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Abstract

In this paper we present some novel results regarding the dynamics of gy-
rostats containing N axisymmetric rotors subject to control torques applied
by the platform. The particular class of maneuvers we are interested in are
termed "stationary-platform" maneuvers, because they are based on the
notion of keeping the platform almost stationary throughout the maneu-
ver. The basic idea behind this class of maneuvers is to control the rotors
in such a way that the maneuver remains near a branch of equilibrium
motions for which the platform angular velocity, w, is zero. Of course,
u> is not actually zero, but it does remain small provided that the internal
torques are small. We develop the equations of motion, and then discuss the
stationary-platform conditions, which lead to the development of stationary-
platform control laws for the control torques. We give a simple proof that
all stationary-platform equilibria are nonlinearly stable in the absence of en-
ergy dissipation. Numerical results are given which include the dissipative
effects of a viscously damped rotor. The results confirm the effectiveness
of the stationary-platform maneuver for a large-angle rotation with small
angular velocity throughout the maneuver.

1 Introduction

A gyrostat is a coupled rigid body model of a spacecraft containing rotors
or momentum wheels. In addition to providing pointing stability via gyric
stiffness, the rotors can also be used to maneuver the spacecraft platform,
either for initial attitude acquisition, or for a required reorientation. It is
possible to effect a large angle reorientation using a relatively simple control
law for the torque applied to the rotors. For example, a prolate single-rotor
gyrostat (dual-spin satellite) can be reoriented from a "flat spin" about the

                                                             Transactions on the Built Environment vol 19, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509 



338 Structures in Space

major axis to a spin about the rotor axis using a constant motor torque.
This ''dual-spin turn" maneuver has been investigated using numerous ap-
proaches. Barba and Aubrun* first discussed the maneuver and introduced
the now-common momentum sphere approach for visualization. Gebman
and Mingori^ used a perturbation approach to obtain approximate solutions
for the equations of motion. Hubert^ expounded on Barba and Aubrun's
explanation of the dynamics using the momentum sphere approach. Junk-
ins and Turner^ demonstrated that the optimal solution to the flat-spin
recovery problem is similar to the constant torque approach used by Barba
and Aubrun. Hall and Rand^ applied the method of averaging to a variety
of spinup problems, including the dual-spin turn. Their approach led to a
planar representation of spinup dynamics which has since been successfully
applied to other single-rotor gyrostat problems.^ Most proposed maneu-
vers for multi-rotor gyrostats appear to be based on the eigenaxis maneuver
(e.g., Ref. 10), or on solving an appropriate optimal control problem (e.g.,
Ref. 4). Simple effective maneuvers for multi-rotor gyrostats have only re-
cently been investigated.**"^

The particular maneuver of interest here is called a "stationary-platform"
maneuver, since it is based on maintaining small platform angular velocities
throughout the maneuver, and is derived from the conditions for a station-
ary platform. The principal advantage of the maneuver is that the small
platform angular velocities are less likely to excite vibrations in flexible
components. We do not pursue the effects of flexibility in this paper, but a
similar approach has been applied to a class of flexible satellites in Ref. 9.
One drawback to these maneuvers is that the small angular velocity con-
dition is formally valid only for asymptotically small motor torques, which
means maneuvers may require unreasonably long times unless the angular
momentum of the rotors is large compared with the moments of inertia of
the spacecraft.

In this paper, we give a brief development of the equations of motion, and
describe the equilibrium solutions of these equations. We use the conditions
for a specific class of equilibria to develop a simple stationary-platform
control law. Numerical results are presented graphically to illustrate the
effectiveness of the maneuver.

2 Equations of Motion

The model studied (Fig. 1) consists of a rigid platform with N axisymmetric
rotors constrained to relative rotation about their axes of symmetry. Control
torques are provided by motors on the platform. In addition, some rotors
may experience viscous damping torques. We neglect all external torques.

All vectors and tensors are expressed in a body-fixed non-principal frame,
FI, which is termed a pseudo-principal frame. The gyrostat moment of iner-
tia matrix is denoted I. The rotors' axial vectors of relative rotation, a^, are
collected into the 3 x TV matrix A = [ai • • • a,v], and their axial moments
of inertia are collected into an N x jV diagonal matrix I,, The non-principal
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Figure 1: N-Rotor gyrostat model.

frame is chosen so that the matrix J = I — AI^A^ is diagonal. The torque-
free equations of motion for this system may be put into a dimensionless,
noncanonical Hamiltonian form as

(1)
(2)

where x is the angular momentum vector, H is the Hamiltonian, /z is the .V x
1 vector of rotor momenta, and e is the A x 1 vector of torques applied to the
rotors by the platform. The notation x* denotes the skew-symmetric matrix
form of a vector.™ The V operator is with respect to the dimensionless
angular momentum x, and the Hamiltonian H is

H = 4- f(C)

which satisfies

dp,

(3)

(4)

Conservation of angular momentum is expressed as

C = x^x/2 = 1/2
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While it is well-known that C is constant, the formulation used here il-
lustrates that, mathematically, conservation of angular momentum arises
because the gradient of C lies in the null space of x*, ,V(x*); thus C is
independent of the Hamiltonian, and is consequently called a Casimir func-
tion.^ Note that f(C) in the definition of the Hamiltonian represents an
arbitrary function of C which may be used to simplify the Hamiltonian. We
take f(C) = — C/Ji, and define two inertia parameters by

(6)2 2 = < l - « 2 l 2 , 2 3 =

in which case H may be rewritten as

where

H =

J —
0 0 0
0 22 0
0 0 23

(8)

The rotor torques, e, will normally be developed from some control
scheme, such as the stationary-platform control developed below. It is also
possible to include a viscously damped rotor to simulate the effects of inter-
nal energy dissipation. In this case, the damping torque for the viscously
damped rotor, s

/̂ J-i (x - A/i)] (9)

where %, > 0 is a dimensionless damping coefficient, and the term in brack-
ets is the dimensionless angular momentum of 7£j with respect to the plat-
form. At equilibrium, 7£j will be in the all-spun condition, with

,̂, = 7,jap-i(x-A,i) (10)

In the limit as 7^ — > 0, the equilibrium rotor momentum also goes to zero.
This is a useful analytical model for considering the effects of an energy sink
on the platform of a gyrostat.

3 Relative Equilibria

The equilibrium motions of gyrostats have been studied using various tech-
niques. Except for a few simple cases, one must eventually resort to numer-
ical methods to determine the location of the equilibria and their stability
properties. In the following we describe briefly a technique for carrying out
the necessary computations (for more detail see Ref. 16). The technique has
the advantage that it leads nicely into a stability analysis of the equilibria,
since some of the same calculations are involved.

We begin by considering equilibrium motions with e — 0. Recall that for
canonical Hamiltonian systems, the condition for equilibrium is V H = 0.
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For noncanonical Hamiltonian systems, this condition is not necessary, and
the appropriate condition is V# E -V(x*), since this implies that x =
0. Note that this is equivalent to VH = AVC. where A is a Lagrange
multiplier. Thus the equilibrium points are critical points of the augmented
Hamiltonian

I?( *Y \> u\ H (-V lt\ \/~* ( V\ / 1 1 \.T ̂  X, A, /I J — /I ̂  X, /i j — -A O (X J (11)

with respect to x and the Lagrange multiplier A. Therefore the condition
for an equilibrium may be expressed as

(j-Al)x-J-'A
i x~^X

= 0 (12)

where D() = <9()/<9(x, A). To compute the equilibrium solutions (Xg, Ag) as
functions of /i, a continuation procedure such as the Euler-Newton method^
is applied. See Refs. 13 and 16 for further details.

Of interest here are those equilibria for which the platform has zero
angular velocity. These "stationary-platform" equilibria are defined by

u> = J~*(x-AM) = 0 => x = AM (13)

Conservation of angular momentum requires that the rotor momenta satisfy

M^A^A/X = i (14)

Note that this defines an ellipsoid in M space. For the two-rotor case, it
is simply an ellipse,^ and for the three-rotor case, it is the usual ellipsoid.
Equation (14) is the stationary-platform condition used below to develop
control laws for stationary-platform maneuvers.

Before proceeding, we show that all stationary-platform equilibria are
nonlinearly stable for the undamped case. The proof is to show that the
function F — H — AC is a Liapunov function. Since H and C are first
integrals in the e — 0 case, F is also. Thus stability of e = 0 equilibria is
assured if V^F is sign-definite, where the gradient is with respect to x. It
is evident from Eq. (12) that

-Ag 0 0
0 %2-Ag 0
0 0 23-

(15)

We may assume, with no loss of generality, that J^ < J^ < J\, which
implies that 0 < 1*2 < 23. Therefore, a sufficient condition for stability of an
equilibrium is for the Lagrange multiplier to satisfy

A g < 0 (16)

While this condition can be used directly in calculations, it is possible to
develop a stronger analytical result for the stationary-platform case. Equa-
tion (12), together with Eq. (13). leads to the conclusion that

: = 0 (17)
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for stationary-platform equilibria. This can only be true if one of the fol-
lowing conditions holds:

1. x = 0

3. J-A1 = J-i

The first condition is impossible since it violates conservation of angular
momentum. The second condition is only possible if all the momentum is
along one of the pseudo-principal axes, in which case the motion is stable in
the same sense as the spin of an axisymmetric body. The third condition is
the most general case, and since J is a positive definite matrix, leads to the
conclusion that F is a positive definite function and hence is a Liapunov
function. Thus all stationary-platform equilibria are stable.

4 Stationary-Platform Maneuver Torques

In this section we develop the concept of "stationary-platform" maneuvers
for multi-rotor gyrostats. This class of maneuvers was previously reported
for two-rotor gyrostats in Refs. 11 and 12. For two- rotor gyrostats, only
a limited set of orientation changes is possible since the momentum of the
rotors is confined to a plane. For three-rotor gyrostats, however, any ori-
entation change is possible, provided that the wheels' saturation speeds are
sufficiently large and that the wheels are not coplanar.

Before developing the stationary-platform control law, we recall some
results on momentum transfer in gyrostats (Refs. 5, 6, and 11). We assume
that the control torques e are small, and may be expressed as e = e<7, where
\t\ <C 1, and the elements of a are O(l) or smaller. With the additional
assumption that the elements of a are constant, the method of averaging
allows the approximate reduction of the TV + 3 equations of motion [Eqs. (1-
2)] to a single first-order differential equation for the slow evolution of the
Hamiltonian. Furthermore, the e — 0 branches of stable equilibria in the
two-dimensional space spanned by H and the slow time r = ct are integral
curves of this averaged equation. The implication of these results is that
constant- torque momentum transfer maneuvers which begin near a stable
6 = 0 equilibrium will remain near the corresponding branch of stable
equilibria until the stability properties of that branch change (i.e., until a
bifurcation occurs).

Now suppose that the elements of a are not constant, but are slowly
varying. It is reasonable to suppose that these results still hold, and in
fact they do. The stationary-platform maneuvers are based on these ideas
applied to the special class of stationary-platform equilibria. If the initial
condition is near a stationary-platform equilibrium and the torques are cho-
sen such that the rotor momenta satisfy the stationary-platform condition
throughout the maneuver, then, since the stationary-platform equilibria are
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all stable, the trajectories should remain near the branch of stationary-
platform equilibria, and hence w should remain small. The advantage of
such a trajectory is that the small platform angular velocities are less likely
to excite vibrations in flexible components. Of course, the platform is not
actually stationary during the maneuver. The term is used to indicate that
the motion remains near a branch of stationary- plat form equilibria of the
e = 0 system.

For stationary-platform maneuvers, we assume initial conditions on x
and /x that satisfy Eqs. (13-14); i.e.. x = A/x and /x^A^A/x = 1. As noted
earlier, Eq. (14) defines an ellipsoid in the /V-dimensional /x space. The
initial and desired final stationary-platform equilibria define two points on
this ellipsoid. The spinup torques e are chosen such that the condition on
/x is satisfied throughout the maneuver. Differentiation of Eq. (14) with
respect to time shows that any e which is orthogonal to A^A/x will yield
such a maneuver. Thus the torque vector e must lie in the tangent space of
the ellipsoid. For the .V = 2 case, the ellipsoid is a simple ellipse, and the
trajectory in ix space simply traces the ellipse. For the N = 3 case, there
are infinitely many choices for the trajectory, since there are infinitely many
curves connecting any two points on the ellipsoid.

One choice would be to take a geodesic which connects the two points,
but this leads to complicated calculations and usually the ellipsoid will be
nearly spherical. Therefore we choose to take a path which lies in the
intersection of the ellipsoid with a plane passing through the origin and
containing the initial and final values of /x, denoted /x^ and /x/, respectively.

The development proceeds as follows. Define a new reference frame in
/x space with base vectors

Ci = Mo/llMoll
C2 = C*Ci (19)

C3 = MoV//||MoV/|| (20)

Collect these column matrices into a 3 x 3 rotation matrix:

C = [CiC2C3] (21)

Define a transformed rotor momentum vector v by

&/ = Ĉ  (22)

Under this transformation, the stationary-platform condition becomes

= 1 (23)

where D = AC The columns of D, to be denoted d,. are not unit vectors,
even though the columns of A are. Equation (23) defines the ellipsoid in
terms of the components of i/, and it is evident that VQ and v$ lie in the
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v\ i (24)

plane. Thus 1/3 = 0 for our chosen trajectory, and Eq. (23) simplifies
to

4 .
dfd, 4

Now, for the trajectory to follow the ellipse defined by Eq. (24), it is suffi-
cient to take r

V\
f/2 d\ dfd. "2

or

d\
0

0
0

0 0

25)

(26)

It is evident that i> is orthogonal to D̂ Di/, thus satisfying the conditions
for a stationary-platform maneuver. Substituting v = Ĉ /x into the control
leads to the desired control law for the rotor torques:

A = eCECV (27)

This is a control law which yields a stationary-platform maneuver. Since
C and E are constant matrices depending only on A and the initial and
final values of /z, this is a constant coefficient linear system of equations.
Since /x lies on the ellipsoid, it is evident that the torques are bounded,
and are O(t). Equation (27) can be solved in closed form and is decoupled
from the platform dynamics. Thus the stationary-platform maneuver is an
easy-to-implement open-loop maneuver which is nearly optimal in two ways:
the platform angular velocity is small throughout the maneuver, and the
motor torque is small throughout the maneuver, since \\e\\ = O(e). It is
also possible to view this control as a closed-loop control, since p, may be
expressed in terms of the relative angular velocities of the rotors (as might
be measured by tachometers) and the platform angular velocities (as might
be measured by accelerometers).

5 Example Maneuver

We now illustrate the appplication of the stationary-platform maneuvers for
a specific example. We begin with a gyrostat with dimensional moments
of inertia of 93.83, and 79. There are four rotors with axial moments of
inertia all equal to 10. and with axial vectors

1 0 1

- ^ [ 0 1 1

^[-1 0 l["

0 -1 l"

9 L

(28)

(29)

(30)

(31)
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The first three rotors are controlled as in Eq. (27). and the fourth rotor is
subject to a viscous damping torque as in Eq. (9). with 74 = 0.05. The
moments of inertia are nondimensionalized by dividing by trl. This leads
to J = diag ([ 0.3255 0.2863 0.2314 ]). For computation of the control
law we take :V = 3, since only the first three rotors are controlled. Thus
A is a 4 x 4 matrix when computing J for the equations of motion, but is
a 3 x 3 matrix for computing D for the control law. This means that e in
Eq. (2) is comprised of a 3 x 1 vector computed using Eq. (27) and a scalar
computed using Eq. (9).

The initial stationary-platform condition is x^ = ^ [ 1 1 0 J , and

0 -1 1 Thus the rotationalthe desired final condition is x/ = •
maneuver is through an angle of 9 = 120°. Taking e = 0.05. the time to
complete the maneuver is approximately 68 seconds (dimensionless). This
maneuver is illustrated in Figs. 2-5.

-0.6-

-0.8 10 20 30 40 50 60

Figure 2: Angular momentum components.

Figure 2 shows how the components of the angular momentum vector
vary during the maneuver. The symbols at Z % 68 represent the desired
final state, and it is evident that the control does generate a trajectory
which ends near this state. Figure 3 is a plot of the angle between the
angular momentum vector x(/) and the desired x/. Again it is evident
that the desired result is achieved. More interesting is the plot of the plat-
form angular velocity components in Fig. 4. Note that the components all
remain small throughout the maneuver. By contrast, if constant torques
are used to change /^ to p,j in the same time, the angular velocity vector
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Figure 3: Angle between x(t) and x/.

reaches a peak magnitude of approximately 1.8. Therefore the stationary-
platform maneuver also achieves the goal of keeping the angular velocity
small throughout the maneuver and offers a substantial improvement over
the constant torque alternative. Finally, Fig. 5 illustrates the change in the
Hamiltonian during the maneuver. It is interesting that H does not vary
monotonically. However, it does remain near an equilibrium surface in p,H
space.

6 Conclusions

The reorientation of a multi-rotor gyrostat through a large angle can be
accomplished using three non-coplanar momentum wheels, but unless the
trajectory is carefully chosen, large intermediate angular velocities may oc-
cur. Since this condition might induce significant vibration in flexible com-
ponents, it is useful to find effective means of executing such maneuvers
while maintaining small angular velocities. By using a control law based on
the idea of keeping the trajectory near a zero angular velocity equilibrium
of the torque-free system, it is possible to control a large-angle maneuver
with small angular velocity throughout the maneuver. This "stationary-
platform" maneuver provides a useful technique for executing the coarse
part of a maneuver. Fine control would be required to achieve the final
pointing accuracy.
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Figure 4: Platform angular velocity components.
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