefore the set of solutions in pI to (1) are equivalent to the solutions to 
Ilv+112 = 1 with v+E e, as claimed in (b). 

Now take n = 4. As before we find X4 = 0 if j = 1 or 4. Taking j = 3, we have 
v_ = 0 and (1) is (up to equivalence class in p2) IIv+112 = 1, with v+E e2. Therefore 
X4 is homeomorphic to S3. Similarly, if j = 2, the nontrivial solutions of (1) have 
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v + * 0 and in p2 (1) is equivalent to 

1 = I a _ I(J(J _I (J + + II v _ II 
2 

with a E C and v _ E C. It follows that X4 ::::: S 3, and the proposition is proved. 
REMARK. For n = 3, the conditions (J> 0, j = 2 are equivalent to K1K2K3(J < o. 

Also it is easy to check that in the 4-vortex system, L = 0 implies that j = 2 or 3. 
Thus X4 is always homeomorphic to S3 when L = o. 

If we restrict to collinear configurations, the above proposition holds, provided 
that S3 is replaced by s1, and S1 by So. 

DEFINITION 8.3.2. fl'j = {[z] E pn- 2 1 Z, = Zj}. 

Obviously fl = Ufl/j. Now, the set Xn n fl/j can be identified with the set Xn- 1 
where the choice of circulations of the (n - I)-vortex system is taken to be 
(K1, ... , K:" K: j , (K, + K), ... , Kn) (the circumflex denotes omission). The identifica-
tion is the obvious one-put z, = Zj in the equations M = 0, S = O. Therefore, by 
Proposition 8.3.1, X4 n fl/j is either empty or homeomorphic to S1; in fact it is S1 
iff j = 2 for the 3-vortex system. For example, X4 n fl12 ::::: S1 iff (K1 + K2)K3K4(J < 
O. Furthermore, since X2 = 0, we see that no two diagonals fl'j' fl{'1' intersect in 
X4, provided that K, + Kj and K{' + 1<1' are nonzero. If one such pair vanishes, then 
fl/j n fl{'1' is a single point. 

If we restrict attention to collinear 4-vortex configurations with vortex angular 
momentum 0, we know that the relative equilibria are exactly the critical points of H 
restricted to X4. If no two diagonals fl,i' fll'1' meet in X4 , then H is a continuous 
ROO-valued function on X4 , and IHI = 00 only on fl. Since the Euler characteristic of 

------------~~----~------------~Kl 

K1 K2 = 1 

FIGURE 5. The collection of curves f. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



418 K. A. O'NEIL 

::~.::: -- 2 'I1!I"It ~- 4 (no shading) -- 6 

FIGURE 6. The lower bound for the number of collinear relative equilibria. 

X4 is 1, any smooth function on X4 must have as many maxima as minima. Thus we 
have the following. 

THEOREM 8.3.3. Let (Kl' K 2 , K 3 , K 4 ) be a regular choice of circulations with L = 0. 
Let s(p) be the sign of H at p E X4 nil, that is, s(p) = ± 1 if H(p) = ± 00, 

respectively. Then there are at least I L p E X. n ~ s( P ) I collinear relative equilibrium 
configurations. 

To compute this lower bound, note that the sign of H at a point of Il lj n X4 is the 
sign of KIKj • The contribution of Il lj n X4 depends on the number of points in it and 
the sign of KIKj . 

If we choose (Kl' K2) E R2, K4 = -1, and pick K3 so that LKIKj = 0, then it is easy 
to check that the set of all regular (Kl' K 2 , K 3 , K 4 ) correspond to the complement in 
R2 of the union r of these curves 

Kl - 1 = 0, 
K2 - 1 = 0, 
KIK2 - 1 = 0, 
Kl + K2 = 0. 

Kt + K2 = 0, 

Kl + K~ = 0, 

Figure 5 shows the union of curves r, and Figure 6 shows the value of the lower 
bound of Theorem 8.3.3 for each of components of R2 - r. 
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From these diagrams it is seen that there exist collinear relative equilibria for 
almost every choice of circulations in Kt. However, it appears that there is at least 
one choice of circulations, (1,1,1, -1), for which there are no collinear equilibria. By 
using the parametrization of X4 developed before Proposition 8.3.1, one can sketch 
the graph of H on X4 for this choice of circulations and see that it has no critical 
points on X4 - ~. 

8.4. Relative equilibria with a = O. Recall from Chapter 1 that the relative 
equilibria when a = 0 are exactly the critical points of iI restricted to the set where 
M = 0 in configuration space. This is a hyperplane section of p2 - ~, that is, 
pl _ ~. This set is homeomorphic to S2 minus several points. 

THEOREM 8.4.1. Let (/(1' /(2' /(3' /(4) be a choice of circulations with a = 0 that is not 
a multiple or permutation of (1,1, -1, -1). Then there are at least four relative 
equilibrium configurations. 

PROOF. Let S2 be the subset of N where M = O. Recall that the functions M and 
S are translation-invariant when a = 0 and M = O. Then observe that S2 It ~/} It 
~I')' = 0 if (I, j) * (If, j'): pick the translate of z that has z/ = z} = 0, so that 
M * 0 (the case /(1' + /(), = 0 was excluded by hypothesis). So on s2, jHj ~ 00 only 
at the six points ~Ij and on the set {S = O}. 

Without loss of generality, we may assume that /(1 and /(2 are positive, and /(4 is 
negative. Consider the cases /(3 > 0 and /(3 < 0 separately. 

If /(3 > 0, it is easy to see from Proposition 8.3.1 that {S = O} It S2 = 0. So iI is 
a real-valued smooth function on S2 that is singular at six points. At z/ = Z4' 

1= 1,2,3, iI ~ -00; at the other three diagonal points ~12' ~13' ~23' iI ~ 00. As 
in the preceding section, we smooth iI near these poles to find a real-valued 
function on S2 that has three prescribed minima and three prescribed maxima. 
Morse theory then implies that iI has at least four saddle points on S2, which are 
relative equilibrium configurations. 

Next suppose that /(3 < O. By Proposition 8.3;1, {S = O} It S2 "'" SI, a circle. So 
iI is a smooth function on S2 that goes to ± 00 on this circle and at six other points. 
We will find that each component of S2 - SI contains two points where iI ~ -00, 

and one where iI ~ 00. Given this claim, the theorem follows, for each component 
of S2 - SI is equivalent to a sphere S2 with two prescribed maxima and two 
prescribed minima (that is, we glue a disc containing a single minimum to SI). Each 
must then have two saddle points, relative equilibrium configurations. 

To prove the claim, it suffices to show that S is negative for exactly two diagonal 
points ~/} It S2 where /(//() < 0, and one where /(//() > O. These points will then lie 
in one component of S2 - SI; a similar statement holds for the other component. 

First consider ~12 and ~34; iI ~ 00 at these points. Taking the translate of ~12 
with 0 = ZI = z2' we see that S < O. Similarly, S > 0 at ~34. So the points at 00 are 
evenly divided between the components of S2 - S1. 
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At the other diagonal points, iI ~ -00. Substituting the equation M = 0 into the 
equation S = 0, we find that the sign of S at A13 is the opposite of the sign of 
("2 + '(4) = -("1 + '(3), and that Sat A24 has sign = sign("2 + '(4)' Since "1 + "2 
+ "3 + "4 = 0, S takes opposite signs at A13 and A24. A similar statement holds for 
A14 and A23 , which proves the claim, and the theorem. 

REMARK. By computing the behavior of iI near Sl in more detail, it is possible to 
show that Theorem 8.4.1 holds for" = (1,1, -1, -1) also. 

8.5. Numerical results. In Proposition 6.3.3 it was proved that the degree of a 
component in Rpn-2 - A can change under a perturbation of the choice of 
circulations" only when " passes through a nonregular value. Such a degree change 
corresponds to a collinear relative equilibrium moving onto the diagonal. That such 
possibilities actually do occur is demonstrated by the following computations. 

Table 1 shows the position of a collinear relative equilibrium with choice of 
circulations ("1,1,1,1) as "1 approaches the value - t. Of course (- 1. 1, 1, 1) is not 
regular, for the angular momentum of the first three vortices vanishes. The first three 
vortices are seen to approach an equilibrium, while the last moves out to infinity. In 
projective space, this approaches Al2 () A23 • The calculation was performed by 
fixing Z2 and Z3' and using Newton's method to solve for Zl and Z4' The solutions in 
six components move toward the diagonal, so that the total number of collinear 
relative equilibria drops from 12 to 6 as "1 passes through - t. 

TABLE 1. 

Collinear Relative Equilibria with Circulations ("1' 1, 1, 1) 

- .3 
-.4 
-.47 
-.49 
-.499 

(.5032,0,1,2.714) 
(.5013,0,1,3.548) 
(.5003,0,1,5.952) 
(.50005,0,1,9.884) 
(.5,0,1,30.09) 

Table 2 shows a similar phenomenon occurring as "1 ~ -1. Again the solutions 
move to A as "1 approaches the nonregular value. Note that the rate of rotation 
diverges. When "1 = -1, it is easily checked that there are no collinear relative 
equilibria; one does this by graphing a defining function on the set {S = O} ::::: Sl. 

Families of collapsing configurations, as discussed in Chapter 7, can also be found 
by computation. For the 4-vortex system with L = 0, the families lie in the set 
{S = O} ::::: S 3, and appear as the common zeros of two real-valued functions. The 
families for a few choices of circulation are displayed in Figures 7-12, by embedding 
S3 in C 2 in the natural way, and then projecting onto the two factors. Circled points 
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on the families are relative equilibria, and the positions in configuration space of 
these points are listed (to three-figure accuracy). If both complex factors are real, 
then the configuration is collinear. 

TABLE 2. 

Collinear Relative Equilibria with Circulations 

(K1, 1, 1, 1) as Kl ~ -1 

- .8 (- .1844, 0,1,1.636) 
-.9 ( - .0992, 0,1,1.472) 
- .97 ( - .0313, 0, 1, 1.262) 
- .99 (- .0104, 0,1,1.149) 
- .995 ( - .0051, 0,1,1.104) 

1 3 

~ 

4 + 5 

5 

Zl Z2 Z3 (Z4 = 1) 
1. (.274,0) (.358, .575) (.368, - .575) 
2. (.652, .24) ( -.274,0) (.632, - .236) 
3. (.355, .576) (.371, - .574) (.274,0) 
4. (- .274,0) (.635, - .237) (.639, .239) 
5. (.404, - .569) (.275,0) (.321, .578) 
6. (.629, - .235) (.644, .241) (- .274,0) 

FIGURE 7. Collapse family, K = (1,1,1,-1). 
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l. 
2. 
3. 
4. 

l. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Zl 

( - .226, - .175) 
(- .372, 0) 
(.410, - .602) 
(.512, - .443) 

K. A. O'NEIL 

Z2 

(.648,0) 
(.497, .09) 
(.213, .106) 
(.372, .252) 

2 

+ 
3 

Z3 

( - .142, .367) 
(.759, .356) 
(.325, .778) 
( - .512, - .119) 

FIGURE 8. Collapse family, K = (1,2, L -1). 

Zl 

(.314, - .342) 
(.784, .094) 
(.373, .636) 
(- .348,0) 
(.399, - .631) 
(.776, - .075) 
(.3, .341) 
(- .078, 0) 

6 
2 

Z2 

(.221, .365) 
(- .099, 0) 
(.243, - .371) 
(.662,0) 
(.228, .369) 
(- .099, 0) 
(.238, - .367) 
(.661,0) 

+ 
7 3 

Z3 

(.487, - .776) 
(.829, - .154) 
(.279, .213) 
(.047,0) 
(.287, -.215) 
(.848, .162) 
(.450, .787) 
(- .449, 0) 

FIGURE 9. Collapse family, K = (1,2, L -1). 

4 
8 

1 

(Z4 = 1) 
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3 

2 + 
4 

Zl z2 Z3 

( - .208, .168) (.650, - .011) ( - .170, - .378) 
(.499, .446) (.341, - .267) ( - .544, .101) 
(.328, .592) (.226, - .158) (.436, - .781) 
( - .342, - .097) (.526, .1) (.754, - .347) 

FIGURE 10. Collapse family, K = (l.I, 2, .4287, -1). 

4~\ 
~~) 

7"'=-"5 

Zl 

(.313, - .359) 
(.774, .086) 
(.371, .608) 
( - .325, 0) 
(.389, - .605) 
(.769, - .07) 
(.303, .358) 
(- .096,0) 

6 
2 

Z2 

(.222, .369) 
( - .105, - .012) 
(.237, - .375) 
(.664,0) 
(.225, .374) 
(- .105,0) 
(.233, - .371) 
(.662,0) 

1,5 

I 
T 

_ .... 
3,7 

Z3 

(.495, - .801) 
(.834, - .165) 
(.277, .187) 
(.069,0) 
(.282, - .191) 
(.849, .170) 
(.466, .81) 
(- .511,0) 

FIGURE 11. Collapse family, K = (l.I, 2, .4287, -1). 

423 

1 

(z4 = 1) 

(Z4 = 1) 
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+ 
Zl Z2 Z3 (Z4 = 1) 

1. (.936,0) (.334,0) (0,0) 
2. (.930,0) (0,0) (0, .303) 
3. (.927,0) (- .382, 0) (0,0) 
4. (.93,0) (0,0) (0, - .292) 

FIGURE 12. Collapsefamily, Ie = (1.1,2,.4287,-1). 

The first family (Figure 7) was computed with Ie = (1,1,1, -1). Although there are 
no collinear relative equilibria, this family contains six relative equilibria, which are 
zero crossings for the rate of collapse, Re(Vi/z,). Of course, the complex conjugate 
of this family is also a family of collapses. 

Figures 8 and 9 are the collapse families for Ie = (1,2,1, -1). Note that one of 
these families contain no collinear relative equilibria, while the other does. In the 
second family, one circuit of the left-hand curve corresponds to two of the right-hand 
curve. 

Figures 10-12 show the collapse families for Ie = (1.1,2, .4287, -1). Figure 6 
predicts the appearance of two new collinear relative equilibria, which in fact lie on a 
new family of collapse configurations. 
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