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Motivation

Non-stationarities can be found in many real-world data,
yet they challenge standard Machine Learning methods.

Different training and test distributions:
→ Problems to generalise.

Observation:

Data generating systems are often only partly non-stationary.

Getting rid of the non-stationary part might help.

Understanding the nature of the non-stationarity is an
interesting endeavour in its own right.
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The Generative Model
Symmetries and Invariances
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Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the
D-dimensional data space.

d stationary source signals ss(t) ∈ Rd

D − d non-stationary source signals sn(t) ∈ R(D−d)

Observed signals: instantaneous linear superpositions of
sources

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]
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Aim of Stationary Subspace Analysis

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]

Goal

Given only x(t), find an estimate Â for the mixing matrix, such
that B̂ = Â−1 separates s-sources from n-sources.[

ŝs(t)
ŝn(t)

]
= B̂x(t) =

[
B̂s

B̂n

]
x(t)

Clearly, Â = A is a solution. But are there other solutions?
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Symmetries and Invariances

Let’s express the true As and An as linear combinations of the
respective estimated subspaces

As = ÂsM1 + ÂnM2

An = ÂsM3 + ÂnM4

The composite transformation (true mixing followed by the
estimated demixing) reads[

ŝs(t)
ŝn(t)

]
= B̂As(t) =

[
B̂sAs B̂sAn

B̂nAs B̂nAn

]
s(t) =

[
M1 M3

M2 M4

] [
ss(t)
sn(t)

]
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Restriction to orthogonal demixing matrices

Since M1,M2,M4 are arbitrary, As can always be chosen such
that it is orthogonal to An.

Chosing orthogonal bases within each of these estimated
subspaces, we have effectively restricted ourselves to the
estimation of an orthogonal mixing matrix.

Result

We can restrict our search for the mixing matrix to the space of
orthogonal matrices even if the model allows general
(i.e. non-orthogonal) mixing matrices.
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The Optimization Problem

Measuring (Non-)Stationarity

Stationarity

Given N data sets, we will consider a set of d estimated sources as
stationary, if the joint distribution of these sources stays the same.

Objective Function

Pairwise Kullback-Leibler divergence between the distributions of
the projected data (using B̂s)

Gaussian Approximation

Consider only differences in the first two moments
→ KL-Divergence between Gaussians (max. Entropy principle)

Paul von Bünau, Frank C. Meinecke, Klaus-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Measuring and Optimizing Stationarity
Empirical Evaluation

Conclusion

Measuring (Non-)Stationarity
The Optimization Problem

Measuring (Non-)Stationarity

Stationarity

Given N data sets, we will consider a set of d estimated sources as
stationary, if the joint distribution of these sources stays the same.

Objective Function

Pairwise Kullback-Leibler divergence between the distributions of
the projected data (using B̂s)

Gaussian Approximation

Consider only differences in the first two moments
→ KL-Divergence between Gaussians (max. Entropy principle)

Paul von Bünau, Frank C. Meinecke, Klaus-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Measuring and Optimizing Stationarity
Empirical Evaluation

Conclusion

Measuring (Non-)Stationarity
The Optimization Problem

Measuring (Non-)Stationarity

Stationarity

Given N data sets, we will consider a set of d estimated sources as
stationary, if the joint distribution of these sources stays the same.

Objective Function

Pairwise Kullback-Leibler divergence between the distributions of
the projected data (using B̂s)

Gaussian Approximation

Consider only differences in the first two moments
→ KL-Divergence between Gaussians (max. Entropy principle)

Paul von Bünau, Frank C. Meinecke, Klaus-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Measuring and Optimizing Stationarity
Empirical Evaluation

Conclusion

Measuring (Non-)Stationarity
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The Optimization Problem

To stay on the manifold of orthogonal matrices: multiplicative
updates with rotation matrices (RR> = I ).

B̂start = I B̂new ← RB̂

The loss function

LB(R) =
∑
i<j

KL
[
N (µ̂s

i , Σ̂
s
i ) || N (µ̂s

j , Σ̂
s
j )
]

with
µ̂s

i = I dRBµ̂i and Σ̂s
i = I dRBΣ̂i (I

dRB)>

denoting estimated mean and covariance of the i-th data set
projected to the s-subspace and I d ∈ Rd×D the identity matrix
truncated to the first d rows.
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Measuring (Non-)Stationarity
The Optimization Problem

Optimization in the Special Orthogonal Group

Manifold of all D-dimensional rotations:
Special Orthogonal Group SO(D).

From Group Theory:

Every element of a Lie Group can be
expressed as the exponential of an
element from the corresponding Lie
Algebra. (tangent space at I ).

Linear space of all skew-symmetric
matrices M> = −M:
Special Orthogonal Algebra so(D).
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Measuring (Non-)Stationarity
The Optimization Problem

Optimization in the Special Orthogonal Group

We express R as

R = exp(M)

with M> = −M and optimize the
objective LB in terms of M.

Interpretation of Mij :

Angle of rotation of axis i towards axis j

The gradient translates to:

∂LB

∂M

∣∣∣∣
M=0

=

(
∂LB

∂R

)
R> − R

(
∂LB

∂R

)>
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The Optimization Problem

Optimization in the Special Orthogonal Group

Thus the gradient has the shape

∂LB

∂M

∣∣∣∣
M=0

=

[
0 Z
−Z> 0

]
Z corresponds to rotations between s- and n-space.
Rotations within the two spaces do not change the objective.

Result

The number of variables is reduced to d(D − d).
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Simulations
Application to Brain-Computer-Interfacing

Simulations

Experimental Setup

N covariance matrices and means are sampled that are
stationary in the first d coordinates.

To each mean and covariance the same randomly sampled
mixing matrix is applied.

SSA is applied.

The accuracy is measured as angle between the estimated
n-subspace and the ground truth.
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Simulations
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BCI Experiment

Multichannel
EEG

amplifier

Multichannel
EEG

amplifier

Classifier
f(X)

Feedback
application

Classifier
training /

assessment of
generalization

Sliding windows

Visual feedback

Continuous
output

Cut out trials

y=-1

y=-1

y=-1: left hand imagination
For example,

y=+1: right hand imaginationy=+1
y=+1

y=+1

y=? ((

Calibration phase

Feedback phase

Subject
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BCI Experiment

We induce changes in the strength of the α-rhythm by extracting
it from a separate artefact measurement session (using ICA) and
superimpose it on the data (adaptation and test set) in varying
strengths.

Divide Data into 3 parts:
1 Training Set, used for running SSA, to train the classifier
2 Adaptation Set, used for running SSA
3 Test Set, used for evaluating the classifier

Estimate Â over the training and adaptation part

Train Classifier (CSP/LDA) within the s-space in training set

Performance: misclassification rate on the test set
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Boxplots show distribution of the test error rates

Dashed black line: Test error rate of the baseline method
(using all data).

Blue triangle: error rate on the subspace with minimum
objective function value
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Conclusion

We have presented an algorithm for decomposing a
multivariate time-series into a stationary and a non-stationary
component.

We can restrict the search space to orthogonal
transformations without limiting the applicability.

Exploiting the underlying Lie-Group structure reduces the
number of parameters and allows a stable and efficient
optimization.

Application to simulated and BCI data indicate that projecting
out the n-sources can improve classification performance.
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Thank You.
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