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Abstract

In this paper, we study type II Streater’s models. These models
describe the coupled evolution of the density of a cloud of particles in
an external potential and a temperature, preserving the energy, with
eventually a nonlocal Poisson coupling. We introduce an entropy and
consider in a bounded domain, or in an unbounded domain with a con-
fining external potential, the stationary solutions (with given mass and
energy), for which we have existence and uniqueness results. The en-
tropy is reinterpreted as a relative entropy which controls the conver-
gence to the stationary solutions. We consider also the whole IRd space
problems without exterior potential using time-dependent rescalings
and show the existence of intermediate asymptotics in special cases.
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ative entropy, asymptotic behavior of solutions, confinement, convex func-
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The models we study in this paper describe systems of Brownian particles
in the presence of an exterior potential and/or a self-consistent potential
given by a Poisson coupling. We refer to the papers by Streater [26, 27, 28]
for the derivation of the models in the case of an exterior potential only
(they generalize the Smoluchowski system proposed in the beginning of the
twentieth century), and to a paper by Biler, Krzywicki and Nadzieja [7] for
the interacting particles case, some mathematical comments and a list of
open problems.

Systems governing the evolution of the density of a cloud of particles
consist of two or three equations. The first takes into account the (Brownian)
diffusion of particles and their collective motion caused by the gradient of a
potential. The second equation represents the balance of heat and involves
terms connected with thermal diffusion, convection and heat production.
The potential is either a given external one, or is generated by the particles
themselves. Mathematically, this leads to the third equation which is a
Poisson equation for the Coulombic or Newtonian potential depending on
the character of the interaction between the particles (charged or massive).

The fundamental property that these models share is that they preserve
mass or charge, the energy, and that they are compatible with the second
law of thermodynamics. Our main tool in this study will be the entropy,
which yields the only natural a priori estimate that we can use to control
the behaviour of solutions for large times and the structure of the set of
the stationary solutions. From a mathematical point of view, the problem
is to analyze convexity properties of these entropy functions. The entropy
was, of course, known before in the context of parabolic equations but has
probably been underestimated in the study of simpler models for which other
estimates controlling the relaxation were easy to build.

Here we first use a variational approach to characterize the stationary
solutions which has already been exploited in simpler cases in [18, 17, 12, 20]
and which basically allows to characterize a stationary solution as the unique
minimum of a strictly convex functional. The paper [17] by Desvillettes and
Dolbeault contains a very similar situation (for the stationary solutions of
the Vlasov-Poisson-Boltzmann system) where the problem is given for fixed
mass and energy. Actually, this convex functional plays an important role
also for the evolution problem, since it is strongly related to the entropy func-
tional. Moreover, when one deals with problems in unbounded domains, it
can be shown that the growth condition on the external potential is equiva-
lent to asking that the convex functionals used to characterize the stationary
states or the entropy are bounded from below (see [11, 19] for a discussion
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of these results and for the notion of confinement in the context of kinetic
equations, which can be extended in a straightforward manner to parabolic
problems).

The special form of the stationary solutions and the above remarks on
various convex functionals allow us to rewrite the entropy as a relative en-
tropy. Entropy methods have been introduced in the context of kinetic
equations (where very few estimates were at hand) to understand the be-
haviour of the solutions: it was already well known by Boltzmann that such
an entropy was governing the long time behaviour of the solutions (H theo-
rem for the Boltzmann equation). By relative entropy, we simply mean that
the difference of the entropy of the solution and the possible asymptotic
(stationary) state can be put in a form involving convex functions that con-
trol the convergence of global solutions in some appropriate norms, usually
in L1 (see for instance [3] for a recent application of these ideas).

Recently, Toscani made the link between these ideas and parabolic prob-
lems (heat equation) [29, 30, 31] and his results have been extended and
systematized in [2] in a linear context (with a PDE approach; in the con-
text of probabilistic methods, see the papers by Bakry and Emery, and the
other references quoted in [2]) and also adapted to nonlinear diffusions in
[16, 14, 13, 22, 23].

It turns out that the method is quite robust and can also be used if the
problem has a nonlinear nonlocal Poisson coupling ([1, 4, 5] and [6] for an
earlier analysis) and works for nonlinear diffusion as well (see [5]), or even if
the evolution of the density is coupled with an equation for the temperature,
as we shall see below.

Here we will focus on the existence and uniqueness of stationary so-
lutions and the control of the convergence of the solutions of the Cauchy
problem to these stationary solutions. Note that the existence of solutions
to the Cauchy problem is only partially known and a proof of a global ex-
istence result is open and seems very difficult. The reasons are first that
the temperature enters into the equations with a negative power, and then,
that the second equation of the system is of nonclassical type (for related
energy-transport models with similar difficulties, see [15]). For all the (for-
mal) computations involving integrations by parts, we shall therefore assume
that all the functions involved are in the right functional spaces. We will
also formulate the problem of finding intermediate asymptotics (described
by self-similar solutions of linear diffusion equations) by relative entropy me-
thods after convenient time-dependent rescalings (see [21, 16, 4, 5] for var-
ious examples of time-dependent rescalings). This approach has also been
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developed recently and is quite powerful, but in the case of Streater’s models,
some estimates on the relative entropy production term are missing (except
for radially symmetric solutions) and the method fails to provide a satis-
factory answer, e.g., for the convergence rate. Note also that the rate of
convergence in the confined case or in the case of intermediate asymptotics
after rescaling is mainly open.

Note, once again, that the existence of solutions for the evolution prob-
lem not being known in general, all our results about this problem are formal.
However, they will be made precise at the level of the stationary solutions.

1 The models

In a connected domain Ω ⊂ IRd consider the system






ut = ∇ ·
[
κ(∇u+ u

θ (ǫ∇φ+ ζ∇φ0))
]

(uθ)t = ∇ · (λ∇θ) + ∇ · [κ(θ∇u+ ǫu∇φ+ ζu∇φ0)]
+(ǫ∇φ+ ζ∇φ0) ·

[
κ(∇u+ u

θ (ǫ∇φ+ ζ∇φ0))
]

−∆φ = u

(1)

with the boundary conditions

{
∂nu+ u

θ (ǫ∂nφ+ ζ∂nφ0) = 0 (no mass flux)
∂nθ = 0 (no heat flux)

(2)

where ∂n denotes the normal outgoing derivative on the boundary ∂Ω, and
for φ we consider Dirichlet boundary conditions

φ = 0 (perfect conductor) (3)

when Ω bounded and when d ≥ 3 (for Ω unbounded, (3) means that φ is
asymptotically equal to 0 at infinity). When Ω = IR2, φ will be explicitly
given by φ = − 1

2π log |x| ∗ u . In order to cover all the possible cases with
or without external potential and Poisson coupling, we shall assume that
〈ǫ, ζ〉 takes the values 〈0, 0〉, 〈0, 1〉, 〈1, 0〉 or 〈1, 1〉. We assume that φ0 is an
external potential, the coefficients κ and λ are nonnegative functions which
may depend on x, u, θ, φ, and which can take the value 0 only at θ = 0.
This covers the classical choice in the Smoluchowski equations (predecessors
of those of Streater): κ(θ) = θ ≥ 0. In order to simplify the presentation
and computations in this paper, we will actually assume that κ and λ are
actually positive on IR+. Note that for being consistent with the third law
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of thermodynamics, κ(θ) = o(θ) as θ → 0 has to be assumed. In all that
follows, we assume that 〈u, θ, φ〉 is a smooth solution corresponding to initial
data whose mass (or rather charge), energy and entropy (see below) are at
least initially well defined.

System (1) will be called a type II Streater’s model in opposition with
type I Streater’s models like






ut = ∇ ·
[
κ(∇u+ u

θ (ǫ∇φ+ ζ∇φ0))
]

θt = ∇ · (λ∇θ) + (ǫ∇φ+ ζ∇φ0) ·
[
κ(∇u+ u

θ (ǫ∇φ+ ζ∇φ0))
]

−∆φ = u,
(4)

which have probably better properties as far as the Cauchy problem is con-
cerned, but for which the study of the long time asymptotics is apparently
more difficult. Indeed, for this model considered in the whole space IRd we
expect that the temperature θ will decay like a solution of the heat equation,
but the term −

∫
IRd log θ in the entropy is divergent for such an asymptotic

temperature θ.

In this paper we consider the case of electric repulsion of particles which
corresponds to the − sign in the Poisson equation, the third equation of the
system (4). The choice of the + sign corresponds to the gravitational attrac-
tion of the particles and leads to much more difficult problems, especially
when the global in time existence of solutions is considered (cf. [7, 9, 10]).

Some related results for stationary solutions have been obtained in [8,
9, 24, 25] using an approach based on the Leray-Schauder theory instead of
variational methods.

2 Case with confinement

First we consider the case when either Ω is bounded or when the exter-
nal potential φ0 grows sufficiently at infinity to prevent the runaway of the
system particles, which means that stationary solutions may exist or equiva-
lently that the entropy is bounded from below. In the following we will refer
to this situation as the case “with confinement” in opposition with whole
space cases without exterior potential where the solution converges locally
to 0 because of the diffusion.
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2.1 A priori estimates

Total mass (or rather charge)

M =

∫

Ω
u dx

and energy

E =

∫

Ω
u

(
θ + ζφ0 +

ǫ

2
φ

)
dx

are (formally) preserved. Note that if ∇φ ∈ L2(Ω) ,

E =

∫

Ω
u (θ + ζφ0) dx+

ǫ

2

∫

Ω
|∇φ|2 dx.

This is the case if Ω is bounded or if d ≥ 3. When d = 2, ∇φ does not decay
fast enough at infinity to be square integrable. We define the entropy by

W =

∫

Ω
u log

(
u

θ

)
dx.

Our main assumption on the external potential φ0 is

e−φ0/T ∈ L1(Ω) (5)

for some T > 0. Note that if φ0 is smooth and if Ω is bounded, this
assumption is always satisfied. If Ω is unbounded, the meaning of (5) is that
φ0 is confining at temperature T (see [19]). Particular interesting situations
arise when φ0 is bounded either from below or from above. Note also that
the nonnegativity of φ0 is actually equivalent to assuming that φ0 is bounded
from below (except for the boundary conditions, where the assumption φ0 ≥
0 plays no role) since adding a constant to φ0 does not change the solution of
the Poisson-Boltzmann equation (see below), and changes the energy by just
a constant. This assumption is moreover natural as soon as φ0 is smooth
(and confining in the unbounded case).

Proposition 2.1 Let M > 0 and consider a potential φ0 satisfying (5)
for some T > 0. For every measurable functions u ≥ 0, θ ≥ 0 such that∫
Ω u dx = M , we have

∫

Ω
u

(
log

(
u

θ

)
+ θ +

1

T
φ0

)
dx ≥M

[
1 + log

(
M∫

Ω e
−φ0/T dx

)]
.
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Proof. This estimate is given by the inequality − log θ + θ − 1 ≥ 0 for any
θ ≥ 0, and by the Jensen inequality applied to the convex function t 7→ t log t

∫

Ω

u

e−φ0/T
log

(
u

e−φ0/T

)
e−φ0/T

∫
Ω e

−φ0/Tdx
dx ≥

∫
Ω udx∫

Ω e
−φ0/Tdx

log

( ∫
Ω udx∫

Ω e
−φ0/Tdx

)
.

2

Proposition 2.2 If Ω is of class C1 and if 〈u, θ, φ〉 is a smooth solution of
(1)-(2)-(3), then the entropy W is decreasing

dW

dt
= −

∫

Ω
λ
|∇θ|2
θ2

dx−
∫

Ω
κu

∣∣∣∣
∇u
u

+
1

θ
(ǫ∇φ+ ζ∇φ0)

∣∣∣∣
2

dx . (6)

Another property which will be useful in the remainder of the paper is the
lower bound for the term

∫
Ω uφdx for all solutions to (1)-(2)-(3) and this

for all dimensions d ≥ 2. More precisely,

Lemma 2.3 Let φ0 an external potential which is bounded from below in
Ω and satisfies (5) for some T > 0. Moreover, in dimension d = 2 let us
assume that either Ω is bounded or that Ω = IR2 and

lim
|x|→+∞

log |x|
φ0(x)

= 0 . (7)

Then, for all a, b > 0, there is a constant C such that for any solution
〈u, φ, θ〉 of (1)-(2)-(3), u, θ ≥ 0, we have

a

∫

Ω
uφ0 dx+ b

∫

Ω
uφdx ≥ C . (8)

and we call Ca,b the optimal constant in (8).

Proof. For d ≥ 3 , the proof is immediate, since φ = σd |x|2−d ∗ u , σd > 0.
In this case, Ca,b = 0 for all a, b > 0. A similar argument holds when Ω is
bounded, in all dimensions. When Ω = IR2, φ = −(2π)−1 log |x| ∗ u and so,

∫

IR2
uφdx = − 1

2π

∫∫

IR2×IR2
log |x− y|u(x)u(y) dx dy

≥ −M
2 logR

2π
− 1

2π

∫∫

|x−y|>R
log |x− y|u(x)u(y) dx dy. (9)
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The lemma will be proved if we show that for every ε > 0, there is some
R > 0 such that

η(R) := sup
|x−y|>R

log |x− y|
φ0(x) + φ0(y)

→ 0 as R→ +∞ , (10)

since then, we would have

∫

IR2
uφdx ≥ −M

2 logR

2π
− η(R)

π

(
M2 | inf φ0| +M

∫

IR2
uφ0 dx

)
, (11)

which proves (8) by taking R large enough.
In order to show (10), define

ǫ(R) := sup
|x|>R

log |x|
φ0(x)

ց 0 as R→ +∞ . (12)

Assume that R is large enough and that for some x, y ∈ IR2, |x − y| > R
and |x| > R/2. Then, φ0(x) + φ0(y) ≥ φ0(x) + inf φ0 ≥ φ0(x)/2. Moreover,
if |y| ≤ |x|(|x| − 1) ,

log |x− y|
φ0(x) + φ0(y)

≤ 2 log (|x| + |y|)
φ0(x)

≤ 4 log |x|
φ0(x)

≤ 4ǫ(R/2) , (13)

while if |y| > |x|(|x| − 1) , then |y| > R/2 and

log |x− y|
φ0(x) + φ0(y)

≤ log (|x| + |y|)
φ0(x) + φ0(y)

≤ log |x| + log |y|
φ0(x) + φ0(y)

≤ ǫ(R/2) . (14)

Therefore, for R large enough,

η(R) ≤ 4ǫ(R/2) ,

which ends the proof. 2

2.2 Stationary solutions with given charge and energy

We are interested in existence and uniqueness results for the stationary
problem corresponding to solutions with given charge and energy. We will
distinguish four cases depending on the values of ǫ, ζ which can be 0 or 1 with
our notations. First we state a preliminary result which is a straightforward
consequence of Proposition 2.2.



Type II Streater’s models 9

Corollary 2.4 Any smooth stationary solution of (1) with given M > 0
and E > 0 is such that θ is a positive constant and u, φ are determined by
the nonlinear Poisson-Boltzmann equation

−∆φ = M
e−(φ+φ0)/θ

∫
Ω e

−(φ+φ0)/θ dx
=: u , (15)

where θ is given by the energy relation

E = Mθ +

∫

Ω

(
φ+

1

2
φ0

)
u dx.

2.2.1 Case 〈ǫ, ζ〉 = 〈0, 0〉, Ω bounded

This particular case is the simplest one since u and θ are independently
stationary solutions of the heat equation. In a bounded domain u and θ are
constants, with u ≡ M/|Ω| and θ ≡ E/M . Note that this case can be also
viewed as a special case of the next one (with ζ = 1 and φ0 ≡ 0).

2.2.2 Case 〈ǫ, ζ〉 = 〈0, 1〉

The stationary solution is obviously given by

u = u∞,θ ≡M
e−φ0/θ

∫
Ω e

−φ0/θ dx
, (16)

where θ is a constant determined by the condition

E = E(θ) = Mθ +

∫

Ω
φ0u∞,θ dx . (17)

Note that adding a constant to φ0 does not change u∞,θ, so that we may
assume φ0 ≥ 0 as soon as it is bounded from below (the condition minφ0 = 0
normalizes the energy).

Proposition 2.5 Equation (17) with u∞,θ given by (16) has at most one
solution. Moreover, if we define the numbers

E± = lim
±(θ−T∓)ց0

(
Mθ +

∫

Ω
φ0u∞,θ dx

)
, with

T− = inf{θ > 0 : E(θ) > −∞} and T+ = sup{θ > 0 : E(θ) < +∞} ,
then, the solution of (17) exists if and only if E ∈ (E−, E+). If φ0 is
bounded from below, then T− = 0, E− = inf φ0. Moreover, if φ0 is bounded
both from above and from below (which is possible only if Ω is bounded),
then T+ = E+ = +∞.
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Proof. If (5) is not satisfied for any T , no stationary solution exists. In
the following, we shall therefore assume that (5) is satisfied for some T > 0.
The function

E(θ) = Mθ +M

∫
Ω φ0e

−φ0/θ dx∫
Ω e

−φ0/θ dx

is nondecreasing. Indeed, because of the Lebesgue dominated convergence
theorem and e−φ0/θ = e−(φ0)+/θ ≤ e−(φ0)+/T (where ψ+ denotes the positive
part of ψ) for any θ < T , the function θ 7→ E(θ) is of class C1 and

E′(θ)

M
= 1 +

1

θ2

∫
Ω φ

2
0e

−φ0/θ dx ·
∫
Ω e

−φ0/θ dx−
(∫

Ω φ0e
−φ0/θ dx

)2

(∫
Ω e

−φ0/θ dx
)2 ≥ 1 > 0

by the Cauchy-Schwarz inequality and the above formula is indeed correct
if all the integrals involved are well defined.

Assume now that φ0 is bounded from below. To prove that T− = 0 and
E− = inf φ0, let us consider the quantity

∆(θ) =
1

M

∫

Ω
φ0u∞,θ dx ≥ inf φ0

for θ < T : p = p(θ) = T/θ > 1 and limθց0 p(θ) = +∞. If we note
ρ = e−φ0/T , then φ0 = −T log ρ and by the Jensen inequality

∆(θ) = −T
∫
Ω ρ

p log ρ dx∫
Ω ρ

p dx

= − T

p− 1

∫
Ω ρ dx∫
Ω ρ

p dx
·
∫

Ω
ρp−1 log(ρp−1) · ρ dx∫

Ω ρ dx

≤ − T

p− 1

∫
Ω ρ dx∫
Ω ρ

p dx
· (R logR)∣∣∣∣R=

∫
Ω

ρp dx∫
Ω

ρ dx

= − T

p− 1
log

(∫
Ω ρ

p dx∫
Ω ρ dx

)

=
Tθ

T − θ
log

(∫

Ω
ρ dx

)
− T 2

T − θ
log

(
‖ρ‖Lp(θ)(Ω)

)
.

Since lim
θց0

‖ρ‖Lp(θ)(Ω) = ‖ρ‖L∞(Ω) = e−
inf φ0

T , ∆(θ) → inf φ0 as θ ց 0.

If φ0 is also bounded from above, then we have

M(θ + inf φ0) ≤ E(θ) ≤M(θ + supφ0) for all θ > 0 .
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Hence, T+ = E+ = +∞. 2

Example If φ0 is not bounded from below (respectively from above), we
may have T− > 0 (respectively T+ < +∞). Consider for instance φ0(x) =
log |x| in the unit ball Ω = B(0, 1) ⊂ IRd. A straightforward computation
gives T− = 1/d and ∆(θ) = −(d− 1/θ)−1 → −∞ as θ ց 1/d.

2.2.3 Case 〈ǫ, ζ〉 = 〈1, 0〉, Ω bounded

Assume that 〈u, θ, φ〉 is a stationary solution: according to (6),

∇u
u

+
1

θ
∇φ = 0

a.e. with respect to the measure u(x) dx. Then ∆θ = 0 means that θ is
a constant, and ψ = φ/θ = C− log u is a solution of the Poisson-Boltzmann
equation

−θ∆ψ = M
e−ψ∫

Ω e
−ψ dx

, (18)

where θ is determined by the energy

E = Mθ +
1

2
‖∇ψ‖2

L2(Ω) θ
2 .

(Note that here we are assuming that Ω is bounded and in this case, ∇ψ is
in L2(Ω) and the term ‖∇ψ‖L2(Ω) makes sense). For given M and E, ψ is
the solution of

−σ(‖∇ψ‖L2(Ω))∆ψ =
e−ψ∫

Ω e
−ψ dx

, ψ|∂Ω = 0, (19)

where σ(t) = (−1 +
√

1 + χt2)/t2, χ = 2E/M2.

Theorem 2.6 [17] If Ω is a bounded domain of class C1, then (19) has a
unique solution for any M > 0 and E > 0.

We refer to [17] for a complete proof and only sketch the main steps:
1) Any solution ψ of (19) is a critical point of the functional

J [ψ] = F (‖∇ψ‖L2(Ω)) + log

(∫

Ω
e−ψ+ dx

)

where

F (t) =

[√
1 + χt2 − log

(
1 +

√
1 + χt2

)]
.



Type II Streater’s models 12

2) J is a strictly convex functional since F ′(t) = tσ(t) is nonnegative and

F ′′(t) =
χ√

1 + χt2 (1 +
√

1 + χt2)
> 0 .

3) The minimum of J is reached by some ψ because of the following estimate.

Lemma 2.7 [17] If Ω is a bounded domain of class C1, there exists a cons-
tant C ∈ IR such that for any function ψ ∈ H1

0 (Ω),

log

(∫

Ω
e−ψ dx

)
≥ C − 2 log

(
‖∇ψ‖L2(Ω)

)
(1 + o(‖∇ψ‖L2(Ω)))

as ‖∇ψ‖L2(Ω) → ∞.

The main ideas of the proof of this lemma are the following: consider a func-
tion u ≥ 0 in H1

0 (Ω), Ωλ = {x ∈ Ω : d = d(x, ∂Ω) ≤ 1/λ}, v = u/λ:

∫

Ω
e−u dx ≥

∫

Ωλ

e−v/d dx ≥ |Ωλ|e−|Ωλ|
−1/2‖v/d‖L2(Ω)

according to the Jensen inequality. Then using the Hardy inequality

∥∥∥∥
v

d

∥∥∥∥
L2(Ω)

≤ 1

λ
K(Ω) ‖∇u‖L2(Ω)

and |Ωλ| ∼ λ−1|∂Ω| as λ→ +∞, an optimization on λ gives the result. See
[17] for more details. In two dimensions, the Moser-Trudinger inequality (cf.

its use in, e.g., [9] (15.1)) gives a better (optimal) result: log
(∫

Ω e
−ψ
)
≥

C − (8π)−1 log(‖∇ψ‖2).

2

2.2.4 Case 〈ǫ, ζ〉 = 〈1, 1〉

In this case, we are able to obtain existence results for the stationary problem
associated to (1)-(2)-(3). The uniqueness of stationary solutions remains an
open problem, except in very particular cases.

Theorem 2.8 Let M > 0 and

E > Eφ0,Ω := inf

{∫

Ω

(
uφ0 +

uφ

2

)
dx ; u ∈ L1

+(Ω),

∫

Ω
u dx = M

}
, (20)
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where φ is given by (1)-(2)-(3). Assume furthermore that d ≥ 2 and that
φ0 is an external potential which is bounded from below in Ω and satisfies
(5) for some T0 strictly larger than T := (E −C1,1/2)/M . If d = 2, assume

also that either Ω is bounded or Ω = IR2 and φ0 satisfies (7). Then, there
exists at least one u ∈ L

∞

+ (Ω) such that the Poisson-Boltzmann equation
(15) has a solution.

Remark 2.9 Note that when d ≥ 3 or when Ω is bounded, T = E/M and
Eφ0,Ω ≥ 0. The actual value of Eφ0,Ω ≥ 0 strongly depends on the geometry
of Ω and φ0.

Proof. As in [20], the proof is based on a variational argument involving
directly the entropy. The main difference is that the critical level is defined
as a max-min level instead of simply being the minimal level of a convex
functional.

Consider the functional

W [u, θ] =

∫

Ω
u log

(
u

θ

)
dx

which is well defined on the set

X =

{
〈u, θ〉 ∈ L1

+(Ω)×L∞
+ (Ω) :

∫

Ω
u dx = M,

∫

Ω
u

(
θ + φ0 +

1

2
φ

)
dx = E

}
.

On the set X, and for any µ ∈ IR, W [u, θ] coincides with the functional

W̃ [u, θ] = W [u, θ] + µ

(∫

Ω
u

(
θ + φ0 +

1

2
φ

)
dx− E

)
.

But for any µ > 0 and for any u ≥ 0,

W̃ [u, θ] ≥ W̃ [u, θ],

where θ is a constant such that

u

(
−1

θ
+ µ

)
= 0 a.e. ,

or, in other words, θ = 1/µ , u(x)dx a.e. Thus

inf
(u,θ)∈X

W [u, θ] = inf
(u,θ)∈X

W[u, θ]
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where

W[u, θ] = W [u, θ] +

(∫

Ω
u

[
1 +

1

θ

(
φ0 +

1

2
φ

)]
dx− E

θ

)

and

X =

{
〈u, θ〉∈L1

+(Ω)×IR∗
+ :

∫

Ω
u dx = M,

∫

Ω
u

[
1 +

1

θ

(
φ0 +

1

2
φ

)]
dx =

E

θ

}
.

Consider now the set

X̃ =

{
〈u, θ〉∈L1

+(Ω)×IR∗
+ :

∫

Ω
u dx = M,

∫

Ω
u

[
1 +

1

θ

(
φ0 +

1

2
φ

)]
dx ≤ E

θ

}
,

which corresponds to relaxing the constraint on the energy of u and its
projection on IR∗

+, Θ. Notice that Θ ⊂ (0, T ].
The functional W is convex in u. Moreover, for any fixed positive θ ∈ Θ,

u 7→ W[u, θ] is bounded from below. Indeed, with the notations of Lemma
2.3, if u ∈ L1

+(Ω), we have

W[u, θ] ≥
∫

Ω
u log

u

θ
dx+

1

T0

∫

Ω
uφ0 dx+Mθ + C1/θ−1/T0,1/2

− E

θ
.

and then we conclude by using Proposition 2.1.
Let us fix θ ∈ Θ and consider a minimizing sequence {un} for the func-

tional u 7→ W[u, θ] in {u ∈ L1
+(Ω) ; (u, θ) ∈ X̃}. According to the Dunford-

Pettis criterion, un converges (up to the extraction of a subsequence) to
some u ∈ L1

+(Ω) weakly in L1(Ω) and

lim inf
n→+∞

W[un, θ] ≥ W[u, θ] ,

because of the convexity of W. Moreover,
∫

Ω
u dx = M ;

∫

Ω
u

[
1 +

1

θ

(
φ0 +

1

2
φ

)]
dx ≤ E

θ
.

But the Euler-Lagrange equation satisfied by u is exactly the Poisson-Boltz-
mann equation with θ = θ, and a Lagrange multiplier

λ = −1 + log

(
θ

M

)
+ log

(∫

Ω
e
− 1

θ
(φ+φ0) dx

)

corresponding to the constraint
∫
Ω u dx = M . Hence, u does not depend on

the considered subsequence, and we can denote it by uθ.
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At this point, we may notice that the function θ 7→ W[uθ, θ] is nonde-
creasing on any open interval (a, b) contained in Θ. Moreover, if θ0 ∈ (a, b),

d

dθ
W[u, θ]

|
θ=θ0

= 0 ⇐⇒
∫

Ω
u

[
1 +

1

θ0

(
φ0 +

1

2
φ

)]
dx =

E

θ0
.

Next, let us define

I := sup
θ∈Θ

W[uθ, θ] < +∞ .

There are two possibilities: either I is not achieved in Θ or it is achieved
by some θM ∈ Θ . In the latter case, if we prove that 〈uθM

, θM 〉 ∈ X , the
proof is finished. Then, by contradiction, assume that

∫

Ω
uθM

[
1 +

1

θM

(
φ0 +

1

2
φ

)]
dx <

E

θM
. (21)

Then, 〈uθM
, θ〉 ∈ X̃ for θ close enough to θM . This, (21) and the mono-

tonicity of θ 7→ W[uθ, θ] contradicts the maximizing character of θM .
The only case remaining to be considered is when I is not achieved in

Θ. This means that there is a maximizing sequence for I in Θ, {θn} , such
that

lim
n→+∞

W[uθn
, θn] = sup

θ∈Θ

W[uθ, θ] ,

but such that θ∞ := limn θn 6∈ Θ . But this is impossible. Indeed, we
can apply again the Dunford-Pettis criterion, to extract a subsequence, still
denoted by {θn} , such that uθn

converges weakly in L1(Ω) to some u ∈
L1

+(Ω) such that
∫
Ω u dx = M . Moreover, by lower semicontinuity, 〈u, θ∞〉 ∈

X̃ . A contradiction. So, this case can never happen and the proof is finished.
2

The question of the uniqueness remains largely open. In special cases
however, it is possible to give some results.

Example. Case d = 1, φ0 = |x|, Ω = IR.

The solution of the Poisson-Boltzmann equation (15) can be rescaled
according to φ(x)/θ = ψ(x/θ), and ψ is now a solution of

−∆ψ = M
e−ψ−|x|

∫
IR e

−ψ−|y| dy
= θu(θx) .
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Therefore, ψ does not depend on θ and has a unique nonnegative solution
such that ψ(0) = 0, limx→±∞ ψ′(x) = ±M

2 (for instance). The equation

E = θ

(
M +

M

2

∫
IR ψe

−ψ−|x| dx∫
IR e

−ψ−|x| dx
+M

∫
IR |x|e−ψ−|x| dx∫

IR e
−ψ−|x| dx

)

then determines θ uniquely for any given M > 0 and E > 0.

Example. Case d ≥ 3, φ0 = |x|β/β, Ω = IRd.
In this case, one could try to see whether uniqueness actually holds for

some values of E, M and β by using a different variational argument.

As in the case d = 1, the solution of the Poisson-Boltzmann equation
(15) can be rescaled according to φ(x)/θ = ψ(θ−1/βx), and ψ is now a
solution of

−θ1+ d−2
β ∆ψ = M

e−ψ−|x|β/β

∫
e−ψ−|y|β/β dy

= θ
d
β u(θ1/βx) . (22)

The Rellich-Pokhozaev identity, which is obtained by multiplying (22)
by (x · ∇ψ) and integrating by parts, gives

Mθ−1− d−2
β

∫
|x|βe−ψ−|x|β/β dx
∫
e−ψ−|x|β/β dx

= dMθ−1− d−2
β +

(
d

2
− 1

)
‖∇ψ‖2

L2(IRd) .

The temperature θ is therefore determined by the condition

E = Mθ

(
1 +

d

β

)
+ θ2+ d−2

β

(
1

2
+

(
d

2
− 1

)
1

β

)
‖∇ψ‖2

L2(IRd) .

Let a = M(1 + d
β ), b = 1

2 +
(
d
2 − 1

)
1
β , α = 2 + d−2

β and t = ‖∇ψ‖L2(IRd);

θ = θ(t) is implicitly defined as a function of t by the equation

E = aθ + bt2θα (23)

with the condition θ > 0. Let F (t) =
∫ t
0 (θ(s))

1+ d−2
β s ds. Any critical point

of the functional

J [ψ] = F
(
‖∇ψ‖L2(IRd)

)
+ log

(∫

IRd
e−ψ−|x|β/β dx

)

is a solution of equation (22). Hence, uniqueness of stationary solutions is
equivalent to uniqueness of critical points for the functional J .
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2.3 Relative entropy and convergence to the stationary so-

lution in a bounded domain

Consider a solution 〈u, θ, φ〉 of (1) and denote by 〈u∞, θ∞, φ∞〉 a stationary
solution with same charge and energy, such that

lim
t→+∞

W [u(t, .), θ(t, .), φ(t, .)] = W [u∞, θ∞, φ∞] .

Such a solution exists because

lim
t→+∞

∫ t+1

t
dτ

[∫

Ω
λ
|∇θ|2
θ2

(τ, x) dx

+

∫

Ω
κu(τ, x)

∣∣∣∣
∇u
u

(τ, x) +
1

θ(τ, x)
(ǫ∇φ(τ, x) + ζ∇φ0(x))

∣∣∣∣
2

dx

]
= 0

means that at least for an increasing unbounded sequence (tn)n∈IN, the se-
quence 〈u, θ, φ〉(tn + . , .) converges to some 〈u∞, θ∞, φ∞〉. We may define
the relative entropy by

Σ[u, θ, φ] = W [u, θ, φ] −W [u∞, θ∞, φ∞] , (24)

and using successively the fact that θ∞ is a constant, the Poisson-Boltzmann
equation (19) to compute the term involving log(u∞), and the conservation
of mass and energy: E[u, θ, φ] = E[u∞, θ∞, φ∞], we prove that

Σ[u, θ, φ] =

∫

Ω
u log

(
u

u∞

)
dx+

∫

Ω
(u− u∞) log(u∞) dx

−
∫

Ω
u log

(
θ

θ∞

)
dx+

1

θ∞
(E[u, θ, φ] − E[u∞, θ∞, φ∞]) ,

and so, we can write

Σ[u, θ, φ] =

∫

Ω
s1

(
u

u∞

)
u∞ dx+

∫

Ω
s2

(
θ

θ∞

)
u dx+

1

2θ∞

∫

Ω
|∇φ−∇φ∞|2 dx

where s1(t) = t log t + 1 − t and s2(t) = t − 1 − log t are two nonnegative
strictly convex functions such that s1(1) = s2(1) = 0.

Proposition 2.10 Let 〈u, θ, φ〉 be a smooth solution of (1) in a bounded
domain Ω. With the above notations, Σ[u, θ, φ] is nonnegative, decreasing,

lim
t→+∞

d

dt
Σ[u, θ, φ](t) = 0 and

1

M
‖u− u∞‖2

L1(Ω) +
2

θ∞
‖∇φ−∇φ∞‖2

L2(Ω) (25)

+C[θ, u](t) ‖θ − θ∞‖2
L1(Ω,u(t,x)1I{θ<ℓθ∞}dx) ≤ 4Σ[u, θ, φ](t) ,
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for all ℓ ≥ 1, where C[θ, u] =
(
Mθ2

∞ · max{1, ℓ}
)−1

.

Proof. The proof of this proposition follows from (6): Σ[u, θ, φ](t) is boun-
ded from below and

d

dt
Σ[u, θ, φ](t) = −

∫

Ω
λ
|∇θ|2
θ2

dx−
∫

Ω
κu

∣∣∣∣
∇u
u

+
1

θ
(ǫ∇φ+ ζ∇φ0)

∣∣∣∣
2

dx ≤ 0 ,

and this inequality is strict unless u ≡ u∞: the only possible limit of
d
dt Σ[u, θ, φ](t) is zero. The bound (25) is given by the Csiszár-Kullback
inequality, which can be stated as follows (see [16] for a proof and further
references). 2

Lemma 2.11 [16] Assume that Ω is a domain in IRd and that s is a convex
nonnegative function on IR+ such that s(1) = 0 and s′(1) = 0. If µ is a non-
negative measure on Ω, and if f , g are nonnegative measurable functions on
Ω with respect to µ, then

∫

Ω
s

(
f

g

)
g dµ ≥ K

max{
∫
Ω f dµ,

∫
Ω g dµ}

‖f − g‖2
L1(Ω,dµ)

where the constants K, K1 and K2 are defined by K = 1
4 · min{K1,K2},

K1 = minη∈[0,1] s
′′(η) and K2 = minθ∈[0,1],h≥0 s

′′(1 + θh)(1 + h), provided
that all the above integrals are finite. 2

Corollary 2.12 Any smooth solution 〈u, θ, φ〉 of (1) converges as t→ +∞
to a unique stationary solution 〈u∞, θ∞, φ∞〉 with same charge and energy.

This corollary answers the question raised in Section 4.2 of [7]. The result
does not mean that the stationary problem has a unique solution for any
given charge and energy, but that the limit for a given solution is unique.
In other words, the limit does not depend on the sequence (tn)n∈IN used to
define the limit 〈u∞, θ∞, φ∞〉.

3 The whole space problem without exterior po-

tential

We consider now the case Ω = IRd and ζ = 0. No stationary solution
exists, but a time-dependent rescaling like the one in [4, 5] provides a conve-
nient framework to study the intermediate asymptotics with relative entropy
methods. This can be done for special functions κ and λ only.



Type II Streater’s models 19

3.1 Time-dependent rescalings

Assume that κ and λ are homogeneous in u: there exist constants m and p
such that κ = |u|m−1κ̃(θ), λ = |u|p−1λ̃(θ), and consider like in [16, 4, 5] the
time-dependent rescaling given by





u(t, x) = R−dū(log(R(t)), xR)
θ(t, x) = θ̄(log(R(t)), xR )
φ(t, x) = φ̄(log(R(t)), xR )

(26)

where R is the solution of Ṙ = R−d(m−1)−1, R(0) = 1. The rescaled func-
tions (we omit the bar ¯ in the remainder of this section and use the same
notations as for the unscaled functions) are solutions of the system





ut = ∇ ·
[
κ(∇u+ ǫuθ∇φ) + xu

]

(uθ)t = eβt∇ · (λ∇θ) + ∇ · [κ(θ∇u+ ǫu∇φ) + xuθ]
+ǫ∇φ ·

[
κ(∇u+ ǫuθ∇φ)

]

−∆φ = e−(d−2)tu

(27)

with β = d(m − p + 1). The initial data are the same as for the unscaled
problem.

In the following, we shall assume that κ ≡ 1 (m = 1): R(t) =
√

1 + 2t,
and λ ≡ 1: β = d.

3.2 Radial problem with Poisson coupling

The energy E =
∫
u(θ + φ/2) dx for the rescaled problem (27) with κ ≡ 1

(m = 1), R(t) =
√

1 + 2t, λ ≡ 1, and β = d, is preserved and a direct
computation shows that

d

dt

∫
u
|x|2
2

dx = −
∫
x ·
(
∇u+ xu+

u

θ
∇φ
)
dx ,

d

dt

∫
u log

(
u

θ

)
dx=−edt

∫
|∇ log θ|2dx−

∫
u

∣∣∣∣
∇u
u

+
1

θ
∇φ
∣∣∣∣
2

dx−
∫
x·∇u dx .

Thus Σ(t) =
∫

(u log(u/u∞) − u log(θ/θ∞)) dx , with u∞ = M e−|x|2/2

(2π)d/2 , is

such that

dΣ

dt
= −edt

∫ |∇θ|2
θ2

dx−
∫
u

∣∣∣∣
∇u
u

+ x+
1

θ
∇φ
∣∣∣∣
2

dx+

∫
u

θ
(x · ∇φ) dx .
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Proposition 3.1 With the above notations, if 〈u, θ, φ〉 is a radially sym-
metric (in x) solution of (27), then dΣ/dt ≤ 0 and 〈u, θ, φ〉 converges as
t→ +∞ to 〈u∞, θ∞, 0〉.

Proof. The term
∫
u θ−1 (x · ∇φ) dx is negative because ∇φ(x) = xφ′(|x|)

and φ′(r) = −r1−d
∫ r
0 u(ρ, t)ρ

d−1 dρ ≤ 0. The remainder of the reasoning is
standard. 2

Acknowledgements. This research was partially supported by the grants
POLONIUM 98111, KBN 50/P03/2000/18, and Austrian-Polish ÖAD-KBN
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[30] G. Toscani, Sur l’inégalité logarithmique de Sobolev , C. R. Acad. Sci.
Paris, Sér. I Math. 324 (1997), 689–694.

[31] G. Toscani, Entropy production and the rate of convergence to equi-
librium for the Fokker-Planck equation, Quart. Appl. Math. 57 (1999),
521–541.



Type II Streater’s models 24

Name and mailing address of the author to whom proofs should be sent:

Jean DOLBEAULT

CEREMADE
Université Paris IX-Dauphine
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