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STATIONARY DYNAMICAL SYSTEMS

HILLEL FURSTENBERG AND ELI GLASNER

Abstract. Following works of Furstenberg and Nevo and Zimmer we present an
outline of a theory of stationary (or m-stationary) dynamical systems for a general
acting group G equipped with a probability measure m. Our purpose is two-fold:
First to suggest a more abstract line of development, including a simple structure
theory. Second, to point out some interesting applications; one of these is a Sze-
merédi type theorem for SL(2, R).
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Introduction

Classical ergodic theory was developed for the group of real numbers R and the
group of integers Z. Later generalizations to Rd and Zd actions evolved and more
recently the theory has been vastly extended to handle more general concrete and
abstract amenable groups. There however the theory finds a natural boundary, since
by definition it deals with measure preserving actions on measurable or compact
spaces, and these need not exist for a non-amenable group. Of course semi-simple Lie
groups or non-commutative free groups admit many interesting measure preserving
actions, but for many other natural actions of these groups no invariant measure
exists.

Following works of Furstenberg (e.g. [7], [8], [9], [11]) and Nevo and Zimmer (e.g.
[23], [24], [25]), we present here an outline of a theory of stationary (or m-stationary)
dynamical systems for a general acting group G equipped with a probability measure

1A preliminary version of this work has been in circulation as a preprint for several years now
but for technical reasons was not previously submitted for publication.
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m. By definition such a system comprises a compact metric space X on which G acts
by homeomorphisms and a probability measure µ on X which is m stationary; i.e. it
satisfies the convolution equation m ∗µ = µ. The immediate advantage of stationary
systems over measure preserving ones is the fact that, given a compact G-space X,
an m-stationary measure always exists and often it is also quasi-invariant.

The aforementioned works, as well as e.g. [19] and the more recent works [2] and
[3], amply demonstrate the potential of this new kind of theory and our purpose here
is two-fold. First to suggest a more abstract line of development, including a simple
structure theory, and second, to point out some interesting applications.

We thank Benjy Weiss for substantial contributions to this work. These were
communicated to us via many helpful discussions during the period in which this
work was carried out.

1. Stationary dynamical systems

Definitions: Let G be a locally compact second countable topological group, m an
admissible probability measure on G. I.e. with the following two properties: (i) For
some k ≥ 1 the convolution power µ∗k is absolutely continuous with respect to Haar
measure. (ii) the smallest closed subgroup containing supp (m) is all of G. Let (X,B)
be a standard Borel space and let G act on it in a measurable way. A probability
measure µ on X is called m-stationary, or just stationary when m is understood,
if m∗µ = µ. As shown by Nevo and Zimmer, every m-stationary probability measure
µ on a G-space X is quasi-invariant; i.e. for every g ∈ G, µ and gµ have the same
null sets.

Given a stationary measure µ the quintuple X = (X,B, G,m, µ) is called an m-
dynamical system, or just an m-system. (Usually we omit the σ-algebra B from
the notation of an m-system, and often also the group G and the measure m). An
m-system X is called measure preserving if the stationary measure is in fact G-
invariant. With no loss of generality we may assume that the Borel space X is a
compact metric space and that the action of G on X is by homeomorphisms. For
a compact metric space X, the space of probability Borel measures on X with the
weak* topology will be denoted by M(X); it is a compact convex metric space. When
G acts on X by homeomorphisms the closed convex subset of M(X) consisting of m-
stationary measures will be denoted by Mm(X). By the Markov-Kakutani fixed point
theorem Mm(X) is non-empty. We say that the m-system (X,µ) is ergodic if µ is
an extreme point of Mm(X) and that it is uniquely ergodic if Mm(X) = {µ}. It is
easy to see that when µ is ergodic every G-invariant measurable subset of X has µ
measure 0 or 1. Unless we say otherwise we will assume that an m-system is ergodic.

When X = (X,B, G,m, µ) and Y = (Y,A, G,m, ν) are two m-dynamical systems, a
measurable map π : X → Y which intertwines the G-actions and satisfies π∗(µ) = ν
is called a homomorphism of m-stationary systems. We then say that Y is a factor
of X, or that X is an extension of Y.

Let Ω = GN and let P = mN = m ×m ×m. . . be the product measure on Ω, so
that (Ω, P ) is a probability space. We let ξn : Ω → G, denote the projection onto
the n-th coordinate, n = 1, 2, . . . . We refer to the stochastic process (Ω, P, {ηn}n∈N),
where ηn = ξ1ξ2 · · · ξn as the m-random walk on G.
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A real valued function f(g) for which
∫
f(gg′) dm(g′) = f(g) for every g ∈ G is

called harmonic. For a harmonic f we have

E(f(gξ1ξ2 · · · ξnξn+1|ξ1ξ2 · · · ξn)

=

∫
f(gξ1ξ2 · · · ξng′) dm(g′)

= f(gξ1ξ2 · · · ξn),

so that the sequence f(gξ1ξ2 · · · ξn) forms a martingale.
For F ∈ C(X) let f(g) =

∫
F (gx) dµ(x), then the equation m ∗ µ = µ shows that

f is harmonic. It is shown (e.g.) in [8] how these facts combined with the martingale
convergence theorem lead to the following:

1.1. Theorem. The limits

(1.1) lim
n→∞

ηnµ = lim
n→∞

ξ1ξ2 · · · ξnµ = µω,

exist for P almost all ω ∈ Ω.

The measures µω are the conditional measures of the m-system X. We let Ω0

denote the subset of Ω where the limit (1.1) exists. The fact that µ is m-stationary
can be expressed as: ∫

ξ1(ω)µdP (ω) = m ∗ µ = µ.

By induction we have ∫
ξ1(ω)ξ2(ω) · · · ξn(ω)µdP (ω) = µ,

and passing to the limit we also have the barycenter equation:

(1.2)

∫
µωdP (ω) = µ.

There is a natural “action” ofG on Ω defined as follows. For ω = (g1, g2, g3, . . . ) ∈ Ω
and g ∈ G, gω ∈ Ω is given by gω = (g, g1, g2, g3, . . . ). (This is not an action in the
usual sense; e.g. g−1(gω) 6= ω.) It is easy to see that for every g ∈ G and ω ∈ Ω0,
µgω = gµω, so that Ω0 is G-invariant. The map ζ : Ω → M(X) given P a.s. by
ω 7→ µω = limn ξ1ξ2 · · · ξnµ, sends the measure P onto a probability measure, ζ∗P =
P ∗ ∈ M(M(X)); i.e. P ∗ is the distribution of the M(X)-valued random variable
ζ(ω) = µω. Clearly for each k ≥ 1, the random variable ζk = limn→∞ ξkξk+1 · · · ξk+nµ
has the same distribution P ∗ as ζ(ω). We also have ζk = ξkζk+1. The functions {ζk}
therefore satisfy:

(a) ζk is a function of ξk, ξk+1, . . .
(b) all the ζk have the same distribution,
(c) ξk is independent of ζk+1, ζk+2, . . .
(d) ζk = ξkζk+1.

In other words, the M(X)-valued stochastic process {ζk} is an m-process in the sense
of definition 3.1 of [8] and it follows that the measure P ∗ is m-stationary (condition
(d)) and that Π(X) = (M(X), G,m, P ∗) is an m-system 1.

1The “barycenter” equation (1.2) is what makes the “quasifactor” Π(X) meaningful in the general
measure theoretical setup, where X is just a standard Borel space; see e.g. [16]
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Definitions: We call the m-system X = (X,G,m, µ), m-proximal (or a “bound-
ary” in the terminology of [8]) if P a.s. the conditional measures µω ∈ M(X)
are point masses. Clearly a factor of a proximal system is proximal as well. Let
π : (X,G,m, µ)→ (Y,G,m, ν) be a homomorphism of m-dynamical systems. We say
that π is a measure preserving homomorphism (or extension) if for every g ∈ G
we have gµy = µgy for ν almost all y. Here the probability measures µy ∈M(X) are
those given by the disintegration µ =

∫
µydν(y). It is easy to see that when π is a mea-

sure preserving extension then also (with obvious notations), P a.s. g(µω)y = (µω)gy
for ν almost all y . Clearly, when Y is the trivial system, the extension π is measure
preserving iff the system X is measure preserving. We say that π is an m-proximal
homomorphism (or extension) if P a.s. the extension π : (X,µω) → (Y, νω) is a.s.
1-1, where νω are the conditional measures for the system Y. Clearly, when Y is the
trivial system, the extension π is m-proximal iff the system X is m-proximal. When
there is no room for confusion we sometimes say proximal rather than m-proximal.

Proposition 3.2 of [8] can now be formulated as:

1.2. Proposition. For every m-dynamical system X the system Π(X) = (M(X), P ∗)
is m-proximal. It is a trivial, one point system, iff X is a measure preserving system.

Given the group G and the probability measure m, there exists a unique universal
m-proximal system (Π(G,m), η) called the Poisson boundary of the pair (G,m).
Thus every m-proximal system (X,µ) is a factor of the system (Π(G,m), η).

Given an m-system (X,µ) let

hm(X,µ) = −
∫
G

∫
X

log
(dgµ
dµ

(x)
)
dµ(x)dm(g),

or

hm(X,µ) = −
∑

m(g)

∫
X

log
(dgµ
dµ

(x)
)
dµ(x),

when G is discrete. This nonnegative number is the m-entropy of the m-system
(X,µ). We have the following theorem (see [6], [24]).

1.3. Theorem. (1) The m-system (X,µ) is measure preserving iff hm(X,µ) = 0.
(2) More generally, an extension of m-systems π : (X,µ) → (Y, ν) is a measure

preserving extension iff hm(X,µ) = hm(X, ν).
(3) An m-proximal system (X,µ) is isomorphic to the Poisson system (Π(G,m),

η) iff
hm(X,µ) = hm(Π(G,m), η).

Typically the conditional measures µω are singular to the measure µ. In fact we
have the following statement.

1.4. Theorem. Let X = (X,G, µ) be an m-system with the property that a.s. the
conditional measures µω are absolutely continuous with respect to µ (µω << µ).
Then µ is G-invariant; i.e. X is measure preserving.

Proof. We consider the usual unitary representation of G on H = L2(X,µ) given by

Ugf(x) = f(g−1x)u(g−1, x), with u(g, x) =

√
dg−1µ

dµ
.
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For ω ∈ Ω0 let fω = dµω
dµ
∈ L1(µ) denote the Radon-Nikodym derivative of µω w.r.t.

µ, and put hω =
√
fω. Then for ω ∈ Ω0, g ∈ G and f ∈ L2(X,µ), denoting

v(g, x) = dg−1µ
dµ

, we get∫
f(x)dgµω(x) =

∫
f(gx)fω(x)dµ(x)

=

∫
f(x)fω(g−1x)dgµ(x)

=

∫
f(x)fω(g−1x)v(g−1, x)dµ(x).

Hence fgω = (fω ◦ g−1) · v(g−1, ·) and

hgω = (hω ◦ g−1) · u(g−1, ·) = Ughω.

It is now easy to see that the map µω 7→ hω from Ω0 into the unit ball B of H =
L2(X,µ), is a Borel isomorphism which intertwines the G-action on Ω0 with the
unitary action of G on B. If we let Y be the weak closure of the set of functions
{hω : ω ∈ Ω0} in B, we get a compact G-space (Y,G) by restricting the unitary
representation g 7→ Ug to Y . Such a G-space is WAP and our theorem follows from
theorem 7.4 in section 7 below, which asserts that every m-stationary measure on Y
is G-invariant. (For the definition and basic properties of weakly almost periodic
(WAP) G-systems we refer e.g. to [16, Chapter 1].) �

2. Examples

1. Let G = SL(2,R) and let m be any absolutely continuous right and left K
invariant probability measure on G such that supp (m) generates G as a semigroup.
G acts on the compact space X of rays emanating from the origin in R2—which
is homeomorphic to the unite circle in R2. Normalized Lebesgue measure µ is the
unique m-stationary measure on X. G acts as well on the space Y = P1 of lines in
R2 through the origin (the projective line) and the natural map π : X → Y , that
sends a ray in X to the unique line that contains it in Y , is a 2 to 1 homomorphism
of m-systems, where we take ν = π(µ). It is easy to see that (Y, ν) is m-proximal and
that π is a measure preserving extension. It can be shown that (Y, ν) is the unique
m-proximal system so that in particular (Y, ν) is the Poisson boundary Π(G,m).

2. ([7]) Let G be a connected semisimple Lie group with finite center and no
compact factors. Let G = KNA be an Iwasawa decomposition, S = AN and P =
MAN , the corresponding minimal parabolic subgroup. Set X = G/S, Y = G/P and
let m be an admissible probability measure on G. More specifically we assume that
m is absolutely continuous with respect to Haar measure, right and left K-invariant,
and supp (µ) generates G as a semigroup. Then

(1) There exists on Y a unique m-stationary measure ν (which is the unique
K-invariant probability measure on Y ) such that the m-system (Y, ν) is m-
proximal. In fact (Y, ν) is the Poisson boundary Π(G,m) and the collection
of m-proximal systems coincides with the collection of homogeneous spaces
G/Q with Q a parabolic subgroup of G.
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(2) For any m-stationary measure µ on X the natural projection (X,µ)
π→ (Y, ν)

is a measure preserving extension.

3. ([23]) Let G be a connected semisimple Lie group with finite center, no compact
factors, and R-rank (G) ≥ 2. Let m be an admissible probability measure on G and
let (X,G) be a compact metric G-space. Let P be a minimal parabolic subgroup of G
and λ a P -invariant probability on X. Let ν0 be the unique m-stationary probability
measure on G/P . Let ν̃0 be any probability measure on G which projects onto ν0

under the natural projection of G onto G/P , and put µ = ν̃0 ∗ λ (it follows from
[7], that (X,µ) is an m-system, and moreover that any m-stationary measure on
X is of this form). Suppose further that the measure preserving P -action (X,λ) is
mixing. Then there exists a parabolic subgroup Q ⊂ G, a Q-space Y , and a Q-
invariant probability measure η on Y such that the m-system (X,µ) is isomorphic
to the “induced” m-system Y ×

Q
G/Q = ((Y ×G)/Q, η̃), where η̃ is an m-stationary

measure. In particular (X,µ) is a measure preserving extension of an m-proximal
system G/Q, and µ is G-invariant iff Q = G.

In the following examples letG be the free group on two generators, G = F2 = 〈a, b〉,
and m = 1

4
(δa + δb + δa−1 + δb−1).

4. (See [8]) Let Z be the space of right infinite reduced words on the letters
{a, a−1, b, b−1}. G acts on Z by concatenation on the left and reduction. Let η
be the probability measure on Z given by

η(C(ε1, . . . , εn)) =
1

4 · 3n−1
,

where for εj ∈ {a, a−1, b, b−1}, C(ε1, . . . , εn) = {z ∈ Z : zj = εj, j = 1, . . . , n}. The
measure η is m-stationary and the m-system Z = (Z, η) is m-proximal. In fact Z is
the Poisson boundary Π(F2,m).

5. Let Y = {0, 1}, ν = 1
2
(δ0 + δ1), and the action be defined by aε = ε̄, bε = ε̄ for

ε ∈ {0, 1}, where 0̄ = 1 and 1̄ = 0. Y = (Y, ν) is a measure preserving system.

6. Let X = Y × Z, µ = ν × η, where Y, Z, ν, η are as above, and let the action of
G on X be defined as follows:

a(ε, z) = (ε̄, aεz), a−1(ε, z) = (ε̄, a−1
ε̄ z),

b(ε, z) = (ε̄, bεz), b−1(ε, z) = (ε̄, b−1
ε̄ z),

where for g ∈ G we let g0 = e and g1 = g. Finally let π : X → Y be the projection on
the first coordinate. One can check that m∗µ = µ so that X is an m-system, and that
the extension π is a relatively proximal extension. We claim that the following system
is a description of Π(X) = (M,P ∗). Let M = {〈(ε, z), (ε̄, z′)〉 : ε ∈ {0, 1}, z, z′ ∈ Z},
here 〈·, ·〉 denotes the unordered pair. The measure P ∗ is given by

P ∗
(
({ε} × A)× ({ε̄} ×B) ∪ ({ε̄} ×B)× ({ε} × A)

)
= η(A)η(B),

for A,B ⊂ Z and ε ∈ {0, 1}. It is not hard to see that, although the m-system X is
not measure preserving, it admits no nontrivial m-proximal factor.
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7. A small variation on example 6 gives an example of a similar nature, with the
conditional measures µω being continuous. Take Y to be the diadic adding machine
Y = {0, 1}N = {ε = (ε1, ε2, ε3, . . . ) : εi ∈ {0, 1}}, let X = Y ×Z, and define the action
of F2 on X by:

a(ε, z) = (ε+ 1, aεz), a−1(ε, z) = (ε+ 1, a−1
ε z),

b(ε, z) = (ε+ 1, bεz), b−1(ε, z) = (ε+ 1, b−1
ε+1z),

where 1 = (1, 0, 0, . . . ) and aε = e when ε1 = 0, aε = a when ε1 = 1, and bε is defined
similarly.

8. Let G be the closed subgroup of the Lie group GL(4,R) consisting of all 4 × 4
matrices of the form (

A 0
0 B

)
and

(
0 A
B 0

)
with A,B ∈ GL(2,R). We let G act on the subspace X of the projective space P3

consisting of the disjoint union of the two one dimensional projective spaces P1, which
are naturally embedded in P3, the quotient space of R4 = R2 × R2. Call these two
copies X1 and X2 respectively. There is a natural projection from (X,G) onto the
two-point G-system (Y,G) = ({X1, X2}, G). Let m be an admissible probability on G
and µ an m-stationary measure on X. Then it is easy to see that the m-system (X,µ)
is an m-proximal extension of the (measure preserving) two-point system Y . Moreover
the m-system (X,µ) has no nontrivial m-proximal factor. If we let Z ⊂ M(X) be
the collection of measures of the form:

Z = {1

2
(δx1 + δx2) : xi ∈ Xi, i = 1, 2},

then one can check that the elements of Z are the conditional measures µω of the
m-system (X,µ). It follows that (M(X), P ∗) is isomorphic as an m-system to the
symmetric product P1 × P1/{id, flip}.

9. ([24]) Let G = SL(2,R) and fix an admissible K-invariant measure m on G. In
[24, Theorem 3.1] Nevo and Zimmer construct a co-compact lattice Γ < G = SL(2,R),
a Γ-space Z and an m-stationary measure η on the induced G-space X = G/Γ×

Γ
Z,

with the property that 0 < hη(X) < hν(Y ), where Y = Π(G,m) and ν is the unique
m-stationary probability measure on Y (see example 1 above).

Claim: The m-system (X, η,G) admits no nontrivial m-proximal factors.

Proof. There is a unique m-proximal G-system, namely the Poisson boundary (Π(G,
m), ν). Since the entropy of the m-system (G/Γ×

Γ
Z, η,G) is strictly lower than the

entropy of (Π(G,m), ν), the former cannot admit the latter as a factor. �

3. Joinings

Definitions: Let X and Y be two m-systems. We say that a probability measure
λ on X × Y is an m-joining of the measures µ and ν if it is m-stationary and its
marginals are µ and ν respectively. In contrast to the situation in the class of measure
preserving dynamical systems, the product measure µ×ν is usually not m-stationary
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and therefore not an m-joining. On the other hand we have the following natural
construction. We let the probability measure λ ∈M(X × Y ) be defined by

λ = µg ν =

∫
µω × νωdP (ω).

The equation

gλ =

∫
µgω × νgωdP (ω),

for each g ∈ G, implies∫
gλdm(g) =

∫ ∫
gµω × gνωdP (ω)dm(g)

=

∫ ∫
µgω × νgωdP (ω)dm(g)

=

∫
µω × νωdP (ω) = λ;

i.e. λ is m-stationary. We call the m-system X g Y = (X × Y, λ), the m-join of the
two m-systems X and Y. We use the notation X ∨ Y to denote any joining of the
systems X and Y; e.g. when they are both factors of a third m-system Z then we
usually mean X∨Y to be the factor of Z defined by the smallest σ-algebra containing
X and Y.

3.1. Proposition. Let X and Y be two m-systems,

(1) if X is measure preserving then µg ν = µ× ν;
(2) if X is m-proximal then

µg ν =

∫
δxω × νωdP (ω)

is the unique m-joining of the two systems.

Proof. (1) Since the conditional measures for X satisfy µω = µ a.s.,

µg ν =

∫
µω × νωdP (ω)∫

µ× νωdP (ω)

= µ×
∫
νωdP (ω)

= µ× ν.
(2) Let λ be any m-joining of µ and ν. Our assumption now is that the conditional

measures of X are a.s. point masses δxω , whence the conditional measures λω =
lim ξ1ξ2 · · · ξnλ have marginals δxω and νω on X and Y respectively. This means
λω = δxω × νω and therefore

λ =

∫
λωdP (ω) =

∫
δxω × νωdP (ω) = µg ν.

�
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3.2. Proposition. (1) The only endomorphism of a proximal system is the iden-
tity automorphism.

(2) For every m-system (X,µ) there is a unique maximal proximal factor.

Proof. (1) Let α : X → X be an endomorphism of the proximal system (X,µ). Con-
sider the map φ : x 7→ θx = 1

2
(δx + δα(x)) of X into M(X). This induces a quasifactor

(M(X), λ) where λ = φ∗(µ). Now the conditional measures of the proximal sys-
tem (M(X), λ) are point masses of the form δθx . On the other hand applying the
barycenter map b to the limits:

ξ1(ω) · · · ξn(ω)λ→ δθx(ω)
,

we get

ξ1(ω) · · · ξn(ω)µ→ δx(ω).

Thus b(δθx(ω)
) = θx(ω) = δx(ω) a.e.; i.e. α(x) = x a.e.

(2) It is easy to check that the join of all proximal factors of an m-system (X,µ)
is a maximal proximal factor of (X,µ). �

4. A structure theorem for stationary systems

4.1. Proposition. Let

(X,µ)

π

��

σ

$$I
IIIIIIII

(Z, η)

ρzzvvvvvvvvv

(Y, ν)

be a commutative diagram of m-systems

(1) if π is a measure preserving extension then so are ρ and σ.
(2) if π is a proximal extension then so are ρ and σ.

Proof. (1) Let

µ =

∫
µydν(y) =

∫
µz dη(z), η =

∫
ηydν(y),

be the disintegrations of µ over Y and Z and of η over Y respectively. We assume
that for all g and ν almost every y, gµy = µgy, hence

gηy = gσµy = σgµy = σµgy = ηgy,

so that ρ is a measure preserving extension. Now, since

µ =

∫
µydν(y) =

∫
µz dη(z) =

∫ (∫
µz dηy(z)

)
dν(y),

the uniqueness of disintegration shows that

µy =

∫
µz dηy(z).
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Thus for g ∈ G we have:

gµy = g
(∫

µz dηy(z)
)

=

∫
gµzdηy(z),

and also

gµy = µgy =

∫
µz dηgy(z) =

∫
µz dgηy(z) =

∫
µgz dηy(z).

Again the uniqueness of disintegration yields gµz = µgz, so that also σ is a measure
preserving extension.

(2) This is a straightforward consequence of the definition of m-proximal extension.
�

Let us call an m-system (X,µ) standard if there exists a homomorphism π :
(X,µ)→ (Y, ν) with (Y, ν) proximal and the homomorphism π a measure preserving
extension. Note that with this terminology the results described in the examples 2
and 3 above can be stated as saying that the stationary systems (X,µ) described
there are standard (of a very particular kind, namely measure preserving extensions
of boundaries of the form G/Q with Q ⊂ G a parabolic subgroup).

4.2. Proposition. (1) The structure of a standard system as a measure preserving
extension of a proximal system is unique.

(2) Let (X,µ) be a standard m-system: π : (X,µ) → (Y, ν) with (Y, ν) proximal
and the homomorphism π a measure preserving extension. If α : (X,µ) →
(Z, η) is a measure preserving homomorphism then there is a commutative
diagram:

X

π

��

α

  @
@@

@@
@@

Z

β~~~~
~~

~~
~

Y

Proof. (1) Let (X,µ) be a standard m-system: π : (X,µ) → (Y, ν) with (Y, ν) prox-
imal and the homomorphism π a measure preserving extension. If π′ : (X,µ) →
(Y ′, ν ′) is another factor with (Y ′, ν ′) proximal, then the system Y ∨ Y ′ is also m-
proximal and we have the diagram:

X

π

��

σ

##H
HHHHHHHH

Y ∨ Y ′

ρ
{{vvvvvvvvv

Y

Now ρ is clearly a proximal extension and by proposition 4.1 it is also a measure
preserving extension. Thus ρ is an isomorphism, so that Y ′ is a factor of Y . We now
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have the diagram:

X

π′

��

π

  A
AA

AA
AA

A

Y

α~~}}
}}

}}
}

Y ′

If π′ is a measure preserving homomorphism then by proposition 4.1 so is α and being
also a proximal homomorphism it is necessarily an isomorphism.

(2) Consider the diagram:

X

α

��

φ

##G
GG

GG
GG

GG

Y ∨ Z

ψ{{wwwwwwwww

Z

Since α is a measure preserving homomorphism so is ψ (proposition 4.1). On the
other hand, since Y is proximal it follows that ψ is a proximal extension. Thus ψ is
an isomorphism and we deduce that Y is a factor of Z as required. �

4.3. Theorem (A structure theorem for stationary systems). Let X = (X,µ) be
an m-system, then there exist canonically defined m-systems X∗ = (X∗, µ∗), and
Π(X) = (M,P ∗), with X∗ standard and Π(X) m-proximal, and a diagram

X∗

π

��~~
~~

~~
~~ σ

""E
EE

EE
EE

E

X Π(X)

where π is an m-proximal extension, and σ is a measure preserving extension. Thus
every m-system admits an m-proximal extension which is standard. The m-system X

is measure preserving iff Π(X) is trivial. The m-system X is m-proximal iff both π
and σ are isomorphisms. We call X∗ the standard cover of X.

Proof. We let X∗ = XgΠ(X). Thus X∗ = X ×M(X) and the measure µ∗ = µg P ∗

is defined by the integral

(4.1) µ∗ =

∫
µω × δµωdP (ω).

The assertions of the theorem now follow from propositions 1.2 and 3.1, however for
clarity and completeness we give below a more detailed proof. Denote by π and σ the
projections on the first and second coordinates respectively. Clearly X∗ = (X∗, µ∗)
is a joining of the systems (X,µ) and (M(X), P ∗) in the sense that π(µ∗) = µ, and
σ(µ∗) = P ∗. We show next that µ∗ is m-stationary. For g ∈ G we have a.s.

(4.2) gµω = µgω,
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hence

gµ∗ =

∫
µgω × δµgωdP (ω),

hence ∫
G

gµ∗dm(g) =

∫
G

∫
Ω

µgω × δµgωdP (ω)dm(g)

=

∫
µξ1ω × δµξ1ωdP (ω)

=

∫
µω × δµωdP (ω) = µ∗.

Now (4.1) gives the disintegration of µ∗ with respect to P ∗, i.e. w.r.t. σ, and (4.2)
shows that σ is a measure preserving extension.

Next we mimic the proof of proposition 3 in [8] in order to show that the measures
θω = µω × δµω are the conditional measures of the m-system (X∗, µ∗), i.e. we will
show that a.s.

(4.3) lim ξ1ξ2 · · · ξnµ∗ = θω.

First observe that

θω = lim
n→∞

ξ1ξ2 · · · ξn(µ× δµ).

Write θ1(ω) := θω and let

θk = lim
l→∞

ξkξk+1 · · · ξk+l(µ× δµ),

so that ξ1ξ2 · · · ξnθn+1 = θ1. For a bounded continuous function f on X∗ and a
measure ι ∈M(X∗) we write f(ι) =

∫
X∗
f(x∗)dι(x∗). Now for any such f we have∫

X∗
f(ξ1ξ2 · · · ξnx∗)dµ∗(x∗)

=

∫
Ω

∫
X

f(ξ1ξ2 · · · ξn(x, δω′)dµω′(x)dP (ω′)

=

∫
Ω

f(ξ1ξ2 · · · ξn(µω′ × δδω′ )dP (ω′)

=E
(
f(ξ1ξ2 · · · ξn(θn+1)|ξ1ξ2 · · · ξn

)
=E
(
f(θ1)|ξ1ξ2 · · · ξn

)
→ f(θ1) = f(µω × δµω),

where the convergence in the last line follows from the martingale convergence theo-
rem. Since clearly a.s. π : (X ×M,µω × δµω) → (X,µω) is 1-1, we see that π is an
m-proximal extension. This completes the proof of the theorem. �

4.4. Theorem. If (X,µ) is an m-system with maximal entropy (i.e. hm(X,µ) =
hm(Π(G,m))); then (X,µ) is standard and it admits the Poisson boundary Π(G,m)
as its maximal proximal factor.

Proof. Let π : X∗ → X be the standard cover of (X,µ), so that in particular π
is a proximal extension. Since π does not raise entropy it is a measure preserving
extension (theorem 1.3). Thus π is an isomorphism and X is a standard system whose
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maximal proximal factor has maximal entropy. Again theorem 1.3 implies that this
factor is isomorphic to Π(G,m). �

4.5. Theorem. Let X = (X,µ) be an m-system which admits a strict tower of proxi-
mal and measure preserving extensions

X · · · → Xn+1 → Xn → · · · → X2 → X1 → X0.

Assume that X0 is the maximal proximal factor of X, that the proximal and measure
preserving maps alternate, and that each such map is maximal. Thus X2n+1 → X2n

is measure preserving and if X → Y → X2n+1 → X2n is such that Y → X2n is also
measure preserving then Y = X2n+1. Likewise X2n+2 → X2n+1 is proximal and if
X → Y → X2n+2 → X2n+1 is such that Y → X2n+1 is also proximal then Y = X2n+2.
Let

(4.4) Π(X) · · · → Π(Xn+1)→ Π(Xn) · · · → Π(X2)→ Π(X1)→ Π(X0) = X0

be the corresponding sequence of homomorphisms. (Since for every n the map φ :
X2n+1 → X2n is measure preserving, Π(X2n+1) → Π(X2n) is an isomorphism.) If at
any stage in this sequence we have that Π(X2n+2) → Π(X2n+1) is an isomorphism,
then X = X2n+1.

Proof. For convenience we write m = 2n+ 1. In the diagram

Xm+1 ∨ Π(Xm+1)

��

prox

wwnnnnnnnnnnnn
mp

((QQQQQQQQQQQQQ

Xm+1

prox

��

Π(Xm+1)

φ

��

Xm ∨ Π(Xm)
prox

wwnnnnnnnnnnnnn
mp

((QQQQQQQQQQQQQ

Xm Π(Xm)

by assumption, φ is an isomorphism and therefore all the maps on the right of the
central vertical arrow Xm+1∨Π(Xm+1)→ Xm∨Π(Xm) are measure preserving maps.
On the other hand all the arrows on the left of this arrow are proximal maps. We
conclude that Xm+1 ∨ Π(Xm+1) → Xm ∨ Π(Xm) is both measure preserving and
proximal, hence an isomorphism. However this implies that also Xm+1 → Xm is an
isomorphism. Since we assumed that at each stage the extension is maximal we now
realize that the whole tower above Xm collapses, i.e. X = Xm = X2n+1. �

4.6. Corollary. For G = SL(n,R) and K-invariant admissible m, every strict max-
imal tower is of height ≤ n.

Proof. As was shown in [7] the Poisson (G,m)-space Π(G,m) is the flag manifold
on Rn. Since every proximal G-system is a factor of Π(G,m), every sequence of the
form (4.4) is defined by a nested sequence of parabolic subgroups, whence of length
at most n. �
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Examples: 10. Applying the construction of the structure theorem to example
3. in section 1, we obtain the following description for the m-system (X∗, µ∗) =
(X ×M,µg ν). X∗ can be taken as the subset of X ×X consisting of all ( ordered )
pairs ((ε, z), (ε̄, z′)), ε ∈ {0, 1}, z, z′ ∈ Z, with the diagonal action g((ε, z), (ε̄, z′)) =
(g(ε, z), g(ε̄, z′)). The measure µ∗ is then given by

1

2
(δ0 + δ1)× η × η.

11. As we have seen (proposition 3.2), for every m-system (X,µ) there is a uniquely
defined maximal proximal factor. This is not always the case with respect to measure
preserving factors. We produce next an example of a product system (X,µ) = (Z ×
Y, η× ν) where (Z, η) is m-proximal and (Y, ν) is measure preserving—so that (X,µ)
is standard—with a factor (Y ′, ν ′) which is also measure preserving but such that the
factor Y ∨ Y ′ of X is not measure preserving.

We let G = F2, the free group on two generators a and b, m = 1
4
(δa+δb+δa−1 +δb−1).

Let Z be the Poisson boundary Π(F2,m) which we can take as the space of right
infinite reduced words on the letters {a, a−1, b, b−1} with the natural Markov measure
η as in example (4) above. The system (Y, ν) will be the Bernoulli system Y = {0, 1}F2

with product measure ν = {1
2
, 1

2
}F2 . Thus ν is an invariant measure under the natural

action of F2 on Y by translations. Clearly µ = η× ν = ηg ν is m-stationary, so that
(X,µ) is an m-system.

Next let A be the subset {z ∈ Z : a is the first letter of z}, and let φ : Z → Y
be the continuous function defined by (φ(z))g = 1A(gz). We observe that the map
Φ : X → Y defined by Φ(z, y) = z + y (mod 1) is an equivariant continuous map.
Let Y ′ = Φ(X) and ν ′ = Φ∗(µ). It is now easy to check that (Y ′, ν ′) is a measure
preserving factor of the M -system (X,µ), which is isomorphic to the Bernoulli system
(Y, ν). However it is also clear that the factor Y ∨ Y ′ of (X,µ) is a non-measure
preserving m-system. In fact Y ∨Y ′ admits the non-trivial proximal factor Z ′ = φ(Z).

4.7. Remark. For ergodic probability measure preserving transformations there is a
more satisfactory structure theorem (due to Furstenberg [10], [12] and independently
to Zimmer [27], [28]) according to which every such system is canonically presented
as a weakly mixing extension of a measure-distal system (the latter is defined as a
tower, possibly of infinite height, of compact extensions). In topological dynamics
there is an analogous theorem for a minimal dynamical system (X,G) (see [4], [26]).
However, as in our theorem 4.3, one is forced in this setting to first associate with
X a proximal extension X∗ → X so that only X∗ has the required structure of a
weakly mixing extension of a PI-system (where the latter is a tower of alternating
proximal and isometric extensions). In [15] there is an example of a minimal dynam-
ical system (X,T ) which does not admit nontrivial factors that are either proximal
or incontractible (this is the analogue of a measure preserving system in topological
dynamics). We do not know how to construct a similar example for stationary sys-
tems. Such an example will show that in some sense one can not do better than what
one gets in theorem 4.3.
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4.8. Problem. Are there a group G, a probability measure m on G, and an ergodic
m-stationary system X = (X,µ,G) such that X does not admit nontrivial factors that
are either proximal or measure preserving?

5. Nevo-Zimmer theorem in an abstract setup

Definitions:

(1) Notations as in theorem 4.3, we say that the quasifactor Π(X) = (M,P ∗) is
mixingly embedded in the m-system X = (X,µ), if the measure preserving
extension σ : X∗ → Π(X) is a mixing extension; i.e. if for every f ∈ L∞(µ∗)
and every sequence gn →∞ in G,

w∗- lim gn(f − EΠ(X)f) = 0,

where EΠ(X)f is the conditional expectation of f with respect to the factor
Π(X).

(2) For an m-system (X,µ) and a subset V of L∞(µ), let

F(V ) = {w∗- lim gnf : f ∈ V, gn →∞},
the set of all weak∗ limit points of sequences gnf where f ∈ V and gn → ∞.
Let F(V ) be the smallest σ-algebra with respect to which all members of F(V )
are measurable. Call the m-system (X,µ) reconstructive with respect to V
if F(V ) is the full σ-algebra of measurable sets on X.

5.1. Theorem. Let X = (X,µ) be an m-system such that

(1) The canonical m-proximal quasifactor Π(X) = (M,P ∗) is mixingly embedded
in X.

(2) Π(X) is a reconstructive m-system with respect to the subspace

V = EΠ(X)(C(X)).

Then the m-proximal quasifactor Π(X) is actually a factor of X.

Proof. Consider an arbitrary continuous function f on X, f ∈ C(X) ⊂ L∞(µ) ⊂
L∞(X ×M(X), µ∗), and the corresponding function f̃ ∈ L∞(P ∗) on M(X) defined
by:

f̃(µω) =

∫
X

f(x)dµω = EΠ(X)f.

By assumption (1), for every sequence gn →∞ in G for which w∗- lim gnf̃ exists, we
have

(5.1) f̂ = w∗- lim gnf = w∗- lim gnf̃ ,

hence f̂ is in the w∗-closed subspace L∞(µ) ∩ L∞(P ∗).

On the other hand, by assumption (2), with the subspace V = {f̃ : f ∈ C(X)} =
EΠ(X)(C(X)), the smallest σ-algebra with respect to which all the functions:

{f̂ = w∗- lim gnf̃ : f ∈ C(X), gn →∞}
are measurable is the full σ-algebra of measurable sets on Π(X). It thus follows that
with respect to µ∗, L∞(P ∗) ⊂ L∞(µ) and the proof is complete. �



16 HILLEL FURSTENBERG AND ELI GLASNER

5.2. Corollary. Let X = (X,µ) be an m-system such that the canonical m-proximal
quasifactor Π(X) = (M,P ∗) is mixingly embedded in X. Then for every f ∈ L∞(X,µ),
for a.e. ω

w∗- lim ξ1(ω)ξ2(ω) · · · ξn(ω)f ≡ f̃(µω).

Proof. In the proof of theorem 5.1 taking gn = ηn(ω) = ξ1(ω)ξ2(ω) · · · ξn(ω) we have,
for every h ∈ L1(µ∗) by Lebesgue’s dominated convergence theorem,

lim
n→∞

∫
X∗
f̃(ξ1(ω)ξ2(ω) · · · ξn(ω)µω′)h(x, µω′) dµ

∗(x, µω′)

= f̃(µω)

∫
X∗
h(x, µω′) dµ

∗(x, µω′);

i.e. w∗- lim ξ1(ω)ξ2(ω) · · · ξn(ω)f̃ ≡ f̃(µω), ω-a.s. In view of (5.1) we deduce that
ω-a.s.

w∗- lim ξ1(ω)ξ2(ω) · · · ξn(ω)f ≡ f̃(µω),

�

Example: Let T and S be two discrete countable groups, mS and mT probabil-
ity measures on S and T respectively such that the corresponding Poisson spaces
Π(S,mS) and Π(T,mT ) are nontrivial. We form the product group G = T × S and
the product measure m = mT ×mS.

5.3. Theorem. For G = T×S as above the Poisson spaces for the couples (G,m), (T,mT )
and (S,mS) satisfy:

Π(G,m) = Π(T,mT )× Π(S,mS).

Proof. Clearly the systems Π(T,mT ) and Π(S,mS) can be viewed as G m-systems
and as such they are proximal. Thus these systems are factors of the m-system
Π(G,m). It is now easy to check that if ηT and ηS are the m-stationary measures on
Π(T,mT ) and Π(S,mS) respectively then the measure ηT g ηS = ηT × ηS. Whence
Π(T,mT ) × Π(S,mS) is a factor of the system Π(G,m). Since the entropy of both
systems is hm(Π(T,mT ), ηT ) + hm(Π(S,mS), ηS) we can now apply theorem 1.3 to
conclude that Π(G,m) = Π(T,mT )× Π(S,mS). �

5.4. Remark. Another proof of this fact follows directly from the characterization of
the Poissson boundary of (G,m) as the space of ergodic components of the time shift
in the path space of the random walk due to Kaimanovich and Vershik, [21].

5.5. Lemma. Let (X,B, µ), (Y,F, ν) be two probability spaces, A a sub-σ-algebra of
F and f ∈ L∞(X × Y, µ× ν). If for µ a.e. x ∈ X the function fx(y) = f(x, y) is A

measurable, then f is B×A measurable.

5.6. Theorem. Let (X,µ,G) be an m-system. If the canonical m-proximal quasifactor
Π(X) = (M(X), P ∗) is mixingly embedded in X. Then Π(X) is a factor of (X,µ).

Proof. In view of theorem 5.1, all we have to show is that Π(X) is a reconstructive m-

system with respect to the subspace V = EΠ(X)(C(X)). For f ∈ C(X) the function f̃

is Π(X) measurable. Since Π(X) is a factor of Π(G), by theorem 5.3, lifting f̃ to Π(G)
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we can write f̃ as a function of two variables f̃(u, v), with u ∈ Π(S) and v ∈ Π(T ).
Now for almost every v0 ∈ Π(T ) there exists a sequence tv0n ∈ T with lim tv0n v = v0 for
µT almost every v ∈ Π(T ). Thus, by (5.1), we see that

f̃ v0(u) = w∗- lim tv0n f = w∗- lim tv0n f̃(u, v) = f̃(u, v0)

is X measurable. Similarly for almost every u0 ∈ Π(S) the function f̃u0(v) = f(u0, v)

is X measurable. By lemma 5.5, f̃ is X measurable and since the subspace V =
{f̃ : f ∈ C(X)} generates C(Π(X)) as an algebra, we conclude that Π(X) is a
reconstructive m-system with respect to V . �

6. A Szemerédi type theorem for SL(2,R).

In this section G will denote the Lie group SL(2,R) and we write G = KAN for
the standard Iwasawa decomposition of G; in particular K is the subgroup of 2 by 2
orthogonal matrices.

Recall that a mean on a topological group G is a positive linear functional ρ
on LUC(G) with ρ(1) = 1. Here LUC(G) denotes the commutative C∗-algebra of
bounded, complex valued, left uniformly continuous functions on G. (f : G → C is
left uniformly continuous if for every ε > 0 there exists a neighborhood V of the
identity element e ∈ G such that supg∈G |f(vg) − f(g)| < ε for every v ∈ V .) The
set of means on G forms a w∗-closed convex subset of LUC(G)∗ and we say that an
element of this set is m-stationary if m ∗ ρ = ρ. By the Markov-Kakutani fixed
point theorem the set of m-stationary means is nonempty.

Let Z be the (compact Hausdorff) Gelfand space corresponding to the C∗-algebra
L = LUC(G). Recall that Z can be viewed as the space of non-zero continuous
C∗-homomorphisms of the C∗-algebra L into C. In particular, for each g ∈ G the
evaluation map zg : F 7→ F (g) is an element of Z. The fact that L is G-invariant
(i.e. for f ∈ L and g ∈ G also fg ∈ L, where fg(h) = f(gh)) implies that there is a
naturally defined G-action on Z. We have gze = zg for every g ∈ G, and it follows
directly that the G-orbit of the point ze is dense in Z. Also by the construction of
the Gelfand space we obtain a natural isomorphism of the commutative C∗-algebras
L and C(Z). Let f̃ denote the element of C(Z) which corresponds to f under this
isomorphism. Now according to Riesz’ representation theorem we identify LUC(G)∗

with the Banach space of complex regular Borel measures on Z. In this setting a
mean on G is identified with a probability measure on Z. If L is a subset of G and ρ
is a mean on G, we say that L is charged by ρ and write ρ(L) > 0 if

µρ(cls {zg : g ∈ L}) > 0.

Here µρ is the probability measure on Z which corresponds to the mean ρ. It is easy
to check that with respect to the natural G-action on Z the mean m ∗ ρ (defined
by m ∗ ρ(f) =

∫
G
ρ(fg) dm(g)) corresponds to the measure m ∗ µρ, so that ρ is m-

stationary if and only if the measure µρ is m-stationary.

6.1. Theorem. Let m be an admissible probability measure on G and let ρ a K-
invariant m-stationary mean on G = SL(2,R). If ρ(L) > 0 for a subset L ⊂ G then
for every ε > 0, k ≥ 1 and a compact set Q ⊂ G, there exist a0 and h in G \Q such
that

a0, ha0, . . . , h
ka0 ∈ Lε,
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where Lε = {g ∈ G : d(g, L) < ε}.

6.2. Lemma. (A correspondence principle) Let G be a locally compact group. Given
a nonempty subset L ⊂ G, there exists a compact metric G-space X and an open
subset A ⊂ X such that

g−1
1 A ∩ g−1

2 A ∩ · · · ∩ g−1
k A 6= ∅ =⇒ g1a, . . . , gka ∈ Lε,

for some a ∈ G. If, moreover, m is a probability measure on G and ρ an m-stationary
mean on G with ρ(L) > 0, then there exists an m-stationary probability measure µ
on X with µ(A) ≥ ρ(L).

Proof. Let f : G → [0, 1] be a left uniformly continuous function such that f(g) =
1 for every g ∈ Lε/2 and f(g) = 0 for every g 6∈ Lε. Let A be the uniformly
closed subalgebra of the algebra LUC(G) of complex valued bounded left uniformly
continuous functions on G generated by the orbit {fg : g ∈ G} of f , where fg(h) =
f(gh). Let X be the (compact metric) Gelfand space corresponding to A. The fact
that A is G-invariant implies that there is a naturally defined G-action on X. Clearly
the restriction map π : Z → X, where with the above notation Z is the Gelfand space
corresponding to L, is a homomorphism of the corresponding dynamical systems. We
denote xg = π(zg), so that gxe = xg and cls {gxe : g ∈ G} = X.

By the construction of the Gelfand space we obtain a natural isomorphism of the
commutative C∗-algebras A and C(X). Let f̂ denote the element of C(X) which
corresponds to f under this isomorphism.

Clearly the restriction of ρ to A defines an m-stationary probability measure µ on
X, so that the system (X,µ,G) is an m-system. In fact µ = π∗(µρ).

Let A = {x ∈ X : f̂(x) > 1/2} and consider the set N(xe, A) = {g ∈ G : gxe ∈ A}.
We clearly have {g ∈ G : f(g) > 1/2} = {g ∈ G : gxe ∈ A}. Note that indeed

µ(A) =

∫
X

1A dµ =

∫
X

1{f̂>1/2} dµ

≥
∫
X

1{f̂=1} dµ =

∫
Z

1{f̃=1} dµρ

≥ ρ(Lε/2) ≥ ρ(L).

Now assume g−1
1 A∩ g−1

2 A∩ · · · ∩ g−1
k A 6= ∅ and let x be a point in this intersection.

Then gix ∈ A for i = 1, . . . , k and choosing a ∈ G so that d(ax0, x) is sufficiently
small, we also have giax0 ∈ A for i = 1, . . . , k. Thus f(gia) > 1/2 and we conclude
that g1a, g2a, . . . , gka ∈ Lε. �

Proof of the theorem. By the correspondence principle, lemma 6.2, we can associate
with L an m-system (X,µ,G) and an open subset A ⊂ X with µ(A) ≥ ρ(L) > 0 such
that

(6.1) µ(g−1
1 A ∩ g−1

2 A ∩ · · · ∩ g−1
k A) > 0 =⇒ g1a, g2a, . . . , gka ∈ Lε,

for some a ∈ G.
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Let
(X∗, µ∗)

π

yysssssssss
σ

''PPPPPPPPPPP

(X,µ) Π(X) = (Y, λ),

be the canonical standard cover of (X,µ), given by theorem 4.3, and set A∗ =
π−1(A), B = σ(A∗).

Let

µ∗ =

∫
Y

µy × δy dλ(y)

be the decomposition of µ∗ over (Y, λ). If we write A∗ =
⋃
{Ay × {y} : y ∈ B} then,

by reducing B if necessary, we can assume that µy(Ay) ≥ δ for some δ > 0.
In the present situation Y = P1, the projective line, and σ(µ∗) = λ is Lebesgue

measure. Let y0 ∈ B be a Lebesgue density point of B.
Claim: If g is a parabolic element of SL(2,R) with fixed point y0 then for every N

λ(B ∩ gB ∩ g2B ∩ · · · ∩ gNB) > 0.

Proof of claim: Of course y0 = gy0 is a Lebesgue density point of each of the sets
gjB and therefore we can choose an interval J ⊂ Y such that

|J ∩ gjB|
|J |

≥ (1− 1

2N
)|J | j = 1, . . . , N,

whence λ(J ∩
⋂N
j=1 g

jB) ≥ 1
2
|J |.

Now back to the proof of theorem 6.1.
Szemerédi’s theorem yields, for every positive integer k and δ > 0, a positive integer

N = N(k, δ) such that every subset of {1, 2, . . . , N} of size δN contains an arithmetic
progression of length k.

Take g as in the above claim, and such that {gn : n = 1, 2, . . . } ∩Q = ∅. Denoting
B0 = B ∩ gB ∩ g2B ∩ · · · ∩ gNB, we have for λ almost every point y ∈ B0,

N∑
i=1

∫
X

1Ai(x) dµgiy(x) ≥ δN,

where Ai = Agiy. Thus for some Aij , 1 ≤ j ≤ [δN ] the intersection ∩[δN ]
j=1Aij 6= ∅. If

we take N = N(k, δ) then we can find s and d such that

{s, s+ d, s+ 2d, . . . , s+ kd} ⊂ {i1, i2, . . . , i[δN ]},
and some x∗ ∈ X∗ with

gsx∗, gs+dx∗, gs+2dx∗, . . . , gs+kdx∗

all in A∗, hence, with x = π(x∗),

gsx, gs+dx, gs+2dx, . . . , gs+kdx

all in A.
Since there are only finitely many possible s and d we conclude that for some pair

s, d,

(6.2) µ(gsA ∩ gs+dA ∩ · · · ∩ gs+kdA) > 0.
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In fact

µ(gsA ∩ gs+dA ∩ · · · ∩ gs+kdA)

= µ∗(gsA∗ ∩ gs+dA∗ ∩ · · · ∩ gs+kdA∗)

=

∫
B0

∫
X

k∏
j=0

1A
gs+jdy

(x) dgs+jdµy(x) dλ(y)

=

∫
B0

∫
X

k∏
j=0

1A
gs+jdy

(x) dµgs+jdy(x) dλ(y).

Thus, if µ(gsA ∩ gs+dA ∩ · · · ∩ gs+kdA) = 0 then also∫
X

k∏
j=0

1A
gs+jdy

(x) dµgs+jdy(x) dλ(y) = 0

for λ a.e. y ∈ B0, contradicting our assumption on s and d.
From (6.2), by the correspondence principle (6.1), we can find a ∈ G with

g−sa, g−(s+d)a, . . . , g−(s+kd)a ∈ Lε.
Setting a0 = g−sa and h = g−d we finally get

a0, ha0, . . . , h
ka0 ∈ Lε.

�

6.3. Remark. Independently of our work T. Meyerovich applies in a recent work [22],
similar ideas in order to obtain multiple and polynomial recurrence lifting theorems
for infinite measure preserving systems.

7. WAP actions are stiff

A compact topological dynamical system (X,G) is called weakly almost periodic
or WAP, if for every f ∈ C(X), the set {fg : g ∈ G} is relatively compact in the weak
topology on C(X) (where fg ∈ C(X) is defined by fg(x) = f(gx).) Ellis and Nerurkar
[5] showed that (X,G) is weakly almost periodic if and only if every element p in the
enveloping semigroup E of the system (X,G) is a continuous map. (Recall that E =
E(X,G), the enveloping semigroup of the compact topological dynamical system
(X,G) is, by definition, the closure of the set of maps {g : X → X : g ∈ G} in the
compact product space XX , where the semigroup structure is defined by composition
of maps.) As shown in [5] the enveloping semigroupE = E(X,G) of a WAP system
contains a unique minimal left ideal I which is in fact a compact topological group.
Consequently, in a topologically transitive WAP system there is a unique minimal
subset and the action of G on this minimal set is equicontinuous.

A topological dynamical system (X,G) is called stiff with respect to m or m-
stiff if every m-stationary measure on X is G-invariant, (see [13]). Our goal in this
section is to show that WAP systems are stiff (theorem 7.4 below).

7.1. Lemma. Let (X,G) be a WAP dynamical system. Every element p ∈ E defines
an element p∗ ∈ E(M(X), G) and the map p 7→ p∗ is an isomorphism of E = E(X,G)
onto E(M(X), G). In particular the dynamical system (M(X), G) is also WAP.
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Proof. If gi → p is a net of elements of G converging to p ∈ E = E(X,G), then
by Grothendieck’s theorem, for every f ∈ C(X), f ◦ gi → f ◦ p weakly in C(X).
Therefore, we have for every ν ∈M(X) and f ∈ C(X):

giν(f) = ν(f ◦ gi)→ ν(f ◦ p) := p∗ν(f).

It is easy to see that p 7→ p∗ is an isomorphism of flows, whence a semigroup iso-
morphism. Finally as G is dense in both enveloping semigroups, it follows that this
isomorphism is onto. �

In the sequel we will identify the two enveloping semigroups and will write p for
both p and p∗.

We recall the following theorem of R. Azencott ([1], theorem I.2, page 11).

7.2. Theorem. Let (X,G) be a topological dynamical system with X a compact metric
space. Let µ be a probability measure on X. The following properties are equivalent:

(1) For every x ∈ X, the measure δx is a weak ∗ limit point of the set {gµ : g ∈ G}
in M(X).

(2) For every countable dense subset D of X there exists a Borel subset A of X
with µ(A) = 1 and with the property that for every x ∈ D there exists a
sequence gn ∈ G such that

lim gny = x ∀y ∈ A.

We call a measure µ satisfying the equivalent conditions of theorem 7.2 a con-
tractible measure, we then call the dynamical system (X,µ,G) a contractible sys-
tem. Note that a contractible system is necessarily topologically transitive and more-
over every point of the subset A belongs to the dense Gδ subset Xtr of the transitive
points of X. Also note that every m-proximal system (X,µ,G), with X = supp (µ),
is contractible.

7.3. Lemma. Let (X,G) be a WAP system. Let µ be an m-stationary probability
measure on X with X = supp (µ) such that the m-system (X,µ) is m-proximal.
Then (X,G) is the trivial one point system.

Proof. Let Xtr be the dense, G-invariant, Gδ subset of X consisting of all points with
dense G-orbit. Let D and A be the subsets of X given by theorem 7.2 (2). Since
D can be any countable dense subset of X, we can assume that D ⊂ Xtr. Fix a
point x0 ∈ D and let gn ∈ G satisfy lim gny = x0 for every y ∈ A. We can assume
that the limit p = lim gn exists in the enveloping semigroup E = E(X,G), and then
lim gny = py = x0 for every y ∈ A. Since p is a continuous map and since clearly A
is a dense subset of X, it follows that px = x0 for every x ∈ X. The elements of the
left ideal I = Ep are in 1-1 correspondence with the points of X (with qx ∈ I defined
by qxy = x, ∀y ∈ X) and it follows that I is the unique minimal left ideal in E. It is
now clear that (X,G) is a minimal proximal system. However in a WAP system the
group action on the unique minimal subset is equicontinuous and we conclude that
X consists of a single point. �
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7.4. Theorem. Let G be a locally compact second countable topological group, m a
probability measure on G with the property that the smallest closed subgroup containing
supp (m) is all of G. Then every WAP dynamical system (X,G) is m-stiff.

Proof. Let E = E(X,G) be the enveloping semigroup of the WAP system (X,G).
Let µ be an m-stationary ergodic probability on X; we will show that gµ = µ for
every g ∈ G. As in section 1 we let

lim
n→∞

ηnµ = µω, ω ∈ Ω0,

be the conditional measures of the m-system X, and let P ∗ ∈ M(M(X)) be the dis-
tribution of the M(X)-valued random variable µ(ω) = µω. Let now Z = supp (P ∗) ⊂
M(X). Clearly Z is a closed G-invariant subset of M(X), and by proposition 1.2 the
m-dynamical system (Z, P ∗, G) is m-proximal. By lemma 7.1 the dynamical system
(Z,G) is WAP and therefore, by lemma 7.3, it is the trivial one point system. Since
the barycenter of P ∗ is µ, we have P ∗ = δµ, and it follows that P ∗ as well as µ are
G-invariant measures. �

8. The SAT property

The notion of SAT (strongly approximately transitive) dynamical systems was in-
troduced by Jaworsky in [18], where he developed their theory for discrete groups.
For these groups he shows that the stationary measure on the Poisson boundary is
SAT. It was later used in a slightly stronger version (SAT∗) by Kaimanovich [20]
in order to study the horosphere foliation on a quotient of a CAT(−1) space by a
discrete group of isometries G, using the SAT∗ property on the boundary of G.

Definitions Let G be a locally compact second countable topological group. We
fix some right Haar measure m = mG and let e be the identity element of G.

8.1. Definitions.

(1) A Borel G-space is a standard Borel space (X,X, G) with a Borel action
G×X → X.

(2) A G-system is a Borel G-space (X,X, G) equipped with a probability measure
µ whose measure class is preserved by each element of G.

(3) We say that a Borel probability measure µ on a Borel G-space is strongly
approximately transitive (SAT) if the measure class of µ is preserved by
each element of G and:

For every A ∈ X with µ(A) > 0 there is a sequence gn ∈ G such that
limn→∞ µ(gnA) = 1.

When µ is SAT we will say that the system (X,X, µ,G) is SAT.
(4) If Y is a compact metric space, G acts on Y via a continuous representation of

G into Homeo (Y) and ν is a Borel probability measure whose measure class
is preserved by each element of G, we will say that the dynamical system
(Y,B(Y ), ν, G) is topological (B(Y ) denotes the Borel field on Y ).

(5) Let (X,X, µ,G) be a G-system. A topological G-system (Y,B(Y ), ν, G) is
a topological model for (X,X, µ,G) if supp (ν) = Y and (X,X, µ,G) and
(Y,B(Y ), ν, G) are isomorphic as G measure boolean algebras; i.e. there is an
equivariant isomorphism between the corresponding measure algebras.
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(6) Recall that for a topological system (Y,G), we say that a probability measure
ν on Y is contractible if for every y ∈ Y there exists a sequence gn ∈ G such
that, in the weak∗ topology, limn→∞ gnν = δy.

(7) Given a Borel system (X,X, G) we say that a probability measure µ on X is
absolutely contractible if for each topological model (Y, ν,G) of (X,X, µ,G)
the measure ν on Y is contractible.

Our goal is to show that a measure µ is SAT iff it is absolutely contractible.

Contractible topological systems
We now use a second characterization of contractible measures ([1], theorem I.2,

page 11).

8.2. Theorem. Let (Y,G) be a topological dynamical system with Y a compact metric
space. Let ν be a probability measure on Y . The following properties are equivalent:

(1) The measure ν is contractible; i.e. for every y ∈ Y , the measure δy is a weak∗

limit point of the set {gν : g ∈ G} in M(Y ).
(2) The linear operator Pν : C(Y )→ LUC(G) defined by

(8.1) Pνf(g) =

∫
Y

f(gy) dν(y),

is an isometry of the Banach space C(Y ) of continuous functions on Y into
the Banach space LUC(G) of bounded left uniformly continuous functions on
G (with sup-norm).

We note that the operator Pν can be extended to the larger Banach space L∞(Y, ν)
using the same formula (8.1), and since for f ∈ L∞(Y, ν) and g, h ∈ G

|Pνf(g)− Pνf(h)| = |〈f, gν − hν〉|
≤ ‖f‖∞‖gν − hν‖total variation

= ‖f‖∞‖ν − g−1hν‖,
we conclude that Pν(L

∞(Y, ν)) ⊂ LUC(G).

G-continuous functions
Recall the following definition and representation theorem from [17].

8.3. Definition. Given a G-system (X,X, µ,G), a function f ∈ L∞(X,µ) is called
G-continuous if f ◦ gn converges in norm to f in L∞(X,µ) whenever gn → e.

8.4. Theorem. Let G be a Polish topological group. A boolean G system admits a
topological model if and only if there exists a sequence of G-continuous functions that
generates the σ-algebra (equivalently: separates points).

We first remark that although in [17] the boolean system is assumed to be measure
preserving the proof, in fact, goes through if one assumes only that the measure
class is preserved. Next we note that the condition in the theorem of admitting a
sequence of G-continuous functions that generates the σ-algebra, is always satisfied
when the group G is, in addition, locally compact (see corollary 8.7 below). Thus, in
this case, one recovers the classical result that ensures the existence of a topological
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model for every measure class preserving boolean action of a locally compact second
countable group.

More importantly, we observe that an immediate corollary of the proof of theorem
2.2 in [17] is the following version of the theorem (still for a general Polish topological
group G).

8.5. Theorem. Let (X,X, µ,G) be a a boolean system which satisfies the condition
of theorem 8.4 and let f be a function in L∞(X,µ). Then there exists a topological
model (Y, ν,G) such that the function F ∈ L∞(Y, ν) corresponding to f is in C(Y )
iff f is G-continuous.

Thus when G is a locally compact second countable group, theorem 8.5 applies for
every G system.

8.6. Lemma. Let (X,X, µ,G) be a G-system and f ∈ L∞(X,µ). Let ψ : G → R be

a non-negative continuous function with compact support. Define f̂ = f ∗ ψ by

f̂(x) =

∫
G

f(hx)ψ(h) dmG(h).

The function f̂ is G-continuous.

Proof. For g ∈ G we have

‖f̂ ◦ g − f̂‖∞ = ess- supx∈X

∣∣∣∣∫
G

f(hgx)ψ(h) dmG(h)−
∫
G

f(hx)ψ(h) dmG(h)

∣∣∣∣
= ess- supx∈X

∣∣∣∣∫
G

f(hx)ψ(hg−1) dmG(h)−
∫
G

f(hx)ψ(h) dmG(h)

∣∣∣∣
≤ ess- supx∈X

∫
G

|f(hx)||ψ(hg−1)− ψ(h)| dmG(h)

≤ ‖f‖∞
∫
G

|ψ(hg−1)− ψ(h)| dmG(h).

Thus g → e implies ‖f̂ ◦ g − f̂‖∞ → 0 and f̂ is G-continuous. �

We let {ψn : n = 1, 2, . . . } be a fixed approximate identity. This means that there is
a decreasing sequence Vn of precompact neighborhoods of e in G with ∩∞n=1Vn = {e},
and ψn : G→ R is a sequence of nonnegative continuous functions with supp ψn ⊂ Vn
and

∫
G
ψn dmG = 1 for n = 1, 2, . . . .

8.7. Corollary. The bounded G-continuous functions are dense in L2(X,µ).

Proof. It is easy to check that a sequence {ψn : n = 1, 2, . . . } as above is an approx-
imate identity in L2(X,µ); i.e. ‖f ∗ ψn − f‖2 → 0 for every bounded f ∈ L2(X,µ).
Now apply lemma 8.6. �

8.8. Proposition. Let (X,X, µ,G) be a G-system and 0 6= f = 1A ∈ L∞(X,µ). Let
ψn : G→ R be an approximate identity in L2(X,µ) as above. Then

lim
n→∞

‖f ∗ ψn‖∞ = ‖f‖∞ = 1.
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Proof. With no loss in generality we can assume that (X,µ,G) is a topological model.
By the regularity of the measure µ we can also assume (by passing to a subset) that A
is closed. Again by regularity of µ, given ε > 0 we can choose an open neighborhood
U of A in X such that µ(U \ A) < ε. Since

lim
h→e

µ(hA4 A) = lim
h→e
‖1hA − 1A‖1 = 0,

we can choose a neighborhood V = V −1 of e in G such that for all h ∈ V

(i) ‖1hA − 1A‖1 = µ(hA4 A) < ε and (ii) hA ⊂ U.

Let ψ = ψn be a member of the approximate identity which satisfies supp (ψ) ⊂ V .
Set

f̂(x) = f ∗ ψ =

∫
G

f(hx)ψ(h) dmG(h) =

∫
G

f(hx) dp(h),

where dp = ψ · dmG, a probability measure on G. By (ii), if x 6∈ U then f(hx) =

1A(hx) = 0 for every h ∈ V and it follows that f̂(x) = 0. Thus

(8.2)

∫
X

f̂ dµ(x) =

∫
U

f̂ dµ(x).

By Fubini and the estimation (i),

(8.3)

∫
X

f̂ dµ(x) =

∫
X

µ(hA) dp(h) ≥ µ(A)− ε.

For δ > 0 let

D = Dδ = {x ∈ U : f̂(x) < 1− δ}.
Then

µ(A)− ε ≤
∫
X

f̂ dµ(x) =

∫
U

f̂ dµ(x)

=

∫
D

f̂ dµ(x) +

∫
U\D

f̂ dµ(x)

≤ (1− δ)µ(D) + µ(U \D)

= −δµ(D) + µ(U)

≤ −δµ(D) + µ(A) + ε,

hence µ(D) ≤ 2ε
δ

. Fixing δ at the outset we choose ε so that, say, 2ε
δ
≤ 1

2
µ(A), and

then for sufficiently large n,

f̂(x) = f ∗ ψn(x) ≥ 1− δ,

for every x in the set U \D whose measure µ(U \D) ≥ 1
2
µ(A) > 0. This completes

the proof of the proposition. �

Sat and absolute contractibility are equivalent

8.9. Theorem. Let (X,X, µ,G) be a G system, then µ is SAT iff it is absolutely
contractible.
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Proof. Let (Y, ν,G) be a compact model and let f ∈ L∞(ν) with ‖f‖∞ = 1 and ε > 0
be given. Set A = {y ∈ Y : |f(y)| ≥ 1 − ε}. Then ν(A) > 0 and we now assume
that also ν(A+) > 0 where A+ = {y ∈ Y : f(y) ≥ 1 − ε}. By assumption there is a
sequence gn ∈ G such that limn→∞ ν(g−1

n A+) = 1. Hence

Pνf(gn) =

∫
g−1
n A+

f(gny) dν(y) +

∫
g−1
n Ac+

f(gny) dν(y)

≥ (1− ε)ν(g−1
n A+)− ν(g−1

n Ac+)→ 1− ε.

Hence lim supn→∞ Pνf(gn) ≥ 1 − ε. Similarly when ν(A−) > 0 with A− = {y ∈
Y : f(y) ≤ −1 + ε} we get lim supn→∞ |Pνf(gn)| ≥ 1 − ε . Thus the LUC(G) norm
‖Pνf‖ ≥ 1− ε and as this holds for every ε we get ‖Pνf‖ = 1. Thus Pν : L∞(Y, ν)→
LUC(G) is an isometry. In particular Pν : C(Y ) → LUC(G) is an isometry and by
theorem 8.2, (Y, ν,G) is contractible.

Conversely, assume that µ is absolutely contractible and let A ∈ X be a set with
positive µ measure. Write f = 1A. By proposition 8.8, given ε > 0, we can choose
ψ = ψn : G→ R, a function in the approximate identity, such that for f̂ = f ∗ ψ,

(8.4)
∣∣‖f̂‖∞ − 1

∣∣ =
∣∣‖f̂‖∞ − ‖f‖∞∣∣ < ε.

By lemma 8.6, the function f̂ is G-continuous and by theorem 4.3 there is a topo-
logical model (Y, ν,G) for (X,X, µ,G) in which the L∞(Y, ν) function corresponding

to f̂ , say F , is in C(Y ). By assumption the measure ν on Y is contractible and thus

by theorem 8.2, Pν(F ) = Pµ(f̂) ∈ LUC(G) satisfies

‖Pµ(f̂)‖ = ‖F‖ = ‖f̂‖∞.
Let g ∈ G satisfy

(8.5) ‖Pµ(f̂)‖ < Pµ(f̂)(g) + ε.

Now

Pµ(f̂)(g) =

∫
X

f̂(gx) dµ(x)

=

∫
X

∫
G

f(hgx)ψ(h) dm(h) dµ(x)

=

∫
G

ψ(h)

(∫
X

f(hgx) dµ(x)

)
dm(h)

=

∫
G

ψ(h)Pµ(f)(hg) dm(h),

and, since ψ ≥ 0 and
∫
G
ψ dm = 1, it follows that for some h ∈ G

(8.6) Pµ(f)(hg) > Pµ(f̂)(g)− ε.
Collecting the estimations (8.4), (8.5) and (8.6) we get

Pµ(f)(hg) > Pµ(f̂)(g)− ε > ‖Pµ(f̂)‖ − 2ε = ‖f̂‖∞ − 2ε > 1− 3ε.

Explicitly

Pµ(f)(hg) =

∫
X

f(hgx) dµ(x) = µ(hgA) > 1− 3ε
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and the proof is complete. �
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