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Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of 

biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing 

issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT 

coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-

directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature 

information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal 

component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are 

presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects 

and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis. 
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1.  INTRODUCTION 

Biomedical signal analysis has been broadly applied for 

robotics control, human/brain machine interface, disease 

diagnosis, wearable devices, and rehabilitation programming. 

Most biomedical signals, for example electromyography 

(EMG), an electrical manifestation of skeletal muscle 

contractions, are typically nonlinear and nonstationary. 

Discrete wavelet transform (WT) offers simultaneous 

interpretation of the EMG signal in both time and frequency 

domains which allows to elucidate local, transient or 

intermittent components at various scales [1]. However, there 

are typically a large amount of wavelet coefficients generated 

from such two-dimensional time-frequency (TF) analysis. In 

addition to noise interferences, irrelevant or redundant 

information may exist in the wavelet coefficients. Principal 

component analysis (PCA) decomposes the covariance 

structure of the dependent variables into orthogonal 

components by calculating the eigenvalues and eigenvectors 

of the data covariance matrix. It linearly projects the original 

data in a high-dimensional space to a set of uncorrelated 

components in a low-dimensional feature space while 

preserving the most original information at the same time. 

Therefore, WT combined with PCA (WTPCA) has been one 

of the most powerful approaches to simultaneously extract 

discriminative feature 

and reduce the dimension in the EMG study. The basic 

routine of this hybrid method consists of decomposition of 

EMG signals into time-frequency plane, rearrangement of the 

time-frequency elements into a row vector, and reduction of 

the dimension using PCA. Englehart et al. [2] decomposed 

four channel transient EMG signals by short-time Fourier 

transform (STFT), WT, and wavelet packet transform (WPT) 

into TF plane to discriminate six hand motions for prosthetic 

hand control. They compared the performance of PCA feature 

reduction and Euclidean distance class separability (CS) 

criterion. The results indicated that PCA was vastly superior 

to CS dimensionality reduction, as well as significantly 

improving the WT and WPT-based methods in comparison 

with time domain feature when using linear discriminant 

analysis classifier. Khezri and Jahed’s study using adaptive 

neuro-fuzzy inference system further confirmed the 

superiority of WT-PCA hybridization in EMG-based hand 

motion pattern recognition [3]. Qi et al. [4], [5] utilized the 

principal components of EMG intensity spectra obtained 

from nonlinearly-scaled wavelets to compare motor unit 

recruitment patterns during isometric ramp and step muscle 

contractions, as well as dynamic concentric and eccentric 

contractions of the human biceps brachii. The same WT-PCA  

scheme  was also  employed  to  discriminate between 
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fast and slow muscle fibers [6], to investigate motor unit 

recruitment patterns between and within muscles of the 

dysfunction in children and young adults with cerebral palsy 

[8]. Weiderpass et al. [9] investigated the alternations of thigh 

and calf muscles recruitment strategies during gait among 

non-diabetic and diabetic neuropathic patients by using an 

adaptive optimal kernel time-frequency representation and 

discrete WT followed by PCA. In all of these WTPCA-based 

EMG representation and recognition methods, WT 

coefficients at various scales must be first transformed into a 

vector. However, concatenating WT coefficients at various 

scales into a 1D array often leads to a high-dimensional vector 

space, where it is difficult to evaluate the covariance matrix 

accurately due to its large size and the relatively small number 

of training samples. Furthermore, computing the eigenvectors 

of a large size covariance matrix is very time-consuming, 

whilst the response time of EMG real-time control systems 

should not introduce a delay that is perceivable by the user 

[1]. 

In fact, a two-dimensional WT coefficient matrix can be 

regarded as an image. It is thus feasible to apply image 

processing techniques to indicate the WT coefficient matrix 

characteristics. Two-dimensional principal component 

analysis (2DPCA) developed by Yang et al. [10] is a 2D 

image representation and reduction technique, in which an 

image matrix does not need to be transformed into a 1D array. 

Many experimental results have indicated that 2DPCA is 

computationally more efficient than PCA in the extraction of 

image features. Although 2DPCA is typically able to obtain 

higher recognition accuracy than PCA, a vital unresolved 

problem is that 2DPCA needs many more coefficients for 

image or TF matrix representation than PCA [11]. Zhang and 

Zhou [11] indicated that 2DPCA essentially operates along 

the row direction of the image matrix and, thus, proposed an 

alternative 2DPCA operating along the column direction. By 

simultaneously considering the row and column directions, 

they developed the two-directional triceps muscles [7], as 

well as quantify dynamic muscle two-dimensional principal 

component analysis (2D2PCA) for a more efficient image 

representation and recognition. 

Another issue of discrete wavelet transform is the lack of 

time-shift invariance caused by down sampling by two. Since 

all even-indexed outputs of a half-band filter are discarded, a 

small shift of the input signal causes a large change in the WT 

sub-band coefficients. Lack of time-shift invariance of WT 

coefficients can be modeled as noise and degrades the 

classifier performance [12]. The stationary wavelet transform 

(SWT) does not decimate the signal at each stage, as does the 

standard discrete WT, avoiding the problem of nonlinear 

distortion of the WT with shifts in the signal. 

Inspired by the success of 2D2PCA in imaging processing 

and time-invariant characteristics of SWT, the purpose of this 

study is to develop an efficient and effective feature 

extraction method for fully exploiting the time-frequency 

information of biomedical signals. The size of the SWT 

covariance matrix is equal to the length/width of time-

frequency plane in 2D2PCA, which is quite smaller than the 

size of a covariance matrix in PCA. The evaluation of 

covariance matrix is thus more accurate and the estimation of 

corresponding eigenvectors is more efficient than PCA. The 

key idea is that 2D2PCA is applied to reduce the dimension 

of SWT coefficient matrix in a highly efficient manner for 

pattern classification. The method is, therefore, termed as 

stationary wavelet-based two-directional two-dimensional 

principal component analysis (SW2D2PCA). To illustrate the 

efficiency and effectiveness of the proposed method, results 

are presented on the recognition of eight hand motions from 

4-channel EMG signals recorded in both healthy subjects and 

amputees. 

 

2.  SUBJECT & METHODS 

2.1.  Stationary wavelet transform 

The wavelet transform of a function f, with respect to a 

given mother wavelet ψ , is defined as 
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where 
2 jS is a smoothing operator and 

2
( )jW f n is the WT of 

the discrete signal f(n), whilst 
kh and

kg  are the coefficients of 

corresponding low-pass and high-pass filters, respectively. 

The standard discrete wavelet transform decimates the 

wavelet coefficients at each scale, resulting in the half size of 

the original series. On the other hand, the stationary wavelet 

transform pads the corresponding low-pass and high-pass 

filters with zeros between coefficients at each scale. Two new 

sequences at sub-band thus have the same size as the original 

sequence. The major advantage of SWT is the preservation of 

time information of the original signal sequence at each level, 

particularly useful for feature extraction and denoising [1].  

 

2.2.  2D2PCA schematic diagram 

Fig.1. is a schematic diagram of 2D2PCA. Without loss of 

generality, we consider an m by n time-frequency matrix 

(TFM) A obtained from the stationary wavelet 

decomposition. Let n q×∈X ¡  and m p×∈Y ¡  be matrices 

having orthonormal columns n q× and m p× , respectively. 

We can simultaneously project A onto X to yield the m q×

matrix =B AX , and onto Y to yield the p n×  matrix

T=C Y A . In contrast to conventional PCA for one-

dimensional array applications, 2D2PCA operates on a matrix 

in both horizontal and vertical directions. The total scatter of 

the projected samples, a measure of the discriminatory power 

of a projection matrix, can be characterized by its trace of the 

covariance matrix of the projected matrix. From this point of 
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view, maximization of the generalized total scatter is the 

criterion adopted to find the optimal projection matrices X
and Y for row and column directions, respectively: 
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where { }tr • is the trace.  

Considering the m q× matrix =B AX obtained by 

projecting A onto X in (4), the horizontal covariance matrix is 

denoted by 
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which is an n n× positive semi-definite matrix.  

Suppose that the training feature set is ( , , , )=
1 2 N

Ω A A AL

, where each ( 1,2, , )i i =A NL  denotes the ith m n× time-

frequency matrix and N is the number of training samples. 

The average TFM is given by 
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Denoting the kth row vectors of iA and A by k

iA and k

hA , 

respectively, these TFMs can be represented by  
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The horizontal covariance matrix can then be obtained 

from the outer product of these TFM row vectors: 
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Similarly, for the p n× matrix
T=C Y A obtained by 

projecting A onto Y in (5), the vertical covariance matrix can 

be denoted by 

 

[( ( ))( ( )) ],
T

v E E E= − −G A A A A          (11) 

 

which is m m× positive semi-definite matrix.  

TMFs and their average are now denoted by column 

vectors:  
1 2

[( ) , ( ) , , ( )],
T T n

i i i i=A A A AL                 (12) 

 
1 2

[( ) , ( ) , , ( )].
T T n
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where j

iA and j

vA denote the jth column vectors of iA and A

, respectively. 

 

 

 
 

Fig.1.  Schematic diagram of two-directional two-dimensional principal component analysis to obtain the reduced time-frequency matrix F 

(right) from an input time-frequency matrix A (left). 
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Now, the vertical covariance matrix of (11) can be 

constructed from the outer products of column vectors: 
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Zhang and Zhou [11] demonstrated that the optimal 

projection matrices X and Y are composed of the 

orthonormal eigenvectors 
1 2, , , qX X XL  of hG

corresponding to the q largest eigenvalues and 
1 2, , , pY Y YL  

of vG corresponding to the p largest eigenvalues, 

respectively. The values of p and q can be controlled by two 

pre-set thresholds, and, corresponding to the energy 

conservation rates at two directions. In practice, we set a ratio 

of total energy preserved as in PCA (for example >85 %) and 

then set  α β=  [13], [14].  

After obtaining the projection matrices X and Y , 2D2PCA 

projects the m by n TFM A onto X and Y simultaneously, 

yielding the reduced p by q matrix 

 

.T=F Y AX                                (15) 

 

Using the above procedure, an m n×  dimensional feature 

matrix A is projected into a p q× dimensional feature matrix

F .  

 
2.3.  SW2D2PCA schematic diagram 

In this section, we describe the stationary wavelet-based 

two directional two-dimensional principal component 

analysis algorithm for extracting discriminant feature 

information from these matrices as follows: 

1. Multiple-channel signals are first segmented by a moving 

window with width d. Choose a time-frequency 

decomposition method. That is, specify the mother 

wavelet function and decomposition level. The 

stationary wavelet transform is then employed to 

decompose each time-segment of individual channels 

into details 1 2, , , LD D DL  and approximate LA under the 

same decomposition level L. 

2. 2D2PCA is subsequently carried out on each of the 

( 1)d L× + dimension matrices to extract the most 

informative features, as well as reduce the dimension 

based on the user-specified threshold of total energy 

preserved.  

3. Since the discriminant abilities of principal components 

(PCs) at various scales are different, a simple distance-

based technique is applied to re-order all PCs [1]. 

4. The performance of the algorithm is evaluated by feeding 

the optimal PCs obtained into a classifier. 

2.4.  Experimental protocol and performance evaluation  

The proposed algorithm was evaluated using the EMG data 

collected from the following experiment. Eight distinct wrist 

and hand motions were used: grasp (GR), hand open (OP), 

wrist flexion (WF), wrist extension (WE), ulnar deviation 

(UD), radial deviation (RD), pinch (PN), and thumb flexion 

(TF), as depicted in Fig.2. These represent the commonly 

used wrist and hand movements in daily life.  

 

 
 
Fig.2.  Eight classes of motion were used in the experiment. From 

the left to right in the first row: grasp (GP), hand open (OP), wrist 

flexion (WF), wrist extension (WE), and in the second row: ulnar 

deviation (UD), radial deviation (RD), pinch (PN), thumb flexion 

(TF). 

 

 
 
Fig.3.  The experimental setting to record EMG signals from an 

amputee. There are four pairs of electrodes on the forearm with one 

pair under the forearm. The electrode at the wrist provides the 

common ground reference. 

 
In the experiment, the EMG data were collected from ten 

healthy subjects and two amputees (eight males and four 

females, 30 6.8±  years). The human subject ethical approval 

was obtained from the relevant committee and informed 

consent was obtained from all subjects prior to the 

experiment. Four channels of EMG signals were acquired 

from the forearm using the EMG bi-polar Ag-AgCl electrodes 

(Dual electrode #272, Noraxon USA Inc. AZ, USA). 

Electrodes were placed on the extensor digitorum, the 

extensor carpi radialis, the palmaris longus and the flexor 

carpi ulnaris around the forearm. The distance of two surface 

electrodes was 2 cm. Skin areas of interest were abrased 

beforehand with alcohol. An additional Ag-AgCl electrode 

was placed on the wrist to provide a common ground 

reference. Fig.3. is the experimental setting for an amputee 
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with three pairs of electrodes being visible and another pair 

invisible due to its placement on the other side of the forearm. 

EMG signal was amplified by an amplifier (RM-6280C, 

Chengdu Device Inc. Sichuan, China) with a gain of 2000, 

filtered by 8–500 Hz band-pass analog filter within the 

amplifier, and then digitized by a 12-bit data acquisition card 

(NI PCI-6024E, National Instruments, Austin, TX) with the 

sample frequency of 1 kHz.  

Fifteen sessions were conducted for each subject. The first 

five sessions were used for the learning procedures, while the 

sixth to tenth session as the validation set and the remaining 

for performance evaluations. Each subject was asked to 

maintain a static contraction for each motion and to change 

the motions with a fixed movement velocity. For those 

specific tasks the amputees cannot perform, they tried to 

perform under the guidance. In every session, each motion 

was performed once for a duration of 5 s, then switched to 

another motion in random order. 

The 4-channel EMG data were further segmented into a 

series of overlapping windows (window length: 256 ms, 

overlap step: 128 ms). Since the Symmlet-5 has been proven 

to be an effective mother wavelet for stationary wavelet-

based classification [15], it was selected to simultaneously 

decompose EMG signals over six levels. The remaining 

procedures for SW2D2PCA described in Section 2.3 were 

employed to extract two-dimensional PCs. Support vector 

machine (SVM), a typical nonlinear EMG classifier used in 

previous study [1]-[3], was employed to evaluate the 

classification performance of the proposed algorithm. After 

the classification, the accuracy was further improved by a 

post-processing procedure using majority vote (MV) [16]. 

Conventional WTPCA algorithm to analyse the same data set 

was also devised for comparison. 

3.  RESULTS 

3.1.  Multi-scale muscle activity patterns 

Using the proposed SW2D2PCA technique, the EMG signal 

at each channel was first transformed into a two-dimensional 

matrix. Fig.4. shows the typical contour plots for eight 

motions for subject 3, each row corresponding to a motion 

type. With each intended motion, a significant difference 

between the intensity of the surface EMG signals over the 

upper limb muscles can be readily discerned in the first 

column contour plots. Similar to the panels in the first 

column, there was significant discrepancy in the intensity 

distributions of the remaining contour plots in the remaining 

three columns, indicating useful discriminant information in 

the SWT matrices.  
The two-directional two-dimensional principal component 

analysis was then used to reduce the dimension of each 
matrix. Fig.5. shows the contour plots of each matrix in Fig.4. 
following dimension reduction using 2D2PCA when the 
energy conservation rate and total energy preserved were 
98 % and 90 %, respectively. Compared with Fig.4., the 
intensity difference between certain sub-panels in Fig.5. is 
further enhanced, including, for example, those in the first 
row. In addition, the matrix size at each channel was 

significantly decreased, which were 80 3× , 86 3× , 122 4× , 

and 116 4× , respectively. If conventional PCA was used with 

all time-frequency coefficients arranged into a 1D array, the 

size of the covariance matrix would be1792 1792× . 

However, the use of 2D2PCA resulted in the size of all 

covariance matrices being less than130 130× , avoiding the 

curse of dimensionality and small sample issue as well as 
improving the numerical stability. It should be noted that the 
reduced dimension of each channel for all subjects were 
different because EMG signal varied from subject to subject 
due to the physiological factors. 

 

 
 
Fig.4.  Contour plots of stationary wavelet transform matrices for 4-channel EMG traces of eight hand motions obtained from subject 3. The 

abscissa represents the time and the ordinate represents the frequency or the scale of stationary wavelet transform. The color bar indicates 

the strength of the muscle electrical activity. 
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Fig.5.  The contour plots of stationary wavelet transform matrices reduced using 2D2PCA for 4-channel EMG signals of eight hand motions 

obtained from subject 3. The abscissa and ordinate represent the reduced size of the contour plots in Fig.4. The color bar indicates the relative 

strength of the muscle myoelectric activity after dimension reduction. 

 

3.2.  Effect of energy conservation rate 

A large energy conservation rate results in more 

information loss, whilst a low rate increases the 

computational burden. To reach a trade-off between these two 

factors, three energy conservation rates of 97 %, 98 % and 

99 %, were employed to assess its effect on classification 

accuracy. Fig.6. shows the average accuracy across the 12 

subjects at these various energy conservation rates for the 

SVM classifier. With the increasing number of PCs, the 

accuracy of all three conservation rates initially increased and 

then entered a relatively flat range with moderate 

fluctuations. The optimal PCs to achieve the highest accuracy 

for three conservation rates were all in the range from 25 to 

35. In addition, there was no significant difference between 

energy conservation rates (p<0.01).  

 

 
 
Fig.6.  The effect of 97 % (black), 98 % (red), and 99 % (green) 

energy conservation rate of SW2D2PCA on the EMG signals 

classification accuracy. 

3.3.  Effect of total energy conserved 

For PCA analysis, a typical recommendation is to set the 

threshold of total energy conserved between 0.8 and 0.95. 

Fig.7. shows the classification accuracy for SVM for three 

threshold values of total energy conserved, i.e., 95 %, 90 %, 

and 85 %. With the reduction in threshold, there was no 

significant difference in the accuracy for SVM. The 

insensitivity of SVM to the total energy preserved may be due 

to its adaptive ability to map input features to high-

dimensional feature space. 
 

 
 
Fig.7.  The effect of 85 % (black), 90 % (red), and 95 % (green) total 

energy conserved of SW2D2PCA on the EMG signals classification 

accuracy. 

 
3.4.  Recognition of intended motions 

Pattern recognition analysis was performed using the 

optimal number of PCs previously determined. Table 1. 

summarizes the subject-specific classification accuracy for 
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all eight intended upper-limb motions. An average 

classification accuracy above 93 % could be achieved among 

all subjects after majority vote. Across all subjects, there is 

significant difference between the accuracy of SW2D2PCA 

and WTPCA (p<0.05) with lower average accuracy for 

WTPCA in both cases - with or without majority vote. On the 

other hand, because the amputees can only perform grasping, 

opening based on imagination, the related muscle activities 

were not as strong as in the healthy subjects. The accuracy for 

two amputees was much lower than for the healthy subjects. 

As mentioned before, it should be emphasized that EMG 

activity is subject-dependent for both healthy subjects and 

amputees. Therefore, the structure and information 

distribution in the time-frequency matrices varied between 

subjects, which led to different reduced sizes with 

SW2D2PCA. Ultimately, this subject-specific time-frequency 

distribution of EMG feature information led to inconsistent 

classification errors among different subjects. The subject-

specific EMG activity and classification performance 

suggested that optimal myoelectric pattern-recognition 

control system parameters should be individually customized. 

 
Table 1.  Classification results of all twelve subjects by proposed 

stationary wavelet two-directional two-dimensional principal 

component analysis and conventional wavelet principal component 

analysis based feature subsets 

 

Subject 

Before MV After MV 

SW2D2PC

A 
WTPCA 

SW2D2PC

A 
WTPCA 

1 92.15 83.52 98.28 89.31 

2 88.92 85.19 95.66 94.28 

3 89.50 90.54 95.33 95.95 

4 91.65 86.09 96.64 92.73 

5 89.98 80.94 94.73 84.06 

6 91.11 84.53 97.86 91.69 

7 93.39 88.75 98.23 96.35 

8 91.91 83.28 94.31 87.92 

9 92.27 91.04 99.95 96.00 

10 89.93 82.58 95.57 87.76 

11* 79.74 72.55 86.11 77.78 

12* 72.29 68.16 78.47 71.09 

Averag

e 
88.57±6.2 

83.09±6.

8 
94.26±6.1 

88.74±7.

8 

 

4.  DISCUSSION / CONCLUSIONS 

A novel stationary wavelet-based two-directional two-

dimensional principal component analysis for signal 

classification has been proposed and examined in this study. 

One of the major challenges related to the design of EMG 

interfaces is to maintain high classification accuracy in long-

term use [17]. In real use, the muscle contractions, i.e. the 

classes associated to control commands, are performed in a 

variety of conditions, which may lead to differences in signal 

properties making them unrecognizable for the classifier. 

Stationary wavelet transform avoids the problem of nonlinear 

distortion of the wavelet and wavelet package transforms 

with shifts in the signal. Recently, with the improvements  in  

physiological  measurement equipment for EMG as well as 

electroencephalography and magnetoencephalography, new 

technology permits registration of up to several hundred 

channels using high-density electrode arrays. Such arrays 

with small electrode sizes and inter-electrode spacing can 

cover large areas of the tissue, providing extra spatial 

information which is largely independent of any “classical” 

temporal information. To effectively and efficiently extract 

feature from such high-dimensional signal space is another 

challenge in biosignals analysis and their applications [18]. 

Compared with the existing PCA method, 2D2PCA provides 

an improved approach to extract discriminative feature and 

reduce the dimension from the high-dimensional random and 

complex raw signals.  

In order to test this approach, we used SW2D2PCA to 

extract and classify specific TF patterns in four-channel EMG 

signals from ten healthy subjects and two amputees for 

identification of eight hand motions. SW2D2PCA achieved 

higher accuracy than WTPCA for both healthy subjects and 

amputees before and after majority vote. For the healthy 

subjects, the average accuracy exceeds 96.6 %, which can be 

employed as a promising technique for human-machine 

interaction or robot control. However, in comparison to the 

healthy subjects, the classification accuracy for two amputees 

using SW2D2PCA is relatively low although it is higher than 

that of WTPCA. This is due to the fact that the amputees can 

only perform grasping and opening based on imagination, the 

relevant muscle activities were not as strong as in the healthy 

subjects. In this study, Symmlet-5 was employed as the 

mother wavelet to decompose EMG signals for all subjects. 

Studies have indicated that signal matched or optimized 

wavelet can substantially enhance the classification accuracy 

[19], [20]. Another limitation of this study is that the PCs of 

each channel obtained using 2D2PCA are re-ordered and 

further reduced using a simple distance measure, which is 

equivalent to a two-step reduction method. It is necessary to 

develop a unified framework to simultaneously extract 

discriminative features from multiple channels. In addition, 

effective training can improve the electrical activities of 

residual muscles, and, therefore decrease the recognition 

error for amputees. It is expected that integration of these 

measures will result in enhanced pattern recognition of 

motion patterns for the amputees. The efficiency and 

effectiveness of the method can be further validated by using 

high-dimensional EEG, MEG, and fMRI signals. Although 

the present study focuses on signal pattern classification, 

based on the PCs obtained from time-frequency plane, it is 

relatively straightforward to expand SW2D2PCA for signal 

compression, denoising, instantaneous frequency estimation, 

and other related tasks. 
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