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Stationary electron swarms in electromagnetic fields
By D. GaBoR, DRr.ING., F.INST.P.
(Communicated by S. R. Milner, F.R.S.— Received 12 June 1944)

Electron clouds rotating in axially symmetric magnetic fields have been known for a long
time, but the agreement between theory and experiment is still very unsatisfactory. The
discrepancy appears to be due to the interaction of electrons. Before approaching this
difficult problem it is desirable to possess a more complete theory of stationary swarms
without interaction. In the present paper the distribution density is caleulated on the basis
of classical statistical mechanics. It is shown that electrons injected at any point with very
small initial velocities will distribute themselves with a density inversely proportional to
the distance from the axis, in a certain annular space. Only the limite of this space, not the
distribution inside it, will be dependent on the electric or magnetic fields. The uniform or
nearly uniform distributions calculated by previous authors are singular solutions, incon-
gistent with any degree of statistical disorder. Other laws of density distribution can be
realized by simultaneous injection of electrons at several points. These offer a possibility to
realize dispersing electron lenses and corrected electron optical systems. It is shown that the
ring current produced by the rotating electron cloud can reduce the magnetic field at the
axis very considerably in devices of practicable dimensions. It appears also possible to
produce clouds of free electrons with’densities sufficient for observable optical effects.

The theory of the stationary motion of electron assemblies in electric and magnetic
fields is of interest in two fields of applied electronics. It arises in the theory of the
magnetron, an electronic device which so far has defied all attempts at a quantitative
theoretical explanation. The second field is electron optics, which suffers from the
fundamental limitation that lens correction is impossible so long as only electro-
magnetic fields free of space charge are employed. Hence the application of electron
clouds offers one of the very few prospects for further development of electron optical
devices, especially of the electron microscope.

The full-anode magnetron, a diode with a cylindrical anode and a coaxial filament
as cathode, was first constructed and investigated by A. W. Hull in 1920, and has
been explored théoretically and experimentally by numerous authors.* An especially
thorough theoretical study is due to L. Brillouin (1941, 1942). These investigations
have revealed a striking discrepancy between theory and the experimental results.}
Hull’s simple theory led to the conclusion that current could flow to the anode only
above a certain critical voltage, which increases quadratically with the magnetic
field intensity. Below this voltage the current ought to be cut off, and an electron
cloud of uniform charge density oH?

~Pu (1)

= 8mmc?

should rotate in the magnetron like a solid body, with an angular velocity
Sy

"~ 2me’

* A. W. Hull (1921, 1924). F. B. Pidduck (1936). Extensive bibliography in A. F. Harvey

(1943).
1 See especially Harvey (1942, pp. 83-113) and also the Foreword by E. B. Moullin.
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which is one-half of the ‘Larmor frequency’. Though the experiments confirmed
the existence of a critical voltage, the quantitative agreement was very unsatis-
factory. Current starts flowing considerably below the critical voltage and reaches
its saturation value only very gradually, whereas on Hull’s theory, even making an
allowance for the initial velocities of the electrons, the rise ought to be confined
within a few tenths of a volt. Though later workers added some refinements to Hull’s
theory, they were unable to account for the width and shape of the cut-off character-
istic. An exception is an investigation by E. G. Linder (1938, ), who found experi-
mentally that in a rotating electron cloud random motion develops with a very high
electron temperature, of the order of 10V. On this basis he could account for the
width of the cut-off curves.

Several objections could be raised against Linder’s results. He finds by probe
measurements a particularly high electron temperature when the current is entirely
cut off, which is a thermodynamical impossibility. His method of calculating the
current from an electron cloud to a plate is also open to objection, as he uses a formula
which is strictly valid only in the absence of a magnetic field. Nevertheless, it appears
very likely that Linder has correctly located the root of the discrepancy. The new
difficulty arises, however, that theory cannot account for the experimentally found
rapid development of random motion in an electron cloud. This phenomenon is
closely related to the inexplicably rapid establishment of electron temperature in
gas discharges at very low pressures, which was discovered by I. Langmuir and
H. Mott-Smith, and discussed in detail by Langmuir (1927, 1928). As the problem
of electron interaction is one of extraordinary mathematical difficulty, it appears
desirable to obtain first a reliable experimental estimate of the effect. The first step
towards this must be a more complete investigation of the problem without inter-
action. It will be shown that no satisfactory basis for this has existed up to now, as
the corrections which have to be applied to Hull’s results are very much larger than
those found by any of the later authors who tried to improve on them.

Hull’s results (1) and (2) can be derived from the condition of zero radial current.
In general a zero current would be the resultant of two equal and opposite currents,
one flowing inwards, the other outwards. If the electrons start from the cathode with
zero initial velocity, as assumed in the simple theory, reversal of the sense of motion
can take place only at the outer boundary of the electron cloud. By formulating the
condition of equal and opposite currents, combining this with the dynamical equa-
tions and substituting it into Poisson’s equation, a differential equation for the
space-charge distribution is obtained.* The remarkable result follows, that this
equation has a solution free of singularities only in the case when both the opposite
currents are zero, that is to say, if there is no radial electron motion at all. This means
that one must imagine the electrons circling around the cathode in coaxial circular
orbits. The question immediately arises how such a state of motion could ever
establish itself. Some authors have thought that it could be justified, as they found
that small radial velocities produce only insignificant deviations from Hull’s law of

* Cf. e.g. Brillouin (1941).
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distribution. It will be shown, however, that any initial velocities, however slight,
require a fundamental modification of the picture, and that Hull's results must be
considered as a singular solution of the problem, which could neither establish, nor
maintain itself.

This is of great importance from the point of view of the other field mentioned at
the beginning, the electron optical applications of space charges. Electron optical
systems cannot be corrected at present for spherical aberration and other defects,
because no dispersing electron lenses can be realized without (negative) space
charges. A space charge according to equation (1) would be useless for this purpose.
As explained above, this distribution satisfies the condition that electrons are every-
where in radial equilibrium. Hence, if an electron beam is shot through such an
electron cloud, the concentrating effect of the magnetic field would exactly balance
the dispersing effect of the space charge, and the resulting lens effect weuld be nail.
But, as it will be shown that stationary electron clouds are possible in which radial
equilibrium exists only in the average, but not at every radius, the prospect of
electron optical applications is not closed. The problem will therefore be formulated
in sufficient generality to cover both the magnetron and the electron optical
applications.

The general method to be followed will be to treat the problem as one of statistical
mechanics. First the distribution law will be derived on the basis of classical statistics,
giving the density as a function of the position and of the electromagnetic potentials.
The second step will be to substitute the density into Poisson’s equation and find the
density distribution, and the potential consistent with it, as a function of position.
Fortunately, the first step leads to an extremely simple law, so that the second step
and the discussion of the solution will present no difficulty.

1. THE DYNAMICAL PROBLEM

Assume an axially symmetrical electromagnetic field, specified in cylindrical
co-ordinates (z,7,0) by an electrostatic potential ¢(z,r) and a vector potential
A(z,r). As the vector potential has only a tangential component, it will not be neces-
sary to write it as a vector, or to distinguish it by a suffix ¢ like the other tangential
components. The units will be Gaussian. The magnetic field follows from 4 by the

relations

H = curl. 4 = —C.il, H. =ocurl. A= ;?%(rfl). (3)

oz
In the special case of-a homogeneous magnetic field, H, = 0, H. = H,
A = YH,r+ CJr, (4)
where (' is an arbitrary constant. As it does not figure in the dynamical equations
it can be put zero from the start.

Now assume a cathode in the form of a circular filament with negligible thickness,
with a radius @ at a position where the vector potential has the value 4,. Figure 1
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illustrates an example. The cathode is placed in, or near to, a position of zero magnetic
flux. In the case illustrated, the field at the axis has the law
H(0,2z) = const. (3 + tan—1z),

so that at great distance from the cathode, in either direction, the field becomes
homogeneous, the field at the right being three times stronger than the field at the
left, which plays only the part of an auxiliary, with the purpose of adjusting 4, to
a suitable (small) value. The magnetic field is illustrated by the field lines, i.e. the
meridians of the tubes of constant flux ¥ = 274 = const. The flux increases by
equal steps from one line to the next. The field line passing through the cathode is
shown in dotted lines. It approaches a radius r, at the far right, where the field
becomes homogeneous. This arrangement is suitable for electron optical applications,
as it leaves the axis free. The cathode has to be placed at or near the line ¥ = 0, as
otherwise the electrons could not get near the axis.

¥Y=0

/

_________________
ro

LINES OF CONSTANT MAGNETIC FLUX, ¥ = CONST.

R e 0 —2

MAGNETIC INTENSITY He ON THE AXIS.
Ficure 1. Example of magnetic field.

The dynamical equations are most easily formulated in the Hamiltonian form.*
The linear momentum of the electron in an electromagnetic field is defined as

P = mv—SA. (5)

In an electromagnetic field of rotational symmetry it is advantageous to write the
components of the linear momentum p_, p, and p,/r, where p, is the angular momen-
tum. The Hamiltonian is

1 1 & .\
H = —| pitpi+|-ps+-4) |—ed. 6
2,,”[16 Prt\ Pot 9 (6)
The potential ¢ is to be measured from the cathode as zero level.
* R. Becker (1933, p- 96). The equation (5) is due to K. Schwarzschild (1903).

29-2
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The problem has two integrals, 5# = const. and p, = const. Both can be im-
mediately obtained from the canonical equations. Marking values relating to the
cathode with a suffix 0, the momentum integral is written

Py = r(mv‘—gA) = a(m”m"SAo)- (7)

From this point on it will be convenient to measure the velocity in potential units.

Therefore v is replaced by
u = (J[m/2e])v. (8)

It will also be convenient to introduce a quantity, which could be called the vector
potential relative to the cathode, defined by

- Jfs)o-34)

ro/ is a measure of the flux which passes between the cathode (a, z,) and the circle
(r,z). o/ has the same dimensions as u. With these new symbols equation (7) becomes

rUy— AUy = 1A (7-1)
The energy integral is, in the new units,
uzt+up+ui—¢ = (up+uZ+ui),. (10)

A condition which electrons have to fulfil in order to have access to an element
in phase space can now be formulated by eliminating u, between the equations
(7-1) and (10). It will be convenient to introduce a dimensionless parameter

z=rla (11)

for the radius, i.e. to measure 7 in units a. Thus

A IO e a* o 5 Ll 3 a8 2
Q=u;+u;—(x*—1) YA} = ¢—x’—ld = Uz +un>0. (12)

This is the criterion of accessibility. Its geometrical interpretation in velocity
space is shown in figure 2. @ = 0 is a quadric surface of rotational symmetry relative
to the u,axis. Its type is given by the following table:

x <1 >1
d>a2o/? /(22— 1) real ellipsoid one-shell hyperboloid
P <atslif(x2—1) imaginary ellipsoid two-shell hyperboloid

This classification is illustrated in figure 3 in the special case of a homogeneous
magnetic field, in which

2
d:K(x—é), T _of? = K¥aP—1), (13)

z2—1

where K = a,/(cH?/8mc?).
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Now consider electrons which have Jeft the cathode in the velocity interval
Ug, g+ duy. They will arrive at some point (z,7) with a velocity %, and in an interval
du, connected with the initial data by the relations

w=ul+¢, udu = uydu,. (14)

Combining this with equation (12) it is seen that electrons which have access to
(z,7) will all be contained in that segment of the spherical shell with radii », » +du
which is (seen from the axis) outside the quadric surface @ = 0. This shell segment is
the accessible volume in velocity space. It may be noted that it gives also a measure
of the volume of momentum space, as, by equation (5),

(P2 Pys Pe)

-t
2o, 5, v.) m const. (15)

P/K? = (x LE)
7 NANNANAN
LY S

L ' :
<] // /Q"’/ TP y’ X
’ woO - 7/
7 /\ 4 h;pocr::;o':‘d. 7

W\ /
) /H:csfnar'g N\ //,//,////////?4
ellipsoid. /00000 i
NN /72 4

Ficure 2. Construction of the acces- Figure 3. The quadric surface Q.
sible volume of momentum space.

2. THE LAW OF VELOCITY DISTRIBUTION

By Liouville's theorem the density D of a group of electrons in phase space is the
same as the original density which this group had at the cathode. Hence if it were
known that the whole accessible volume of momentum or (velocity) space calculated
in the previous section would be actually filled with electrons, then the velocity
distribution at any point would also be known, and from this the density in con-
figuration space could be calculated. This condition is fulfilled in an important
special case, in that of the infinitely long magnetron with cylindrical cathode, the
only one considered by previous authors. In this case there is no further limitation
of the accessible volume, as it is easy to see that a trajectory continued backwards
from any point of it must actually reach the cylindrical cathode at some point.
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In the general case Liouville’s theorem hy itself is not sufficient to determine the
velocity distribution, for two reasons. First, in the case of limited cathodes in general,
only a part of the accessible volume will be really filled. This difficulty arises especi-
ally in the case of an ‘ordered’ flow of electrons. Hull’s distribution with electrons
circling in circular orbits is an extreme example of such an ‘ordered’ flow. But this
uncertainty will exist also in all cases of motion in ‘short trajectories’, i.e. if the
electrons return to the cathode after spending only a short time in the cloud. There
is, however, also a second sort of difficulty, which arises especially in the case of
‘long trajectories’. The same group of electrons might return—and by the theorem
of Poincaré and Zermelo will return—an indefinite number of times to the same
element in phase space, if it is allowed to spend a long time in the cloud, and the
number of times this will happen is not known. Both difficulties are resolved if this
time can be assumed to be very long, by the ergodic theorem—Ilong known as the
ergodic hypothesis, until G. D. Birkhoff and J. v. Neumann proved it—according
to which the whole accessible phase volume will be filled, with uniform density.*
Moreover, this result is independent of the initial conditions, in the sense that though
originally (at the cathode) D might have been a function not only of %, but also of
the direction, ultimately, over long intervals it can be a function of « only.

One can therefore apply the law of uniform distribution in the accessible part of
phase space to both the principal cases under consideration, to the magnetron and
to the space-charge electron lens, as shown in figure 1, though for different reasons.
In the first case it is justified by Liouville’s theorem, in the second by the ergodic
theorem. The assumption of very long trajectories appears well justified in this
second case, as the cathode can be made very small in comparison to the rest of the
volume, which the electrons will traverse in general many times until they return
to the cathode.

It may again be emphasized that the problem is to be treated dynamically as a
one-electron problem, and that electron interaction must be expected to make itself
particularly felt in the case of long trajectories. It may be repeated that the present
purpose is not to establish a generally valid theory of magnetrons and similar devices,
but to build a basis for such a theory by first investigating the conclusions of a
theory without interaction.

3. THE LAW OF SPACE-CHARGE DISTRIBUTION

On the basis of this assumption the volume of the accessible momentum (or
velocity) space associated with any point is a measure of the space-charge density
at this point. To calculate this, one puts, as in figure 2,

uf = u?cos®a, ul+ul=ulsin®a. (16)
* It appears that the present application is proof against the weighty arguments which

have been advanced against considering the ergodic or the quasi-ergodic theorem as the
basis of classical statistical mechanies. Cf. R. C. Tolman (1938), p. 70.
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Substitution into equation (10) (with the equality sign) gives the following equation
for the intersections of the sphere of radius  with the quadric @ = 0:

(ncosa—.o7)% = (g)ﬁ(uz—gb) = (%uo)-. (17)
Physically this means that the extreme electrons reaching a point will be those which
started at the cathode in tangential direction. The limits are (u, being considered
always as positive)

-ucosa:di(-:uo. (17-1)

Four cases must now be distinguished, which give four different laws for the
space-charge distribution:
(@) The equation (17) has two real roots, o, &,. The condition for this is

a \2
(d+;uo) <u®=¢+uj (a)

If this condition is fulfilled (asin figure 2), the volume of the shell segment is, apart
from a factor 2,
(cos oty — cosa,) udu.

Combined with (17-1), which gives
u(cos oy — cos ag) = 29”0, (17-2)
7
and taking into consideration that udu = wu,du,, one obtains for the charge density,
apart from a constant factor, which may be included in the phase density D,

dp = gl)(uo) ugduy. (18)

This means that if electrons are emitted only in an infinitesimal energy interval
(‘microcanonic assembly *) the density will be inversely proportional to the distance
from the axis, independently of the electric and magnetic fields, which determine
only the limits inside which it is valid, but do not interfere with the distribution
itself. This strikingly simple law holds also if the primary emission is not homo-
geneous, up to a certain maximum initial velocity. This law is the most important,
but for completeness the other cases will also be discussed.

(b) The equation (17) has only one real root. The condition for this is

!

2 92
@ \2 ' a \?
(.o/— u") <¢+u;}<(&/+~uu) g (b)
. r
In this case the spherical segment becomes a spherical cap. The accessible
volume is

(1 —cosa)u*du,
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and the density will follow the law

dp = [J(gb +ud) —-le+guo D(uy) ugduy,. (19)

Unlike (a) this depends explicitly on ¢ and 7.
If equation (17) has no real roots, this can mean two things:
(¢) The whole volume of the spherical shell is accessible. The law of density is

dp = (¢ +u}) D(uy) uddu,. (20)

This is the case if the whole sphere is outside the quadric, which in this case must
be an elkipsoid.

(d) If, on the other hand, the whole sphere is inside the quadric, the accessible
volume is zero, and so is the density. Therefore in the following this case will be
go referred to as (o).
< One must now determine the range of validity of these laws, in terms of ¢, .27, u,
S and r (or x). The discussion, though elementary, is rather complicated, and only
g the results will be given. The velocity ranges in which different solutions (a)-(d)
=i, are valid are separated by roots of the equation

ugust 2022

a 2
(o +5m) =d+ui,

x

which are Uyy Ua =
A T

[ + ol ?— (2= 1) (p— A)}]. (21)

Of these roots, if they exist, the smaller one is called %, and the larger one u,. It
will also be convenient to introduce the abbreviation

Kk =x%/(x?—1).

The following table gives the intervals of %, in which the laws (a), (b), (¢) and (d)
are valid:

Downloaded from https://royalsocietypublishing.or

w<l ¢ >/t A2>h>KkA? k2>
(a) 0—uy —_ —
(b) =5 Uy — Uy =5
(¢) Uy — 0O Uy — 00 —
(0) - 0—u, 0—o0

ax>1 &> K.A? KkA2> > af? ArE>h
(a) 00— 00—y, uy—o0 Uy — O
(b) == Uy — Uy Uy — Uy
(¢) T 9 =
(0) — — 0 —u,

This table is illustrated in figure 4 in the particular case a = r,, i.e. if the cathode
is in the homogeneous part of the field. In this case the curves which divide the
field are

’ 1)*
SIK? = (x—;) , G/K=z2—1,
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as given by equation (13). In the general case the curve ¢ = k272 has a different
shape, as it goes to + oo at = 1, but the relative position of the two curves remains
the same, and nothing essential is changed.

The table discloses the extraordinary variety of equilibrium shapes of rotating
electron swarms which could be obtained with large initial velocities. It may be
somewhat. surprising that the initial velocity adds to the manifoldness of the
problem, as one might think that lowering of the cathode potential would be
equivalent t0 an increase of u,. But u, appears in the equations not only in the
combination ¢ + %2, but also in the combination awu,/r. This is a consequence of the
momentum integral, and means physically that a velocity u, at the radius a is
‘worth’ a velocity au,/r at the radius r. Things become simple only at small initial
elocities, as in this range there obtains either the simple hyperbolical law () or the

w (0).

'—<

(x%-1) (x-%)*

W\

a:0-uN 7 Up-eo
T c :u.-:) by -y,

=

oL 0 ~00

%

R

2

x

1

£
oo

£ 5
::c

0:0-00
-1 7

“

Ficure 4. Domains of solutions a, b, ¢, o.

Before discussing law (a) in detail, it may be interesting to compare it with the
corresponding law in a two-dimensional magnetron, that is, with an electron swarm
in which ergodic disorder would exist only in the two dimensions » and @, but not
in the z-direction. This would be the case if the field were absolutely cylindrical, and
if the electrons had definite, e.g. zero, initial components u#.,. In this case the phase
volume changes into an area, which is

!
(g —oty) udu = [coq ldhau" &i’+auo,r] wdu,

V(P +u}) iy V(@ +ug

and series development gives the approximate formula for the density

1
'y'+au ’r
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(VI — A2+ 2aupsd [r] — [ — A% —2au,sd [r]). (22-1)

P~ —ay)=
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If ¢ —Z2> (2a/r) uyeZ, this can be further simplified and gives
p = const./r /(¢ —?). (22-2)

This is a law entirely different from any of the previous ones. Such sudden changes of
law with the number of degrees of freedom are familiar in classical statistical
mechanics, and are a warning to be cautious in the application of statistical prin-
ciples. But in the present case there is good reason to think that the axial degree
of freedom can be considered as ‘fully excited’. In the case of the magnetron with
infinite cylindrical cathode this follows without any application of statistics from
Liouville's theorem, and the arrangement in figure 1 cannot be realized without
departing from cylindricity.

It may be mentioned that a further step in the same direction, i.e. restricting the
disorder of the system, would lead to Hull's solution, with the corrections applied
by Brillouin.

4. SELF-CONSISTENT STATIONARY ELECTRON SWARMS

The main result of the foregoing discussion is that for very small initial velocities
the density will follow the simple law 1/r in the region in which ¢ > .72, and will be
zero outside it. The more complicated laws (b) and (¢) come into action only where
¢ ~o/%. Hence, apart from two sheaths near the edges of the electron cloud. the 1/r
law will obtain not only for electrons emitted in an infinitesimal energy interval,
but also for electrons emitted by thermionic cathodes.

In order to obtain the potential distribution one must substitute this law into

Poisson’s equation
9 0% 1 C
0% 0% 10¢ (23)

oz or2 ror 1’

where C' is a constant, to be determined later. The solution will be discussed only
in the cylindrical case 9%¢/0z* = 0, which applies also approximately to arrangements
like the one in figure 1, at some distance from the ends where the magnetic intensity
falls off. Here the electron cloud can be prevented from escaping by two sufficiently
negative end-plates.

The general solution in the cylindrical case is

¢ = Cr+c,+eylogr/r,, (24)

where ¢, and ¢, are constants, and r, is as defined in figure 1.

The electron cloud has, in the present approximation, sharp boundaries at r = r,
inside and r = r, outside. At both edges the velocity is purely tangential. The
boundary conditions are

P(ry) = Ary),  p(ry) = A3(ry), (25)

and in addition at the inner edge  d¢/dr = 0, (26)
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if there is no charge inside r,. This condition is valid in the case of figure 1 because
there is no electrode at the axis, but it is valid also in the case of the cylindrical
magnetron, as the field strength at the cathode must be zero in the equilibrium
condition. There are therefore three conditions for the five constants C, ¢;, ¢,, 7,
and r,, and two degrees of freedom are left over. One of these corresponds to the
anode potential, which can have any value below the critical potential, and the
other to the degree of saturation. The total charge in the cloud may assume any
value up to a certain maximum. This will be reached if r, = r, and ¢(r,) = 0, which
means that no further electrons can reach the cloud from the cathode.

Having assumed ¢ independent of z, the same assumption must now be made
for.oZ. Hence, neglecting the magnetic effect of the rotating electrons, which will
be dealt with later, a homogeneous magnetic field
must be assumed, writing

2 2
o B To(ﬁ_ﬁ’)_ (27)

8me? ®\r, r

Substituting this into the boundary conditions
(25) and (26), the following expression is ob-
tained for the space-charge density at a radius r:

_(r% = f?) [1 == (7‘%/’)‘1 r2)2] (28)
rry—ry(1+logry/ry)]’

where p, is Hull’s space-charge density, as de-

p(r) = 1pu

fined in equation (1). This is the solution of the ¢ ::f" 3 i
problem, with two free parameters r, and r,. Itis | | :
illustrated in figure 5 in the special case ry/r, = 3 :. H

for various radii r;, which correspond to various ;—! . A
degrees of saturation. The total charge contained

: . Ficure 5. Potential and density
between r, and r, is marked on the curves in per- distribution.

centages of the maximum charge.

It may be noted that this result gives an a posteriori justification of our procedure.
The law (2) has been assumed to hold, that is to say ¢ >.o7%; and also, that apart
from the edges ¢ exceeds .72 sufficiently to justify the neglect of the initial velocities.
This assumption is now verified, except at 100 9%, saturation, where the two curves
come rather close together, near the inner edge r,.

In the case of maximum saturation, i.e. r, = r,, the density at the outer edge
becomes, according to equation (28),

[l il ("0.’/"2)2]2

(ro/ra)log (rafro)’
and for large ratios r,/r, this approaches one-quarter of Hull’s value. Applying this
to the cut-off characteristic of the cylindrical magnetron an interesting difference
arises between the present and previous theories. The sudden jump of current when
the critical voltage is exceeded ought to be only about one-quarter of the saturation

P(re) = 4Py (281)
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value, instead of the whole amount. There are, indeed, measured magnetron cha-
racteristics which show this phenomenon,* but it would be premature to consider
this as a confirmation of the theory. The present theory cannot accounpt—and no
one-electron theory possibly could account—for the discrepancy of the voltage at
which current starts to flow. Also, the present theory is valid only so long as the
cloud is static, i.e. so long as there is no current. There is the possibility that even
small currents might modify the calculated distribution very considerably.

The density at the inner edge r, in the ‘case of saturation is about }pg7y/rg, which
can far exceed p,. But this is not necessarily the largest density which can be
maintained in a magnetron of prescribed outer radius. For very large ratios ry/r;,
the density at the inner edge may be written approximately

szt - -] e

This hes a maximum at ry = (3)7d[rs,

i.e. when 7, is 1-73 times larger than the smallest radius which electrons can reach
at all at a given outer radius. The value of the maximum is

AT )max. = 0-094pg(ry/ro)?, (28-3)

which can exceed the value of p(r;) at maximum saturation by any amount if
ry/ro is made sufficiently large. This effect begins to develop at about r,/r, = 4. In
the example shown in figure 5 the largest density is still reached at maximum
saturation.

In what limits would such an electron cloud act as a dispersing lens? The radial
electric gradient is

:«f = C+cyfr = C(L—ryfr) = —4mp(ry) ry(1 —ryfr). (29)

This must be compared with the gradient in the case of Hull’s distribution, which
would just suffice to keep the electrons in equilibrium

o) _
(dr L= 2npgr.

Substituting in equation (29) the maximum value of p(r,) from equation (28-3), the
following criterion is obtained for a dispersing lens:

(h*—di%(zn = 0: 138(%)2?- ( = frl) > 1. (30)

A dispersing effect will therefore always exist in a certain interval of 7 so long as
ry/ry > 4-6. But this effect is confined between two limiting radii, between which it
reaches a maximum value.

* Cf. Harvey (1943, p. 105, figure 43a).
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This is not the law required of a dispersing lens, even less of a lens which could be
used to correct the aberrations of ordinary electron lenses. In a correcting lens the
density is required to start at the axis with a value exceeding Hull’s value, and to
increase approximately parabolically with the distance from it.

It appears likely that a distribution similar to the required one would establish
itself in any arrangement of the type as shown in figure 1, unless it is constructed with
extraordinary precision. At some distance from the cathode, where the magnetic
field has become appreciably homogeneous, the ‘axis’ of the magnetic field loses its
significance, and the momentum integral is valid only if the electric field is rigorously
rotationally symmetric and perfectly alined with the cathode. Very small departures
from these ideal conditions will cause the charge distribution to depart appreciably
from the calculated form. The hollow tube inside the radius r; will fill up with elec-
trons, and one may expect that within certain limits the real distribution will
approach the desired shape.

5. EXTENDED ELECTRON SOURCE

These processes may be followed to a certain point by a simple extension of the
foregoing theory, if one considers cathodes of a certain radial extension instead of
filament cathodes with vanishing thickness and perfect alinement.

The density contributed by the emission of a cathode of vanishing thickness,
which emits in the limits g, uy+du,, was found to be

dp = gD(“o) udduy. (18)

Now assume that u, and du, go to zero, whilst the product D(u,) u3du, divided by
the radial extension da of the cathode approaches a finite limit. It will be con-
venient to express a by 7, (as defined in figure 1) and include it in a function F(ry),
with which the density due to the emission of an infinitesimal strip of the cathode
is written

dp = ;F(ro)d-ro. (31)

If the cathode has constant emission density, the function F(r,) is proportional to
the cathode area corresponding to the limits r,, 7, + dry, multiplied with the radius a.

Assume in the following, to simplify matters, that the cathode extends to 7, = 0,
i.e. to the flux line 3y = 0. Investigating only a region near the axis in which only a
part of the cathode is active, the area outside a maximum radius 7, is cut off from
contributing to the density by the momentum integral. This gives the following
law for the potential and density distribution:

d2
~amo = 2%

1d¢ _C

+;a = J‘O F(To) dTo. (32)
/
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The radius 7., is determined by ¢ =.27%, and in a homogeneous magnetic field
(equation (27)) this gives
P, = 1+ TP (33)

As a particularly simple example assume F(r,) = const. This gives a density

proportional to
1
J( 1+ E_\/gb) s

Putting ¢ ~* this becomes a constant, and the equation (32) is satisfied. Hence, in
order to realize a dispersing lens in which at least near the axis the radial force is
exactly proportional to the radius, the cathode must be arranged in such a way
as to make F(r,) = const. This problem can easily be solved once the magnetic
field is given. How far such a lens would in fact possess the desired qualities, and
how far electron interaction would interfere with its performance, only experiment
can show.

6. MAGNETIC EFFECT OF THE ROTATING SPACE CHARGE

Up to now, in the examples though not in the general formulae, a homogeneous
magnetic field has been assumed. One must now check under what conditions this
assumption is justified.

The rotating electron swarm represents a ring current of intensity ¢, = pv,. By a
well-known proposition regarding the centre of gravity of a spherical shell segment

v, = jv(cosa, + cosa,),
and introducing again u instead of v, from equation (17-1) the simple result

w = (34)
is obtained.

Outside the radius r, the cloud rotates in the direction of the vector potential A,
inside it in the opposite direction. It may be noted that the maximum departures
from the average .«/ are + au,/r. Hence on approaching the axis one finds increasing
tangential velocity differences, at the same time as increasing electron density, so
that electron interaction ought to play a particularly prominent part in this region.

The ring current has such a sign that outside 7, it opposes the current which
produces the magnetic field, whereas inside 7, it increases the field. For large ratios
ra/r, the shielding effect far predominates.

Consider now only the middle region of the magnetron, in which the magnetic
field is parallel to the z-direction. The law of its distribution is

dH. 4 , 4
—cu.rlH = Ti; = —C—"z, = ——czpv,. (35)
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Using equations (3) and (34) H. and v, is expressed by means of the vector potential
A, and denoting differentiation with respect to » by primes,

L L D i
A4 A A = Az[A TAO] (p,,)’ (36)
2 2
is obtained, where A= 27:;1 = .ll(wi,;) . (37)

A is a characteristic length, which is 1/27,/2 = 0-1125 of the vacuum wave-length
associated with the frequency w,. Numerically

AH = 2410 em.gauss. (37-1)

The effect of the ring current will be appreciable only in large magnetrons in which
the radius is of the order of A.

Now write the charge density in the form

ro) T R
£lry) 2= py—. (38)

Pa T r

The characteristic radius R will approach }r, for large ratios r,/r,. The equation
(36) now becomes

P =Pr

A"+;A'—(l R)A L

mt )4 = e Sk
This has the particular solution A4 = ad,/r,

which is of no importance, as it does not contribute to the magnetic field. The solu-
tion of the homogeneous equation is

A = Zy(i J[4Rr[A%]), (39)

i.e. a cylindrical function of the second order with imaginary argument. The solution
is therefore a sum, with constant coefficients of the modified Bessel and Hankel
functions I,(§) and K,(§), if the symbol £ is introduced for the dimensionless
parameter /(4 Rr/A?).

For the constants there are two boundary conditions. The first is that at the outer
radius 7, the field intensity H. must assume a prescribed value. Substituting equation
(39) into equation (3) and using the well-known relation between cylindrical functions

n
3
then EolCL Iy (£2) + C2 Ky (&,)] = 2ry H (ry), (40)

Z;L+ Zu = Zu -1

where &, is the value of £ corresponding to 7.

The second boundary condition is not so obvious, as the field intensity at the
inner radius r, is unknown. The condition is obtained by the following consideration.
Though the solution does not extend to the axis, but only to the radius r,, it ought
to be possible to continue it, by adding ring currents inside, according to the same
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law, without modifying the solution outside r,, as currents inside a radius have no
effect on the field outside it. This process of continuation leads at the axis to a
magnetic field of the same direction as the outer field, which goes to infinity like 1/r.
This gives the condition from which the coefficient C, of the modified Hankel func-
tion K, can be determined.

In the following, to simplify the discussion, only the case 4, = 0 will be con-
sidered, i.e. the cathode arranged on the line i = 0, in which case the electrons
arrive at the axis with zero tangential velocity and no singularity arises. In this
case the whole mass of electrons rotates in one direction, so as to oppose the outer
field by its magnetic effect. The solution in this case is given by the modified Bessel
function /,(£), and the magnetic intensity follows the law

Hr) _ /(rs I,(\/[4Rr[A?))
~/ (r)llwtwrz/m)' (&)

H(r,)
For small arguments I,(£)/& approaches the limit . Hence the magnetic field in-
tensity at the axis becomes, if H is written for H(r,),

Ho = ‘}ngflx(gz), (41-1)
and as in this case R = }r,, this can be wxjitt,en
Hy = 3H (ry/A)/Ly(ry/A). (41-2)

The following table, calculated from the data of Jahnke & Emde (Funktionentafeln),
shows the shielding effect of the ring current for magnetrons of different radius,
measured in units of A:

ry/A 0-25 0-5 1 2 3 4
H,/H Y% 99-3 97-0 885 62-9 38-9 205

ra/A 5 6 7 8 9 10
H,/H Y 10-2 478 2.24 1-00 0-437 0-187

The effect becomes therefore very strong in large magnetrons, not too large to be
practicable. With H = 5000 gauss, for instance, A is a little less than 05 cit.; hence
with a radius of 5 em. it ought to be possible to reduce the magnetic field at the axis
to less than 100 gauss. According to the present theory, therefore, it ought to be
possible to produce extraordinary concentrations of free electrons, far larger than
ever produced experimentally, and to study them under favourable conditions in a
relatively weak magnetic field. It may well be possible to produce concentrations
sufficient for observable optical effects. But it must be borne in mind that the higher
the electron density the stronger the interaction, and the more remote the present
theory must be from reality.

I am indebted to Dr C. J. Milner for many discussions on this subject. I thank the
Directors of the British Thomson Houston Company for permission to publish
this paper.
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The electrical conductivity of an ionized gas in a magnetic
field, with applications to the solar atmosphere
and the ionosphere

By T. G. Cowring, The University, Manchester
(Communicated by S. Chapman, F.R.S.—Received 26 July 1944)

The methods of Chapman and Enskog are used to discuss conduction of electricity and
diffusion currents in an ionized gas with several constituents, in a transverse magnetic field.
The free-path formula for the conductivity is compared with that derived by the exact
methods. The two formulae are identical in form if a correction is applied to the usual free-
path method; this correction robs the method of much of its simplicity. The uncorrected free-
path method, however, gives correct results for the electron contribution to the conductivity
in all practical cases; and for the ion contribution if a large number of neutral molecules are
present—e.g. in the earth’s upper atmosphere, about 5x 10° times the number of ions (of
both signs).

Numerical values are given for the conductivity in the sun’s outer layers and in the earth’s
upper atmosphere. Mechanical forces due to currents induced in moving material are shown
to be very important in the sun, and in the F-layer of the earth's atmosphere. The solar
results are used to discuss the motion of solar prominences and eruptions. In the earth’s
atmosphere, the observed collision frequencies of electrons are shown to imply upper limits
for ion-densities in the E and F layers. The integral conductivities of the E and F layers are
estimated, and it is shown that, on the dynamo theory of the lunar variation of the earth’s
magnetic field, tidal oscillations in these layers must be between 100 and 1000 times as great
as those at the ground. Diamagnetism and drift currents are shown to make negligible con-
tributions to the lunar and solar variations of the earth’s magnetic field.

In an Appendix, the applicability of Boltzmann’s equation to strongly ionized gases is
discussed.

1. INTRODUCTION

In discussing diffusion, and the conduction of electricity, in an ionized gas in a
transverse magnetic field, some authors have used the free-path method, and others
the more exact ‘velocity-distribution’ method, originally developed by Chapman
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