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Abstract—This paper is concerned with the asynchronous
consensus problem of discrete-time second-order multi-agent
system under dynamically changing communication topology,
in which the asynchrony means that each agent detects the
neighbors’ state information to update its state information by
its own clock. It is not assumed that the agents’ clocks are
synchronized. Nor is it assumed that the time sequence over
which each agent update its state information is evenly spaced.
By using tools from graph theory and nonnegative matrix theory,
particularly the product properties of row-stochastic matrices
from an infinite set, we finally show that essentially the same
result as that for the synchronous discrete-time system holds in
the face of asynchronous setting. This generalizes the existing
result to a very general case.

Index Terms—Asynchronous consensus; Multi-agent systems;
Second-order dynamics.

I. INTRODUCTION

O
VER the last decades, collective behaviors in networks

of autonomous agents has received a huge amount of

attention from different fields. One of the main reasons for that

comes from the abundance of technological applications multi-

agent systems (MAS): vehicle formations [10], [37], flocking

and swarming [19], [26], scheduling of automated highway

systems, sensor networks [13], [29], [38], microgrids [34], and

power systems [27], just to name a few.

It is worth noting that to solve the load restoration problem

for Microgrids, various soft computing algorithms have been

applied, in which MAS is one of the most popular distributed

solutions as opposed to those centralized control scheme which

lacks adaptivity to the structure changes of the power net-

works, see, e.g., [8] and [27]. But these MAS-based methods

apply only to certain power system of special structures.

Another of its shortcoming is that they lack of rigorous

stability or convergence analysis. Very recently, to address the

problems arising in the existing solutions, a fully distributed
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load restoration algorithm based on MAS which applies to the

network of any structure is proposed in [34], where mainly

the consensus theory is used to perform the convergence

and stability analysis. Such MAS consensus theory is further

extended in [35] to solve the load shedding problem for power

systems.

Consensus is well accepted as being a fundamental paradig-

m for coordination of multi-agent system. The consensus prob-

lem refers to the design of a consensus protocol through which

all agents are coordinated in the sense that they all agree on

some particular parameter of interest such as attitude, position,

velocity and etc.. Starting with the agreement algorithm in

[28], much progress has been made in studying the consensus

problems from various perspectives [1], [9], [11], [14]–[16],

[18], [25], [32], in which each agent dynamics is taken to be

a first-order integrator. Recently, the second-order consensus

problem in which each agent is governed by double-integrator

dynamics has also spurred great interest partly due to its ability

to model a broader class of complicated dynamical agents. For

example, holonomic mobile robot dynamics can be feedback

linearized as double integrators. Also, the unmanned aerial

vehicles and underwater vehicles are adjusted for their desired

motion directly by their accelerations rather than by their

speeds. Progresses toward this direction can be founded in

[21], [23], [24], [36], [39], [40], just to name a few. It is worth

noting that synchronization of complex dynamical networks,

such as small-world and scale-free networks, which is closely

related to the multi-agent consensus problem, has also been

widely studied (see, e.g., [4], [12], [17], [30]) from different

perspectives.

Most of the aforementioned works are concerned with

continuous-time dynamics. Considering in real applications the

information transmission among agents may not be continuous

due to the unreliability of communication channels or the

limited sensing ability of agents, there have been a number

of publications studying the discrete-time consensus problem

[3], [7], [20], [22], where each agent synchronously receives

its neighbors’ information at discrete times, in which the

synchrony means that all the agents update their states using

latest information of its neighboring agents at the same time.

However, considering that a central synchronizing clock may

not be available and the communication topology is dynam-

ically changing, it is of more practical interest to consider

the asynchronous consensus, i.e., each agent’s update action

is independent of the others’.

There are several publications considering the information

consensus of asynchronous first-order multi-agent systems [2],

[5], [33]. To the best of our knowledge, few works have
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considered the asynchronous consensus for agents modeled

by second-order dynamics with an exception in [6], in which

asynchronous discrete-time system with communication de-

lays is transformed into the convergence of a continuous

system with time-varying delays, and the balanced and strong-

ly connected assumption is imposed on the communication

topologies at each time instant in order to help perform the

convergence analysis. The balanced and strongly connected as-

sumption is a rather restrictive condition on the communication

topology as opposed to those investigating the asynchronous

consensus of first-order multi-agent systems [2], [33], in which

the communication topologies are relaxed to be repeatedly

jointly rooted.

We consider in this paper the asynchronous consensus of

discrete-time second-order multi-agent systems under dynam-

ically changing communication topologies. The model to be

investigated is closely related to our earlier work concerning

the synchronous consensus of second-order discrete-time [22].

In contrast to the work in [22], we will be focusing on the

case where the times at which the agent receives the state

information from its neighbors are independent of the other

agents, and the time sequence over which each agent update

its state information is not necessarily evenly spaced. The

differences between the current work and that in [22] lie

mainly in the following three perspectives: (1) The asyn-

chronous setting largely generalizes the synchronous case and

further includes its synchronous counterpart as a very special

case; (2) The technical issues brought by considering the

asynchronous setting is much more challenging compared with

the synchronous case, which require us to deal with the model

considered by using different methods; (3) The analysis of the

asynchronous systems is considerably more difficult than that

of their synchronous counterparts. One of the reasons comes

from the asynchronous setting itself. Another reason is purely

from the technical part that the length of update intervals may

take any value from an infinite set and that the set from which

the possible weighting factors are chosen is also infinite, both

of which makes the widely used method concerning product

property of row-stochastic matrices from a finite set invalid in

our work.

The remainder of the paper is organized as follows. Notation

and definitions reside in the next section. We formulate the

problem to be investigated in Section III and then state the

main result in Section IV, while consensus analysis for the

asynchronous discrete-time system is performed in Section V.

In Section VI, application-inspired numerical example show-

ing the effectiveness of the theoretical finding is simulated.

Some concluding remarks are finally drawn in Section VII.

II. NOTATION AND DEFINITIONS

Directed graphs (digraphs) will be used to model the com-

munication topologies among the agents. Let G = (V,E , A)
be a weighted digraph of order N with a finite nonempty

set of nodes V = {1, 2, . . . , N} , a set of edges E ⊂ V × V ,
and a weighted adjacency matrix A = [aij ] ∈ R

N×N with

nonnegative adjacency elements aij . An edge of G is denoted

by (i, j), meaning that there is a unidirectional exchange link

from i to j. The adjacency elements associated with the edges

are positive, i.e., (j, i) ∈ E ⇔ aij > 0. Moreover, we

assume aii = 0 for all i ∈ V . Given a nonnegative matrix

S = [sij ] ∈ R
n×n, the associated digraph of S, denoted by

Γ(S), is the directed graph with the node set V = {1, 2, . . . , n}
such that there is an edge in Γ(S) from j to i if and only if

sij > 0.

The set of neighbors of node i is denoted by Ni =
{j ∈ V : (j, i) ∈ E } . Denote by L = [lij ] the graph Laplacian

induced by weighted digraph G = (V,E , A), which is defined

by

lij =







N
∑

k=1,k ̸=i

aik j = i

−aij j ̸= i

.

The graph Laplacian L associated with an undirected graph is

positive semi-definite, but the graph Laplacian associated with

an digraph does not have this property. In both the undirected

and directed cases, 0 is an eigenvalue of L with associated

eigenvector 1, where 1 denotes the column vector of all ones

with compatible dimension.

G is called a rooted graph or a graph has a directed spanning

tree if there exists at least one node, called the root, which

can be connected to each other node along a directed path

within G. A matrix M ∈ R
n×n is nonnegative (positive),

denoted as M ≥ 0 (M > 0), if all its entries are nonnegative

(positive). Let N the square matrix with the same dimension as

M , M ≥ N implies that M −N ≥ 0. Note that for arbitrary

nonnegative square matrices, say M and N , with the same

dimension satisfying M ≥ γN, where γ > 0, if Γ(N) is a

rooted graph then Γ(M) is also a rooted graph.

A nonnegative matrix M is said to be row stochastic if

all its row sums are 1. A row-stochastic matrix M is called

indecomposable and aperiodic (SIA) (or ergodic) if there exists

a column vector v ∈ R
n such that limk→∞ Mk = 1vT.

Let
∏k

i=1 Mi = MkMk−1 · · ·M1 denote the left product of

the matrices Mk,Mk−1, · · · ,M1. Given any row-stochastic

matrix P = [pij ], define λ(P ) = 1−mini,j
∑

k min{pik, pjk}
[31]. λ(P ) = 0 if and only if the rows of P are identical. Two

nonnegative matrices M and N are said to be of the same

type, denoted by M ∼ N , if they have zero elements and

positive elements in the same places. For example, given A =
[

0.4 0 0.6

0 0.3 0.7

0 0 1

]

, B =

[

0.2 0 0.8

0 0.9 0.1

0 0 0.3

]

, C =

[

0.4 0 0.6

0.3 0 0.7

0 0 1

]

,

then matrices A and B are of the same type but A and C are

of different types.

III. PROBLEM DESCRIPTION

The system to be considered consists of N autonomous

agents, labeled 1 through N , all moving in the Euclidean space

R
p. Each agent is regarded as a node in a digraph G of order

N.
In the continuous-time setting, each agent is modeled by

second-order dynamics

ẋi = vi, v̇i = ui, i ∈ V , (1)

where xi ∈ R
p and vi ∈ R

p are, respectively, the position and

velocity of the ith agent, ui ∈ R
p is the distributed control
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input which uses only its own state information and the state

information of its neighbors. A consensus algorithm for (1)

that is investigated in [21], [23] and [36] is given by

ui(t) = −γvi +
∑

j∈Ni(t)
αij(t)(xj(t)− xi(t)), (2)

where γ > 0 denotes the velocity damping gain and Ni(t)
denotes the set of neighbors of agent i at time t. The depen-

dence of Ni(t) on t means that the communication topology

considered is dynamically changing.

In a real world application, information may not be trans-

mitted continuously due to the unreliability of communication

channels or the limited sensing ability of agents which results

in discrete-time formulation in which each agent obtains its

neighbors’ state information only at discrete times.

A. Synchronous Discrete-time System

In the discrete-time case, using the forward difference

approximation as that employed in [3] and [22], each agent in

the network has an estimate of the second-order information

state as follows:
{

xi(tk+1)− xi(tk) = Tvi(tk)
vi(tk+1)− vi(tk) = Tui(tk)

, (3)

where xi(tk), vi(tk) and

ui(tk) = −γvi(tk) +
∑

j∈Ni(tk)
αij(tk)(xj(tk)− xi(tk)),

(4)

are, respectively, the position, velocity and control input of the

ith agent at time tk, and T > 0 is the step-size (or sampling

time). Obviously, the times at which each agent gets the state

information from its neighbors are synchronized and the step

sizes are same for each updating process. These relatively

restrictive conditions in real application naturally motivates the

investigation of the asynchronous system which is elaborated

in the following subsection.

B. Asynchronous System

In contrast to that specified in the above subsection, we con-

sider in this paper the asynchronous consensus in which each

agent independently detects its neighbors’ state information

at times determined by its own clock. Also, the event times

at which each agent update its states are are not necessarily

evenly spaced. More specifically, we assume that each agent

i ∈ {1, 2, . . . , N} receives or detects its neighbors’ states at

times ti0, t
i
1, . . . , t

i
k, . . . , which is denoted by a real number

sequence {tik} for simplicity. We further assume for each

i ∈ {1, 2, . . . , N} that {tik} satisfies the following constraints:

Tu ≤ tik+1 − tik ≤ T̄u, k ∈ N, (5)

where N denotes the set of nonnegative integers, ti0 = 0 and

Tu and T̄u are positive numbers.

Definition 1: We say that discrete-time system (3), (4) is

asynchronous if the times at which the agent receives its

neighbors’ states are independent of each other, i.e., {tik} is

independent of {tjk}, ∀i, j ∈ {1, 2, . . . , N}, i ̸= j.

Similar to that in [2], let us merge all the N time sequences

{tik}, i = 1, . . . , N, into a single ordered sequence T . Relabel

the elements of T as t0, t1, t2, . . . in such a way so that t0 = 0
and tk < tk+1, k ∈ N. Let τk = tk+1 − tk, k ∈ N. Note

that the independence of sequences {tik}, i = 1, . . . , N, does

not preclude the arbitrary closeness of such sequences from

different agents. Thus τk could be any positive number in

(0, T̄u], i.e. τk ∈ (0, T̄u], k ∈ N.

For any agent i ∈ {1, 2, . . . , N} and k ∈ N, there exists

s ∈ N such hat tis ≤ tk < tk+1 ≤ tis+1. Then the dynamics of

asynchronous discrete-time systems can be written as follows.
{

xi(tk+1)− xi(tk) = τkvi(tk)
vi(tk+1)− vi(tk) = τkui(tk)

, (6)

where

ui(tk) = −γvi(tk) +
∑

j∈Ni(tk)
αij(tk)(xj(t

i
s)− xi(tk)).

(7)

Different from the assumption in [22], [36] that the set

from which all the weighting factors are chosen is finite,

it is assumed in this paper that all the nonzero and thus

positive weighting factors are uniformly and upper bounded,

i.e. αij(tk) ∈ [α, ᾱ] whenever j ∈ Ni(tk), where 0 < α < ᾱ.

It is worth pointing out that in (7), it is the state information

xj(t
i
s) instead of xj(tk) that is received by agent i in updating

the state information. This is because agent i only receives the

state information of agent j at time tis.

Remark 1: By slightly modifying algorithm (7), we can get

the following algorithm

ui(tk)

=− γvi(tk) +
∑

j∈Ni(tk)

αij(tk)
(

[xj(t
i
s)− xi(tk)]− [δj − δi]

)

,

which can be used to guarantee the differences of the agents’

position states converge to the desired values, i.e. xj(tk) −
xi(tk) → ∆ij = δi − δj , where δi ∈ R

p, i = 1, . . . , N , are

constant vectors. However, the consensus analysis for these

two algorithms are essentially the same. To see this, one can

use xj − δj to replace xj perform the consensus analysis.

For simplicity, we assume in what follows p = 1. However,

all results still hold for any positive integer p by introducing

the notation of the Kronecker product ‘
⊗

’.

We say that consensus is reached for asynchronous system

(6), (7) if for any initial position and velocity states,

limk→∞ xi(tk) = limk→∞ xj(tk)

and

limk→∞ vi(tk) = 0, i, j ∈ V .

It is assumed that xi(tk) = xi(0) and vi(tk) = vi(0) for any

k < 0 and i, j ∈ V .

IV. MAIN RESULT

To state the main result, we need to introduce a few

definitions. Denote Ḡ as the set of all possible communication

topologies for all the N agents1. The union of a group of

digraphs {Gi1 , . . . , Gik} ⊂ Ḡ is a digraph with the same

1Ḡ is infinite since the set consisting of the weighting factors is infinite.
However, there are only finite different topological structures in Ḡ.
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node set and the edge set given by the union of the edge sets

of Gij , j = 1, . . . , k.

A finite sequence of digraphs with the same node set is

said to be jointly rooted if the union of such finite sequence

of digraphs is a rooted graph, while an infinite sequence of

digraphs G0, G1, G2, . . . , with the same node set is called

repeatedly jointly rooted if there exists an infinite sequence

of contiguous, nonempty, uniformly bounded time intervals

[kj , kj+1), j = 1, 2, . . . , starting at k1 = 0, for which

each finite set of digraphs Gkj
, Gkj+1, . . . , Gkj+1−1 is jointly

rooted [9], [25].

Remark 2: The definition of repeatedly jointly rooted di-

graphs used here is slightly different from that in [2], in

which all the time intervals are with the same length, i.e. all

kj+1 − kj’s, j = 1, 2, . . . , are the same as each other.

Each edge (i, j) in digraph G(tk) corresponds to a unidi-

rectional information link from i to j at time tk, where G(tk)
denotes the communication topology at time tk, k ∈ N.

In the face of synchronous setting, the result concerning

the consensus of discrete-time second-order agents under

switching topology is rephrased as follows.

Theorem 1: (Theorem 3, [22]) Assume that the velocity

damping gain γ satisfies 2
√
dmax ≤ γ < 2

T
, where dmax =

(N − 1)ᾱ. Then consensus is reached for the synchronous

discrete-time system (3), (4) if the infinite sequence of di-

graphs G(t1), G(t2), . . . is repeatedly jointly rooted.

The final aim of this paper is to prove that essentially the

same result holds in the face of asynchronous setting.

Theorem 2: Assume that γ satisfies 2
√
dmax ≤ γ < 2

T̄u
,

where dmax = (N−1)ᾱ. Then consensus is reached for asyn-

chronous system (6), (7) if the infinite sequence of digraphs

G(t1), G(t2), . . . is repeatedly jointly rooted.

V. CONSENSUS ANALYSIS

This section aims to give a Proof of Theorem 2. The

analysis is motivated by the work in [2] and [33], the time

sequences at which each agent detects its neighbors’ state

information are merged into a single ordered sequence T
and then asynchronous discrete-time system is casted into

an equivalent augmented synchronous discrete-time which

evolves over time sequence T . Finally, mixed tools from graph

theory and nonnegative matrix theory, particularly the infinite

product properties of row-stochastic matrices from an infinite

set, is employed to prove that essentially the same result as

that for the synchronous case holds in the face of asynchronous

setting.

Follow the above proof guidelines, we first perform the

following model transformation, which helps us deal with

the asynchronous consensus problem for an equivalent trans-

formed synchronous discrete-time system evolving on the

index set of T . Denote y(tk) =
2
γ
v(tk) + x(tk) and r(tk) =

[

xT(tk), y
T(tk)

]T
, where x(tk) = [x1(tk), · · · , rN (tk)]

T
and

v(tk) = [v1(tk), · · · , vN (tk)]
T
.

Denote by L(tk) the graph Laplacian induced by graph

G(tk). Further, let m̌ denote the upper bound for the number

of elements in set {tj : tj ∈ [tik, t
i
k+1), j ∈ N} for any

i = 1, . . . , N , and k = 0, 1, . . . . The following result is from

[33] (see Lemma 1 therein).

Lemma 1: Let m̌ be the integer as defined above, m̌ =
(⌊T̄u/Tu⌋+ 1)(N − 1) + 1, where ⌊T̄u/Tu⌋ is the maximum

integer not greater than T̄u/Tu.

Let ξ(k) = [r(tk)
T, r(tk−1)

T, . . . , r(tk−m̌+1)
T]T, where

k ≥ m̌ − 1. Given any square matrix A = [aij ], let

diag{A} denote the diagonal matrix with the ith diago-

nal element equals to aii. By observing the expression of

system (6), (7), there exists a state matrix, denoted by

M(γ, τk,Ξ1(γ, τk, tk), . . . ,Ξm̌(γ, τk, tk)), which is defined

as that in (8),

where

Ξ1(γ, τk, tk)

=

[

(1− γτk

2 )In
γτk

2 In
γτk

2 In − 2τk

γ
(diag{L(tk)} −A1(tk)) (1− γτk

2 )In

]

and

Ξℓ(γ, τk, tk) =

[

0N,N 0N,N
2τk

γ
Aℓ(tk) 0N,N

]

, ℓ = 2, 3, . . . , m̌,

such that

ξ[k + 1]

=M(γ, τk,Ξ1(τk, tk, tk), . . . ,Ξm̌(τk, tk, tk))ξ[k]. (9)

Note that A1(tk), . . . , Am̌(tk) are nonnegative matrices

satisfying A1(tk) + A2(tk) + · · · + Am̌(tk) = A(tk), where

A(tk) = diag{L(tk)} − L(tk) is the adjacency matrix

associated with digraph G(tk) and if tis = tk−k
′ , where

k
′ ∈ {0, 1, . . . , m̌− 1}, then the ith row of matrix Ak

′+1(tk)
is equal to the ith row of matrix A(tk), while the ith rows

of all the other matrices in A1(tk), . . . , Am̌(tk) are equal to

zeros.

We begin our analysis with the following observation.

Lemma 2: Let dmax = (N − 1)ᾱ, then Ξ(γ, τk, tk) =
Ξ1(γ, τk, tk) + Ξ2(γ, τk, tk) + · · · + Ξm̌(γ, τk, tk), k ∈ N,
is a row-stochastic matrix with positive diagonal elements if

γ satisfies

2
√

dmax ≤ γ <
2

T̄u

. (10)

Proof. The result follows directly by observing the fact that

Ξ(γ, τk, tk)

= Ξ1(γ, τk, tk) + Ξ2(γ, τk, tk) + · · ·+ Ξm̌(γ, τk, tk)

=

[

(1− γτk

2 )In
γτk

2 In
γτk

2 In − 2τk

γ
L(tk) (1− γτk

2 )In

]

.

and the constraints on γ. �

Based on the above lemma, now we have the following

result.

Lemma 3: Suppose that γ satisfies the inequality in

(10). Let {z1, z2, . . . , zq} be any finite subset of N

for which the sequence of digraphs G(tz1), G(tz2),
. . . , G(tzq ) is jointly rooted. Then the sequence of digraphs

Γ(Ξ(γ, τz1 , tz1)),Γ(Ξ(γ, tz2 , tz2)), . . . ,Γ(Ξ(γ, tzq , tzq )) is al-

so jointly rooted.

Proof. According to the definition of the union of a

group of digraphs, the union of digraphs Γ(Ξ(γ, τz1 , tz1)),
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M(γ, τk,Ξ1(γ, τk, tk),Ξ2(γ, τk, tk), . . . ,Ξm̌(γ, τk, tk))

=















Ξ1(τk, tk, tk) Ξ2(τk, tk, tk) · · · Ξm̌−1(τk, tk, tk) Ξm̌(τk, tk, tk)
I2N 0 · · · 0 0
0 I2N · · · 0 0
...

...
. . .

...
...

0 0 · · · I2N 0















∈ R
2Nm̌×2Nm̌, (8)

Γ(Ξ(γ, τz2 , tz2)), . . . ,Γ(Ξ(γ, τzq , tzq )) is exactly the digraph

Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)). Because γ satisfies the inequality in

(10), it follows from Lemma 2 that Ξ(γ, τzℓ , tzℓ), ℓ =
1, 2, . . . , q, is a row-stochastic matrix with positive diagonal

entries. Let δ = min{τz1 , τz2 , . . . , τzq}, by observing the

form that Ξ(γ, τzℓ , tzℓ) takes in, one can get that

∑q

ℓ=1
Ξ(γ, τzℓ , tzℓ) ≥

[

0 γ
2 qδIn

2
γ
δ(
∑q

ℓ=1 A(tzℓ)) 0

]

≥ δ̄

[

0 In
∑q

ℓ=1 A(tzℓ) 0

]

= δ̄

[

M11 M12

M21 M22

]

,

where δ̄ = min{ 2
γ
δ, γ

2 qδ} > 0, M11 = 0N×N , M12 =

IN , M21 =
∑q

ℓ=1 A(tzℓ), and M22 = 0N×N . With the

above inequality which implies a close relation between di-

graph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) and Γ(
∑q

ℓ=1 A(tzℓ)), we can

find a root of digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) based on

Γ(
∑q

ℓ=1 A(tzℓ)), the union of digraphs G(tz1), G(tz2), . . . ,
G(tzq ), which is a rooted graph according to the given

condition.

Checking the entries in matrix M21 one can find if (i, j) is

an edge in digraph Γ(
∑q

ℓ=1 A(tzℓ)) then (i, n+ j) is an edge

in digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) for any i, j = 1, . . . , N,
i ̸= j, and checking the entries in matrix M12 one can

get that edge (n + i, i) ∈ Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) for any

i = 1, . . . , N. In what follows, we will specify how to find a

root of digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)). Assume ℓ is the root

of digraph Γ(
∑q

ℓ=1 A(tzℓ)) and without loss of generality

denote by (ℓ → k) the directed path connecting node ℓ to

node k within digraph Γ(
∑q

ℓ=1 A(tzℓ)), k ∈ {1, . . . , N},

k ̸= ℓ. By splitting each edge, say (i, j) in directed path

(ℓ → k), into edges (i,N + j), (N + j, j) and adding

edge (N + ℓ, ℓ) to node ℓ one can get a directed path in

digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) connecting node N + ℓ to

node k, ∀k ∈ {1, . . . , N}, k ̸= ℓ. Obviously, this procedure

simultaneously results in a directed path connecting node N+ℓ
to node N + k, ∀k ∈ {1, . . . , N}, k ̸= ℓ. Combing the above

arguments implies that node N + ℓ can be connected to any

other node in digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) and thus it is a

root of digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)). �

Assume, in the sequel, that γ satisfies 2
√
dmax ≤ γ < 2

T̄u
.

Then, by Lemma 2, all possible Ξ(γ, τk, tk) must be nonneg-

ative with positive diagonal elements. In addition, for each

fixed γ, denote by D̃(γ) the set consisting of all possible

matrices Ξ(γ, τk, tk), k ∈ N. To proceed further we need to

exploit the compactness of D̃(γ) (see Remark 4 for the reason

why we need to do so), this is reasonable since the set of all

2Nm̌ × 2Nm̌ matrices can be viewed as the metric space

R
(2Nm̌)2 . Unfortunately, D̃(γ) itself is not compact, this is

because (0, T̄u], the interval from which τk is chosen, is not a

compact set. Instead of investigate D̃(γ) directly, we consider

the following set

D(γ)

=

{

Ξ(γ, τ)

∣

∣

∣

∣

Ξ(γ, τ) =
[

(1 − γτ
2
)In

γτ
2
In

γτ
2
In − 2τ

γ
L (1 − γτ

2
)In

]

,where

L = [lij ] is a graph Laplacian, li,j ∈ {0} ∪ [α, ᾱ],

∀i, j ∈ {1, . . . , N}, i ̸= j, and τ ∈ [0, T̄u]

}

.

Clearly, D̃(γ) is a subset of D(γ). However, different from

D̃(γ) which is not compact, D(γ) is a compact set. This

argument is stated and carefully proved as follows.

Lemma 4: For each γ satisfying 2
√
dmax ≤ γ < 2

T̄u
, D(γ)

is a compact set.

Proof. Note that the set of all 2N × 2N matri-

ces can be viewed as the metric space R
4N2

. Each

Ξ = [Ξi,j ] in D(γ) can be viewed as a vec-

tor [Ξ1,1, . . . ,Ξ1,2N ,Ξ2,1, . . . ,Ξ2,2N ,Ξ2N,1, . . . ,Ξ2N,2N ] in

R
4N2

. Denote by D(γ, τ) the set consisting of the elements

in D(γ) for each fixed τ ∈ [0, T̄u], it is then clear that

D(γ) is compact if each D(γ, τ) is compact since D(γ) =
∪

τ∈[0,T̄u]
D(γ, τ) and [0, T̄u] is a compact set. Note that when

τ = 0, D(γ, τ) is compact since it is a set consisting of only

one point in R
4N2

. In what follows, we consider the case that

τ ∈ (0, T̄u]. Let

Si

=

{

[Ξi,1, . . . ,Ξi,2n]

∣

∣

∣

∣

[Ξi,1, . . . ,Ξi,2N ] is the vector taken from

the i-th row of Ξ,Ξ ∈ D(γ, τ)

}

, i = 1, . . . , 2N, τ ∈ (0, T̄u].

Then, D(γ, τ) = S1×S2×· · ·×S2N and D(γ, τ) is compact

if each Si (i = 1, 2, . . . , 2N) is compact. Considering that

each Si, i = 1, 2, . . . , N , is a set with only one element in

R
4N2

, the compactness of which follows directly, and thus we

will only prove in the sequel that SN+1 is compact, but the

proof of the compactness for the other SN+k’s, k = 2, . . . , N
can be obtained in exactly the same way.

By observing the form that each Ξ in D(γ, τ) takes in, we
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have

SN+1

=

{

Ξ(N+1) = [ΞN+1,1, . . . ,ΞN+1,N , 1− γτ

2
, 0, . . . , 0]

∣

∣

∣

∣

Ξ(N+1) is the vector taken from the (N + 1)−th row of Ξ,

Ξ ∈ Υ(α, T )

}

.

Denote C1 as

C1

=

{

[x1, x2 . . . , xN , 1− γτ

2
, 0, . . . , 0]

∣

∣

∣

∣

γτ

2
− 2τdmax

γ
≤ x1

≤ 2τ

γ
, and xj ∈ {0} ∪ [

2τ

γ
α,

2τ

γ
ᾱ], j = 2, . . . , n

}

.

C1 is compact since it is the product space of 2N compact

spaces in R
1. Moreover, SN+1 ⊂ C1, but SN+1 ̸= C1. This

is because there is an extra constraint imposed on SN+1, i.e.,

the sum of all the elements in each vector of SN+1 is 1. To

illustrate accurately the relation between SN+1 and C1, we

introduce the following continuous multivariate function:

f : R
2N → R,

f(x) :=
2N
∑

i=1

xi, ∀x = [x1, x2, . . . , x2N ] ∈ R
2N .

Since f is continuous and {1} is a compact set, f−1({1})
is compact. This, together with the fact that S1 = f−1({1})∩
C1 and C1 is compact, implies that S1 is compact, thereby

completing the proof. �

Let Π(γ) denote the set of matrices














Ξ1 Ξ2 · · · Ξm̌−1 Ξm̌

I2N 0 · · · 0 0
0 I2N · · · 0 0
...

...
. . .

...
...

0 0 · · · I2N 0















,

such that Ξ1,Ξ2, . . . ,Ξm̌ ∈ Λ(Ξ(γ, τ)) and Ξ1 + Ξ2 + . . . +
Ξm̌ = Ξ(γ, τ), where Ξ(γ, τ) ∈ D(γ), τ ∈ [0, T̄u], and

Λ(Ξ(γ, τ)) = {Ξ = [Ξij ] : Ξij = Ξij(γ, τ) or Ξij =
0, i, j = 1, 2, . . . , 2N}. Clearly, the set Π(γ) include all

possible state matrices of system (9). Π(γ) is a compact set

which can be obtained by observing the the fact that given

any Ξ(γ, τ) ∈ D(γ), all the possible choices of Ξ1, · · · ,Ξm̌

are finite and then using the similar proof as that for Lemma

4.

Given any positive integer K, define

Π(γ,K)

=
{

∏ϵ

i=1
M(γ, τ i,Ξi1, . . . ,Ξim̌) : M(γ, τ i, ·) ∈ Π(γ) and

there exists an integer ϵ, 1 ≤ ϵ ≤ K such that the sequence

of digraphs Γ(
∑m̌

j=1
Ξij), i = 1, . . . , ϵ, is jointly rooted

}

.

Π(γ,K) is also a compact set, which can be derived by

noticing the following facts: 1) Π(γ) is a compact set; 2) all

possible choices of ϵ are finite since ϵ is bounded by K; 3) all

possible choices of the root node are finite; 4) given ϵ, a root

and a directed spanning tree that is incurred by this root, the

following set
{

∏ϵ

i=1
M(γ, τ i,Ξi1, . . . ,Ξim̌) : M(γ, τ i, ·) ∈ Π(γ) and the

union of the digraphs Γ(
∑m̌

j=1
Ξij), i = 1, . . . , ϵ, contains

the specified directed spanning tree

}

is compact (this can be proved by following the similar proof

of Lemma 10 in [33]). Note that the set Π(γ,K) includes all

possible products of ϵ, ϵ ≤ K, consecutive state matrices of

system (9).

To derive the main result, we need the classical results

concerning the infinite product properties of row-stochastic

matrices. Before that, we first introduce some useful notation

from [31]. Let A = {A1, . . . , Ak} (A can be an infinite set)

be a set of square matrices which are of the same order. By a

word (in the A′s, A ∈ A) of length m we mean the product

of m A′s (repetitions permitted). The main results in [31] is

rephrased as follows.

Lemma 5: ( [31]) Let M = {M1,M2, . . . ,Mq} be a finite

set of n × n SIA matrices with the property that for each

sequence Mi1 ,Mi2 , . . . ,Mij of positive length, the matrix

product MijMij−1
· · ·Mi1 is SIA. Then, for each infinite

sequence Mi1 ,Mi2 , . . . there exists a column vector c ∈ R
n

such that

limj→∞ MijMij−1
· · ·Mi1 = 1c

T. (11)

In addition, if there are infinite many elements in M, i.e. M

is an infinite set, let φ(n) (which may depend on n) denote

the number of different types of all n× n SIA matrices, then

λ(W ) < 1 for any word W in the M ′s, M ∈ M, of length

φ(n) + 1. Furthermore, if there there exists a constant 0 ≤
d < 1 satisfying λ(W ) ≤ d for all the words in the M ′s of

length φ(n) + 1, then (11) still holds.

Remark 3: Apparently, the product of row-stochastic matri-

ces from an infinite set is much more complicated than that

of the finite case. Lemma 5 shows for the infinite case, the

existence of such d as that defined in Lemma 5 is of key role

in establishing equation (11).

The following result is key in establishing the convergence

analysis, which paves the way for us to use the result in

Lemma 5.

Lemma 6: For any Φ1, . . . ,Φk ∈ Π(γ,K), where k =
φ(2Nm̌) + 1, there exists a constant 0 ≤ d < 1 such that

λ(
∏k

i=1 Φi) ≤ d.

Proof. We first prove that for any Φ ∈ Π(γ,K),
Φ is a SIA matrix. According to the definition of

Π(γ,K), there exist positive integer ϵ (1 ≤ ϵ ≤ K),

M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ), i = 1, . . . , ϵ, such that

Φ =
∏ϵ

i=1 M(γ, τ i,Ξi1, . . . ,Ξim̌) and the sequence of di-

graphs Γ(
∑m̌

j=1 Ξij), i = 1, . . . , ϵ is jointly rooted.

Since M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ),
∑m̌

j=1 Ξij must be

nonnegative matrices with positive diagonal elements. Fur-

thermore, by observing the form that
∑m̌

j=1 Ξij takes in, one
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can get that there exists a positive number µ = min{1, 1 −
γT̄u

2 } < 1 such that diag(
∑m̌

j=1 Ξij) ≥ µI2N , for any

M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ). Combining this with the

condition that the sequence of digraphs Γ(
∑m̌

j=1 Ξij), i =
1, . . . , ϵ, is jointly rooted, we can prove that matrix Φ is SIA

by following the proof of Lemma 7 in [32]. Let

d = max
Φi∈Π(γ,K)

λ(
∏k

i=1
Φi).

Recall that each matrix in Π(γ,K) is of order 2Nm̌. Since
∏k

i=1 Φi is a word in the Φ’s (Φ ∈ Π(γ,K)) is of length k =

φ(2Nm̌)+1, it follows from Lemma 5 that λ(
∏k

i=1 Φi) < 1.

This, together with the fact that Π(γ,K) is a compact set

and λ(·) is continuous, implies that there exists a positive

number d and 0 ≤ d < 1 such that λ(
∏k

i=1 Φi) ≤ d for

any Φ1, . . . ,Φk ∈ Π(γ,K). �

Remark 4: It can be seen from the proof of Lemma 6 that

the compactness of set Π(γ,K) is key to prove the existence

of such d that satisfies 0 ≤ d < 1. This is also the reason

why we define Π(γ) and Π(γ,K) based on D(γ) rather than

D̃(γ).
We will denote M(γ, τk,Ξ1(tk), . . . ,Ξm̌(tk)), the state

matrix of system (9), by M(tk) for simplicity if it is clear

from the context. Recall that Ξ(γ, τk, tk) = Ξ1(γ, τk, tk) +
Ξ2(γ, τk, tk) + · · · + Ξm̌(γ, τk, tk). With the above prepara-

tions, we are now finally in a position to prove the main result.

Proof of Theorem 2: We first prove that consensus can be

reached for system (9). Let Φ(tk, tk) = I2Nm̌, k ≥ 0, and

Φ(tk, tl) = M(tk−1) · · ·M(tl+1)M(tl), k > l ≥ 0.
Since the infinite sequence of graphs G(t0), G(t1), . . . is

repeatedly jointly rooted, there exists an infinite sequence

of contiguous, nonempty, uniformly bounded time intervals

[kj , kj+1), j = 1, 2, . . . , starting at k1 = 0, for which each

finite sequence of graphs G(tkj
), G(tkj+1), . . . , G(tkj+1−1)

is jointly rooted. Assume, without loss of generality, that

the lengths of all the time intervals [kj , kj+1), j =
1, 2, . . . , are bounded by K. It follows from Lemma 3

and the condition that the sequence of digraphs G(tkj
),

G(tkj+1), . . ., G(tkj+1−1) is jointly rooted that the se-

quence of digraphs Γ(Ξ(γ, τkj
, tkj

)), Γ(Ξ(γ, τkj+1, tkj+1)),
. . ., Γ(Ξ(γ, τkj+1−1, tkj+1−1)) is also jointly rooted for each

j ∈ N, which, together with the proof of Lemma 6, im-

plies that Φ(tkj+1,tkj
) =

∏kj+1−1
k=kj

M(tk) ∈ Π(γ,K). S-

ince Φ(tkj
, 0) = Φ(tkj

, tkj−1
)Φ(tkj−1

, tkj−2
) · · ·Φ(tk2

, tk1
),

it then follows from Lemma 5 and Lemma 6 that

limj→∞ Φ(kj , 0) = 12Nm̌w
T, (12)

where w ∈ R
2Nm̌ and w ≥ 0.

The remaining part then can be completed by mimicking

an argument similar to the proof of Theorem 2 in [9]. That is,

for each m > 0, let kl be the largest nonnegative integer such

that kl ≤ m. Note that matrix Φ(tm, tkl
) is row stochastic,

thus we have

Φ(tm, 0)− 1w
T = Φ(tm, tkl

)Φ(tkl
, 0)− Φ(tm, tkl

)1wT

= Φ(tm, tkl
)(Φ(tkl

, 0)− 1w
T).

The matrix Φ(tm, tkl
) is bounded because it is the product of

finite matrices which come from a bounded set Π(γ). By using

(12), we immediately have limm→∞ Φ(tm, 0) = 12Nm̌w
T.

Combining this with the fact that ξ(tm) = Φ(tm, 0)ξ(0)
yields limm→∞ ξ(tm) = (wTξ(0))12Nm̌, which in turn,

together with the fact that y(tm) = 2
γ
v(tm) + x(tm), im-

plies limm→∞ x(m) = limm→∞ y(m) = (wTξ(0))1N and

limk→∞ v(m) = 0, and therefore completing the proof. �

VI. NUMERICAL EXAMPLE

In this section, we present an example to demonstrate the

effectiveness of our result.

Consider a group of four autonomous ground robots which

are shown in Figure 1. Assume that each robot is governed by

double-integrator dynamics (1), and further that each robot’s

update intervals are uniform random variables over [0.2, 0.5].
Assume that the weighting factor of each edge of the commu-

nication topology is 1. We further assume the system evolves

in the following asynchronous way

(1) robot 2 can receive the state information of robot 1 at

update times t24k+1, k ∈ N;

(2) robot 3 can receive the state information of robot 4 at

update times t34k+2, and receive the state information of

robot 1 at update times t34k+3, k ∈ N;

(3) robot 4 can receive the sate information of robot 2 at

update times t44k+2, and receive the state information of

robot 3 at update times t44k, k ∈ N.

Fig. 1. Four ground robots (photo taken at the Australian National
University).

1 2

43

Fig. 2. A rooted graph in which node 1 is the root.

We further assume that γ = 2 which satisfies the inequality

in (10) since dmax = 1 and T̄u = 0.5. Obviously, the infinite

sequence of digraphs G(t1), G(t2), . . . is repeatedly jointly
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Fig. 3. Position trajectories for the robots evolving according to asynchronous
system (6), (7).
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Fig. 4. Velocity trajectories for the robots evolving according to asynchronous
system (6), (7).

rooted (see Figure 2 for the union of the communication

topologies across a sufficiently long but bounded time interval,

in which node 1 is the root). It can be seen from Figure 3 and

Figure 4, which show respectively the position and velocity

trajectories of the four robots that consensus is finally reached

for the asynchronous system (6), (7).

VII. CONCLUSIONS

We have investigated in this paper the asynchronous con-

sensus problem of discrete-time second-order multi-agent sys-

tem under dynamically changing communication topology, in

which a very general setting as opposed to the synchronous

case has been considered. By merging the time sequences

at which each agents detects its neighbors’ state information

into a single ordered sequence T and then casting the asyn-

chronous discrete-time system into an equivalent augmented

synchronous discrete-time system which evolves over time

sequence T , it has been shown by rigorous analysis that based

on some conditions on the velocity damping gain, consensus

can be reached if the infinite sequence of communication

topologies over the time sequence T is repeatedly jointly root-

ed, which is essentially the same condition for guaranteeing

the synchronous consensus and thus extending the existing

results to a very generalized case.
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