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ABSTRACT

Detecting and characterizing the Epoch of Reionization (EoR) and Cosmic Dawn via the red-

shifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation

of the first stars, galaxies, black holes, and intergalactic gas in the infant Universe. The wealth

of information encoded in this signal is, however, buried under foregrounds that are many or-

ders of magnitude brighter. These must be removed accurately and precisely in order to reveal

the feeble 21-cm signal. This requires not only the modelling of the Galactic and extragalactic

emission, but also of the often stochastic residuals due to imperfect calibration of the data

caused by ionospheric and instrumental distortions. To stochastically model these effects, we

introduce a new method based on ‘Gaussian Process Regression’ (GPR) which is able to statis-

tically separate the 21-cm signal from most of the foregrounds and other contaminants. Using

simulated LOFAR–EoR data that include strong instrumental mode mixing, we show that this

method is capable of recovering the 21-cm signal power spectrum across the entire range

k = 0.07 − 0.3 h cMpc−1. The GPR method is most optimal, having minimal and controllable

impact on the 21-cm signal, when the foregrounds are correlated on frequency scales �3 MHz

and the rms of the signal has σ21cm � 0.1 σnoise. This signal separation improves the 21-cm

power-spectrum sensitivity by a factor �3 compared to foreground avoidance strategies and

enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre

Array to be fully exploited.

Key words: methods: data analysis – methods: statistical – techniques: interferometric – dark

ages, reionization, first stars – cosmology: observations.

1 IN T RO D U C T I O N

Observations of the redshifted 21-cm signal from neutral Hydrogen

is the most promising method for revealing astrophysical processes

occurring during the Epoch of Reionization (EoR) and the Cosmic

Dawn (CD), and has great potential at independently constrain-

ing the cosmological parameters (see e.g. Furlanetto, Oh & Briggs

2006; Morales & Wyithe 2010, for reviews). Several experiments

are currently underway aiming at statistically detecting the 21-cm

signal from the EoR (e.g. LOFAR,1 MWA,2 and PAPER3), already

achieving increasingly attractive upper limits on the 21-cm signal

power spectra (Ali et al. 2015; Beardsley et al. 2016; Patil et al.

2017), and paving the way for the second generation experiments

⋆ E-mail: mertens@astro.rug.nl
1Low Frequency Array, http://www.lofar.org
2Murchison Widefield Array, http://www.mwatelescope.org
3Precision Array to Probe EoR, http://eor.berkeley.edu

such as the SKA4 and HERA5 which will be capable, with their

order of magnitude improvement in sensitivity, of robust power-

spectra characterization and for the first time directly image the

large-scale neutral hydrogen structures from EoR and CD.

A major obstacle in achieving this exciting goal is that the cos-

mological signal is considerably weaker than the astrophysical fore-

grounds. The foregrounds must be accurately and precisely removed

from the observed data as any error at this stage has the ability to

strongly affect the 21-cm signal extraction. While the brightest ex-

tragalactic sources can be modelled and removed after direction

dependent calibration (e.g. Yatawatta et al. 2013), the remaining

foregrounds, composed of extragalactic emission below the confu-

sion noise level and diffuse and partly polarized galactic emission,

are still approximately 3–4 orders of magnitude brighter than the 21-

cm signal. They are nevertheless expected to be spectrally smooth

4Square Kilometre Array, http://www.skatelescope.org
5Hydrogen Epoch of Reionization Array, http://reionization.org
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while the 21-cm signal is anticipated to be uncorrelated on frequency

scales on the order of MHz or larger. This important difference is the

main characteristic exploited by the many techniques that have been

proposed to model and remove the foreground emission, including

parametric fits (e.g. Jelić et al. 2008; Bonaldi & Brown 2015) and

non-parametric methods (e.g. Harker et al. 2009; Chapman et al.

2013).

The assumption made here of a smooth foreground signal is how-

ever strongly affected by the limitations and constraints of the obser-

vational setup. Many additional contaminants have been identified

related to the reality of radio interferometry, and observation in the

low-frequency domain. The chromatic (i.e. wavelength dependent)

response of the instrument manifests itself as a frequency depen-

dence of both the synthesized beam, also called the point spread

function (PSF), and the primary beam (PB) of a receiver station,

producing chromatic side lobes from sources inside the field of view

(FoV, Vedantham, Udaya Shankar & Subrahmanyan 2012; Hazel-

ton, Morales & Sullivan 2013) and outside it (Thyagarajan et al.

2015; Mort et al. 2017; Gehlot et al. 2017). Calibration errors and

mis-subtraction of sources due to imperfect sky modelling will also

contribute to additional side lobe noise (Datta, Bowman & Carilli

2010; Morales et al. 2012; Trott, Wayth & Tingay 2012; Barry et al.

2016; Patil et al. 2016; Ewall-Wice et al. 2017). The rapid phase and

sometime amplitudes modifications of radio waves caused by small-

scale structures in the ionosphere also produce scintillation noise

(Koopmans 2010; Vedantham & Koopmans 2016). These different

mechanisms will all add spectral structure to the otherwise smooth

astrophysical foregrounds, and are well known as ‘mode-mixing’

effects in the literature.

Both simulations and analytic calculations have demonstrated

that these mode-mixing contaminants are essentially localized in-

side a wedge-like region in the two-dimensional angular (k⊥) versus

line-of-sight (k�) power spectra (see Fig. 1). This peculiar shape is

explained by the fact that larger baselines (higher k⊥) change length

more rapidly as a function of frequency than smaller baselines,

causing increasingly faster spectral fluctuations, and thus produc-

ing power into proportionally higher k� modes.

Mitigating those additional foreground contaminants has proven

to be extremely difficult. Increasing the degrees of freedom of

a parametric fit would considerably increase the fitting error and

might also suppress the 21-cm signal at the lower value k modes.

Non-parametric methods are in theory not limited to smooth mod-

els, but modelling an increasingly more complex foreground often

means increasing the numbers of components (without a clear un-

derstanding about what they include), which risks the leakage of

21-cm signal into the reconstructed foreground model and vice

versa. In Patil et al. (2017), six to eight components of the General-

ized Morphological Component Analysis (GMCA; Chapman et al.

2013) were necessary to model, even imperfectly, the foreground

contaminants, reaching limits where it is increasingly more difficult

to assess and be confident about the accuracy of the foreground re-

moval process. We note that the GMCA is not based on a statistical

framework but simply separates the signal in the least number of

morphological components. This makes it hard to build in a-priori

knowledge about the signal in any kind of signal separation.

Ideally, we would like to consistently account for every single

mode-mixing contaminant that have been identified so far. Recently,

Ghosh, Mertens & Koopmans (2018) have demonstrated that esti-

mating the 21-cm power spectrum using a maximum-likelihood

inversion of the spherical-wave visibility equation can considerably

reduce the chromatic effects due to the frequency dependence of

the PSF, effectively recovering a PSF-deconvolved sky. Vedantham

Figure 1. Schematic representation of the two-dimensional power spectra

(inspired by a similar figure in Barry et al. 2016), illustrating the foreground

wedge and the EoR window. Instrumental chromaticity and imperfect cali-

bration and sky model will produce foreground mode-mixing contaminants

which are mainly concentrated inside the PB FoV line (dashed line) and

can leak up to the horizon line. Only modes above this line are theoretically

free of foreground contaminants. Lines of equidistant k =
√

k2
⊥ + k‖ are

overplotted in grey.

et al. (2012) also proposed a new imaging technique in the attempt

of decreasing visibilities gridding artefacts. Convolving the visi-

bilities with a ‘frequency independent’ window function makes it

easier to strongly attenuate the frequency-dependent response to

the side lobes of the primary antenna pattern and Radio Frequency

Interference (RFI) sources, which are mostly located on the ground

(Ghosh et al. 2011). Improving the PB characterization (Thyagara-

jan et al. 2016), and using calibration scheme which enforce smooth

gain solution in frequency (Barry et al. 2016; Yatawatta 2016), also

contribute to reducing the mode mixing. Nevertheless, most of the

improvements are done with the purpose of limiting the leakage

of foreground contaminants outside the foreground wedge, and any

foreground removal strategy will still be required to properly handle

mode-mixing contaminants inside the wedge.

An alternative, which has been increasingly popular, is to try

to avoid as much as possible the foregrounds, and only probe a

triangular-shaped region in k-space where the 21-cm signal is dom-

inant. Because most of the instrumental chromatic effects are con-

fined inside the wedge, there exists in theory an ‘EoR window’

(see Fig. 1) within which one could perform statistical analyses of

the 21-cm signal without significantly being affected by foreground

contaminants. Liu, Parsons & Trott (2014a, b) proposed a mathe-

matical formalism describing the wedge, allowing one to maximize

the extent of the accessible EoR window. Several methods have

also been developed to estimate the covariance of the foregrounds

(Dillon et al. 2015; Murray, Trott & Jordan 2017) which can then

be included in a power-spectra estimator (Trott et al. 2016). These

foreground avoidance or suppression methods have the disadvan-

tage, however, of considerably reducing the sensitivity of the instru-

MNRAS 478, 3640–3652 (2018)
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ments, because they reduce the numbers of modes that can be probed

(Furlanetto 2016). Pober et al. (2014) have estimated the impact of

avoiding the foreground wedge region to be a factor ∼3 for PAPER

or HERA, and even a factor ∼6 for LOFAR. It is thus not a viable

alternative for experiments such as LOFAR–EoR, most sensible

at k ≤ 0.3 h cMpc−1 with a peak sensibility at k ∼ 0.1 h cMpc−1,

and for which very little foreground-free modes are available (see

Fig. 1). Additionally, ignoring the wedge can also introduce a bias

in the recovered 21-cm signal power spectra (Jensen et al. 2016) and

it is also much harder to probe the redshift space distortion effects

of the 21-cm signal if the foreground cleaning in the wedge region

is discarded (Pober 2015).

Considering that for a successful foreground removal strategy

all the foreground contaminants need to be accounted for, and that

ad hoc modelling is not an option for most of them, we propose

a novel non-parametric method based on Gaussian Process Re-

gression (GPR). In this framework, the different components of

the problem, including the astrophysical smooth foregrounds, mid-

scale fluctuations associated with mode mixing, the noise, and a

basic 21-cm signal model, are modelled with Gaussian Process

(GP), allowing for a clean separation of their contributions, and a

precise estimation of their uncertainty. GPR is extensively used in

machine learning applications and has been successfully used in

astronomy, for example to model blazar broad-band flares (Kara-

manavis et al. 2016), inferring stellar rotation periods (Hojjati, Kim

& Linder 2013), or modelling instrumental systematics (Aigrain,

Parviainen & Pope 2016). It provides flexibility and avoids having

to specify an arbitrary functional form for the variations we seek

to model. Implemented in a Bayesian framework, it enables us to

incorporate relevant physical information in the form of covari-

ance structure priors (spectral and possible spatial) on the various

components.

We introduce the foreground modelling and removal method in

Section 2. To demonstrate the ability of the technique, we perform

simulations including realistic astrophysical foreground models,

mid-scale frequency fluctuations, and the simulated 21-cm signal.

We introduce the simulation pipeline in Section 3, before presenting

the results in Section 4. Finally, we summarize the main conclusions

in Section 5.

2 FO R M A LISM

In this section, we first introduce the GPR formalism and then

proceed to describe the application of this technique to foreground

modelling and removal in 21-cm signal observations.

2.1 Gaussian Process

A GP is a probability distribution over functions (Rasmussen &

Williams 2005; Gelman et al. 2014). It constitutes the generalization

of the Gaussian distribution of random variables or vectors, into the

space of functions. A GP f ∼ GP (m, κ) is fully defined by its

mean m and covariance function κ (also called ‘kernel’) so that

any set of points x in some continuous input space is associated

with normally distributed random variables f = f (x), with mean

m(x) and where the value of κ specifies the covariance between the

function values at any two points. The GP is the joint distribution

of all those random variables which all share the desired covariance

properties,

f (x) ∼ N (m(x),K(x, x)). (1)

with K(x, x) an n × n covariance matrix with element (p, q) corre-

sponding to κ(xp, xq).

In GPR, we seek a function f (x) that would model our noisy

observation d = f (x) + n, where n is a Gaussian distributed noise

with variance σ 2
n , observed at the data points x. Given a GP prior

GP (m, κ), the joint density distribution of the observations d and

the predicted function values f ′ = f (x′) at a set of points x′ is,
[

d

f ′

]

∼ N

([

m(x)

m(x′)

]

,

[

K(x, x) + σ 2
n I K(x, x′)

K(x′, x) K(x′, x′)

])

. (2)

where I is the identity matrix. Conditioning the joint prior distribu-

tion on the observations, we obtain the joint posterior distribution

of our model at data points x′,

f ′|x, d, x′ ∼ N
(

E(f ′), cov(f ′)
)

, (3)

where E(.) and cov(.) are the standard notations for the mean and

covariance, respectively, and with,

E(f ′) = m(x′) + K(x′, x)
[

K(x, x) + σ 2
n I

]−1
(d − m(x′))

cov(f ′) = K(x′, x′) − K(x′, x)
[

K(x, x) + σ 2
n I

]−1
K(x, x′). (4)

The function values f ′ can then be sampled from the joint posterior

distribution by evaluating the mean and covariance matrix above,

the mean being the maximum a-posterior (MAP) solution. GPR can

be seen as a fitting method in which we assign prior information

on the function values of the model in the form of a covariance

function. The results are marginalized over all functions drawn

from the probability distribution function (PDF) in equation (3),

unlike parametric modelling where the model family is fixed and

one only marginalizes over the parameters.

While we assume here a data model with Gaussian noise, GP

could be used in theory as priors associated with other likelihood

functions, such as a Poisson likelihood (Diggle, Moyeed & Tawn

1998) or a Student-t likelihood (Neal 1997). Even with current

Gaussian data model, the predictive mean of the posterior PDF

(equation 4) is not required to be Gaussian distributed over the data

points x, enabling one to model non-Gaussian variation.

2.2 Covariance functions

The covariance function κ determines the structure that the GP will

be able to model. A common class of covariance functions is the

Matern class (Stein 1999). It is defined by,

κMatern(xp, xq) =
21−η

Ŵ(η)

(√
2ηr

l

)η

Kη

(√
2ηr

l

)

, (5)

where r = |xq − xp| and Kη is the modified Bessel function of

the second kind. Functions obtained with this class of kernel are

at least η-times differentiable. The kernel is also parametrized by

the ‘hyper parameter’ l, which is the characteristic coherence scale.

It denotes the distance in the input space after which the function

values change significantly and thus defines the ‘smoothness’ of the

function. Special cases of this class are obtained by setting η to ∞,

in which case we obtain a Gaussian kernel, and by setting η = 1/2, in

which case we obtain an exponential kernel. Throughout the paper,

we use the functional form in equation (5) because of its flexibility.

Importantly, if the observation we seek to model is composed of

multiple additive sources, a GP model kernel can be the addition

of their covariance functions. It is then possible to separate the

contribution of the different terms.

We show in Appendix A that GPR can be formulated as a linear

regression problem where one models the data d as d = Hf + n,

MNRAS 478, 3640–3652 (2018)
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where f are the weights of the basis functions and n is the noise

contribution. In general, this is an ill-posed problem and one needs

to set additional prior or constraints on f. Usually, in GPR, the con-

straint is statistical and set in the form of covariance matrix which

can be modelled as a sum of covariance functions corresponding to

the signals from the EoR, foregrounds, and noise.

2.3 Covariance function optimization

Model selection in the context of GPR is a twofold process. The first

choice is that of the type of covariance function that could model the

data, and the second is that of optimizing the ‘hyper parameters’ of

this covariance function. Both can be done in a Bayesian framework,

selecting the model that maximizes the marginal-likelihood, also

called the evidence. This is the integral of the likelihood times the

prior

p(d|x, θ ) =
∫

p(d|f, x, θ )p(f|x, θ )df, (6)

with θ being the hyper parameters of the covariance function κ .

Under the assumption of Gaussianity, we can integrate over f ana-

lytically, yielding the log-marginal likelihood (LML),

log p(d|x, θ ) = −
1

2
d⊺(K + σ 2

n I )−1d −
1

2
log |K + σ 2

n I |

−
n

2
log 2π (7)

where we have used the short-hand K ≡ K(x, x) and with n the

number of sampled points. The posterior probability density of the

hyper parameters is then found by applying Bayes’ theorem:

log p(θ |d, x) ∝ log p(d|x, θ ) + log p(θ ). (8)

We may then either select the model that maximizes equation (7,

maximum-likelihood estimate), or incorporate prior information on

the hyper parameters and maximize equation (8, MAP estimate).

The marginal likelihood does not only favour the models that fit

best the data, overly complex models are also disfavoured (Ras-

mussen & Williams 2005). Selecting the values of θ that maximizes

the LML is a non-linear optimization problem. Because the covari-

ance function is defined analytically, it is trivial to compute the

partial derivatives of the marginal likelihood with respect to the

hyper parameters, which allow the use of efficient gradient-based

optimization algorithm.

2.4 GPR for 21-cm signal detection

In the context of 21-cm signal detection, we are interested in mod-

elling our data d observed at frequencies ν by a foreground, a 21-cm

and a noise signal n:

d = ffg(ν) + f21(ν) + n. (9)

To separate the foreground signal from the 21-cm signal, we can

exploit their different frequency behaviour: the 21-cm signal is

expected to be uncorrelated on scales of a few MHz, while the

foregrounds are expected to be smooth on that scale. The covariance

function of our GP model can then be composed of a foreground

covariance function Kfg and a 21-cm signal covariance function K21,

K = Kfg + K21. (10)

The aim behind including explicitly a 21-cm signal component is

not so much to model it but to isolate its covariance contribution

from the covariance of the foregrounds. A complete model is also

Figure 2. Exponential covariance functions for different values of the

coherence-scale l (grey lines), compared to the covariance of a simulated

21-cm EoR signal at different redshift (coloured lines).

necessary to insure accurate estimation of the error covariance ma-

trix. We can now write the joint probability density distribution of

the observations d and the function values ffg of the foreground

model ffg at the same frequencies ν:

[

d

ffg

]

∼ N

([

0

0

]

,

[

(Kfg + K21) + σ 2
n I Kfg

Kfg Kfg

])

. (11)

Here again, we use the shorthand K ≡ K(ν, ν). We note that we use

a GP prior with a zero mean function, which is common practice

in GPR (Rasmussen & Williams 2005; Gelman et al. ) and allows

the foregrounds to be fully defined by its covariance function. We

tested the algorithm with a zero mean function and a polynomial

parametric mean function and found the former to be a better choice

for our application.

The selection of a covariance function for the 21-cm signal can be

done by comparison to a range of 21-cm signal simulations. In Fig. 2,

we show the covariance as a function of frequency difference 	ν

of a 21-cm signal, calculated with 21CMFAST (Mesinger, Furlanetto

& Cen 2011) when compared to the Matern η = 1/2 covariance

functions for various values of the frequency coherence-scale l.

For this particular set of simulations, the 21-cm signal can be well

modelled using an exponential (η = 1/2) kernel with a frequency

coherence scale ranging between 0.3 and 1.2 MHz depending on

the reionization stage. The foregrounds need to be modelled by

a smoother function. The Gaussian kernel (η = ∞) yields very

smooth models which might be unrealistic for modelling physical

processes and a better alternative may be a Matern kernel with

η = 5/2 or 3/2. Ultimately, the choice of the foreground covariance

function is driven by the data in a Bayesian sense, by selecting the

one that maximizes the evidence. Because the 21-cm signal is faint

compared to the foregrounds and the noise, finding the correct hyper

parameters of the 21-cm signal would be close to impossible if this

were done on each spatial line of sight individually. We therefore

first optimize the LML for the full set of visibilities, assuming the

frequency coherence scale is spatially invariant. This determines

the covariance matrix structure that we then use to model the data

for each spatial line of sight separately. This way we find that it is

possible to perform much deeper modelling and reach the level of

the 21-cm signal.

After GPR, we retrieve the foregrounds part of the model:

E(ffg) = Kfg

[

K + σ 2
n I

]−1
d (12)

MNRAS 478, 3640–3652 (2018)
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3644 F. G. Mertens, A. Ghosh and L. V. E. Koopmans

cov(ffg) = Kfg − Kfg

[

K + σ 2
n I

]−1
Kfg. (13)

We are interested in estimating the residual after foregrounds are

subtracted,

dres = d − E(ffg). (14)

3 SIMULATION

In this section, we describe the simulated astrophysical diffuse fore-

grounds, 21-cm EoR signal, instrumental mode-mixing contami-

nants and noise that are used to test the performance of the GPR

foregrounds. Bright unresolved sources are not included in the sim-

ulation, assuming they can be properly modelled and subtracted

from the data.

3.1 21-cm EoR signal

We use the semi-analytic code 21cmFAST (Mesinger & Furlanetto

2007; Mesinger et al. 2011) to simulate 21-cm signal correspond-

ing to the FoV of one LOFAR–HBA station beam. The code treats

physical processes with approximate methods, and it is therefore

computationally much less expensive than full radiative transfer

simulations. The semi-analytic codes generally agree well with hy-

drodynamical simulations for comoving scales >1 Mpc. We use the

same 21-cm signal simulation as described in Chapman et al. (2012)

and further used in Ghosh et al. (2015, 2018), which was initialized

with 18003 dark matter particles at z = 300. The velocity fields

were calculated on a grid of 4503 which was used to perturb the

initial conditions and the simulation boxes of the 21-cm brightness

temperature fluctuations. A minimum virial mass of 109 M⊙ was

defined for the haloes contributing to ionizing photons. Once the

evolved density, velocity, and ionization fields have been obtained,

21cmFAST computes the δTb fluctuations at each redshift. For fur-

ther details of the simulation, we refer the reader to Chapman et al.

(2012).

Fig. 2 shows that to first order the 21-cm signal can be approxi-

mated and modelled by a GP with an exponential covariance func-

tion, and that the frequency coherence scale is a function of redshift

i.e. of the stage of reionization. The coherence scale of fluctuations

in frequency of the mode-mixing contaminants and of the 21-cm

signal can affect the GPR method. To test this, we also generate 21-

cm signal via a GP with an exponential kernel for which we vary

the frequency coherence-scale l21 between 0.3 and 1.2 MHz. This

range should cover a wide range of possible 21-cm signal models

during the EoR.

3.2 Astrophysical diffuse foregrounds

We use the foreground simulation from Jelić et al. (2008, 2010).

The Galactic foregrounds have three main contributions:

(i) The largest contribution (70 per cent around 100–200 MHz)

comes from the Galactic diffuse synchrotron emission (GDSE) due

to the interaction of cosmic ray electrons with the galactic magnetic

field.

(ii) The next contribution is coming from synchrotron emission

from extended sources, mostly supernova remnants.

(iii) The final component is the free–free radio emission from

diffuse ionized gas which contributes roughly 1 per cent to the total

Galactic foreground emission.

The individual Galactic foreground components are modelled as

Gaussian random fields. The GDSE is modelled as a power law

as a function of frequency with a spectral index of −2.55 ± 0.1

(Shaver et al. 1999) and −2.15 for the free–free emission. We

have not included polarization of the foregrounds in our simulation.

We also assume that point sources brighter than 0.1 mJy can be

identified and accurately removed from the maps and therefore these

sources are not included in the current diffuse foreground simulation

(Jelić et al. 2008). Unresolved extragalactic sources were added to

the simulation based on radio source counts at 151 MHz (Jackson

2005). The simulated radio galaxies are clustered using a random

walk algorithm.

3.3 Instrumental mode-mixing contaminants

The source of mode-mixing contaminants are manifold (Section 1).

In essence, they are due to the combination of the instrument chro-

maticity and imperfect calibration. In the present paper, we will

not attempt to simulate those effects, and we defer that to a fu-

ture publication. Instead, we will simulate them using a GP. This

treatment is motivated by the analysis of LOFAR data which shows

that these medium-scale fluctuations can be well modelled by a

GP with a Matern covariance function, η = 3/2 and a coherence-

scale lmix ∼ 2 MHz.6 In Section 4.4, we will test GPR against oth-

ers methods to generate mode-mixing contaminants using random

polynomials and Matern kernel with different hyper parameters for

the different baselines.

The mode mixing is usually confined to a wedge-like structure

in k space (Datta et al. 2010; Morales et al. 2012) (see Fig. 1).

In the present publication, we do not simulate the k⊥ dependence

of the wedge and also defer this to future work. In fact, current

assessments of the mode-mixing contaminants in LOFAR data tend

to favour a baseline independent ‘brick’ effect observed in Ewall-

Wice et al. (2017), which probably comes mainly from transferring

the gain errors from longer to shorter baselines (Barry et al. 2016;

Patil et al. 2016). For the purpose of testing the impact of the ‘brick’

extent, we simulate instrumental mode-mixing contaminants with

frequency coherence-scale lmix varying between 1 and 8 MHz.

3.4 Noise

In order to obtain realistic simulations of the noise, we first compute

weights maps W(u, v, ν) which reflect the baseline distribution in

the gridded uv plane. A noise visibility cube is created by filling it

with random Gaussian noise for the real and imaginary parts of the

visibility separately with a noise standard deviation,

σ (u, v, ν) =
1

√
W (u, v, ν)

SEFD(ν)
√

2 	ν 	t
, (15)

where 	ν and 	t are the frequency bandwidth and integration time,

respectively, and the SEFD is the system equivalent flux density.

We note that the SEFD is generally frequency dependent and varies

across the sky. The SEFD depends largely on the sky temperature

(Tsky ∝ ν−2.55) of the total sky brightness and the effective area

of the LOFAR array (Aeff). Here, we assume a constant SEFD

∼4000 Jy (van Haarlem et al. 2013) over the simulated bandwidth,

and assume a LOFAR–HBA data set of about 100 nights of 12 h

long observations.

6A more detailed description of LOFAR–HBA mode-mixing modelling will

be given in a forthcoming publication. We refer the reader to Patil et al. (2016,

2017) for a recent analysis of this contaminants.
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Figure 3. The different components of the simulated signal. The astro-

physical diffuse emission (top left panel), instrumental mode-mixing con-

taminants (top right panel), 21-cm signal (bottom left panel), and noise

component (bottom right panel) of a randomly selected visibility from the

simulated cube is plotted as a function of frequency.

3.5 Simulation cube

The simulation spans a frequency range of 132–148 MHz with a

spectral resolution of 0.2 MHz, i.e. a bandwidth of 16 MHz and 80

sub-bands, from which 12 MHz are used for power-spectra calcu-

lation centred around a redshift of z∼ 9.1. The maps cover a FoV

of 6 deg with a pixel size of 1.17 arcminute. The mean value of the

brightness temperature is subtracted to mimic a typical interfero-

metric observation. The intrinsic foreground, mode-mixing, 21-cm

signal and noise, respectively, of the simulation are converted into

visibilities via a Fourier transform and added together to create an

observation cube:

Vobs(u, ν) = Vsky(u, ν) + Vmix(u, ν) + V21(u, ν) + Vn(u, ν), (16)

where u = (u, v) is the vector representing the coordinates in wave-

length in the uv plane and ν is the observing frequency. We restrict

our analysis to the baseline range 50 − 250 λ currently used by LO-

FAR (Patil et al. 2017). An example of these components are shown

in Fig. 3 as a function of frequency. The distinct frequency corre-

lation is the characteristic exploited in the GPR method to separate

these signals. We note that the signal separation (in this case fore-

ground) method could be applied equally well to visibilities, image

pixels, or spherical harmonics coefficients (Ghosh et al. 2018).

The simulation cube is parametrized by four main parameters:

σ 21/σ n: The ratio between the standard deviation of the 21-cm

signal cube and the standard deviation of the noise cube, for the

50 − 250 λ baselines range. This allows to test different reionization

scenario while keeping the same noise level, and vice versa.

l21: The frequency coherence scale of the exponential covariance

kernel in the case when a GP is used to simulate the 21-cm signal.

This parameter is ignored when 21cmFAST is used instead.

σ mix/σ n: The ratio between the standard deviation of the instru-

mental mode-mixing contaminants cube and the standard deviation

of the noise cube, for the 50 − 250 λ baselines range.

lmix: The frequency coherence scale of the Matern covariance ker-

nel used to simulate the instrumental mode-mixing contaminants.

4 R ESULTS

In the following section, the GPR procedure described in Section 2

is applied to the simulated data sets described in Section 3, in order

to model and remove the foreground components, and subsequently

compute the power spectrum of the 21-cm signal. Specifically, we

apply the method on simulated cubes which reproduce the level of

noise, mode-mixing contaminants, and foregrounds diffuse emis-

sion that we currently or theoretically can achieve with LOFAR,

and subsequently explore various values of simulation parameters.

4.1 Recovering the 21-cm signal power spectra

4.1.1 Foregrounds modelling and removal

The simulated foregrounds cube is composed of a frequency smooth

sky signal and less smooth mode-mixing contaminants. We build

this property into our GP covariance function by decomposing our

foregrounds covariance into two separate parts,

Kfg = Ksky + Kmix (17)

with ‘sky’ denoting the intrinsic sky and ‘mix’ denoting the mode-

mixing contaminants. We use a Matern covariance function for all

components of our data GP model. A Matern kernel has three hyper

parameters, l, σ , and η. The function becomes especially simple

when η is half integer (Rasmussen & Williams 2005), which is why

only discrete values of η are used, η ∈ (1/2, 3/2, 5/2, 7/2), choosing

the best value based on the LML. This reduces the numbers of hyper

parameters to be optimized to six (two for each of the intrinsic sky,

mode-mixing and 21-cm components of the GP model). We use the

PYTHON package GPY
7 to do the optimization using the full set of

visibilities. This is done in two steps. We first use a uniform prior

on the hyper parameters and test different values of η, selecting the

model that maximizes the evidence. A final run is then done with

a more restricted range for the hyper parameters. The foreground

subtracted visibility is then obtained by computing the residual:

Vres(u, ν) = Vobs(u, ν) − V rec
fg (u, ν), (18)

where V rec
fg (u, ν) is the MAP GPR foregrounds model.

We recollect that for this particular set of simulations, the 21-cm

signal was modelled using an exponential (η = 1/2) kernel with a

frequency coherence scale ranging between 0.3 and 1.2 MHz. For

foregrounds, we choose a Matern kernel with η = 5/2 or 3/2. Ulti-

mately, the choice of the foreground covariance function is driven

by the data in a Bayesian sense, by selecting the one that maximizes

the evidence. Because the 21-cm signal is faint compared to the

foregrounds and the noise, we therefore first optimize the LML for

the full set of visibilities, assuming the frequency coherence scale is

spatially invariant. In this way, we determine the covariance matrix

structure that we then use to model the data for each spatial line

of sight separately. In GPR, we retrieve the foregrounds part of the

model first using equation (12) and the residuals were subsequently

calculated using equation (14).

4.1.2 Power-spectrum estimation

Next, we determine the power spectra to quantify the scale-

dependent second moment of the signal by taking the Fourier trans-

form of the various visibility cubes V (u, ν) in the frequency di-

rection. We define the cylindrically averaged power spectrum as

7https://sheffieldml.github.io/GPy/
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(Parsons et al. 2012):

P (k⊥, k‖) =
X2Y

�PBB

〈

∣

∣V̂ (u, τ )
∣

∣

2
〉

, (19)

where V̂ (u, τ ) is the Fourier transform in the frequency direction,

B is the frequency bandwidth, �PB is the PB FoV, X and Y are

conversion factors from angle and frequency to comoving distance,

and < .. > denote the averaging over baselines. The Fourier modes

are in units of inverse comoving distance and are given by (Morales,

Bowman & Hewitt 2006; Trott, Wayth & Tingay 2012):

k⊥ =
2π|u|
DM(z)

, (20)

k‖ =
2πH0ν21E(z)

c(1 + z)2
τ, (21)

k =
√

k2
⊥ + k2

‖, (22)

where DM(z) is the transverse comoving distance, H0 is the Hub-

ble constant, ν21 is the frequency of the hyperfine transition, and

E(z) is the dimensionless Hubble parameter (Hogg 1999). Finally,

we average the power spectrum in spherical shells and define the

spherically averaged dimensionless power spectrum as,

	2(k) =
k3

2π2
P (k). (23)

The recovered 21-cm signal power spectrum is obtained by sub-

tracting the noise bias from the residual power spectra, derived

from the residuals in equation (18). In general, the noise bias can

be estimated with reasonable accuracy from the Stokes V image

cube (circularly polarized sky), or by taking the difference between

Stokes I data separated by a small frequency or time interval. The

sky is only weakly circularly polarized and the Stokes V image cube

is expected to provide a good estimator of the thermal noise. In our

simulation, the noise bias is estimated using the same noise cube

used to generate the simulation cube. This ensures that the variance

in the recovered 21-cm signal that we estimate are inherent to GPR

and not due to thermal noise sampling variance limitations.

4.2 Application on the reference simulation

Our reference simulation is representative of the capability of

LOFAR–HBA based on current observation of the noise and the

level of mode-mixing errors. Specifically, the foregrounds data

cube is composed of diffuse emission foreground and instrumental

mode-mixing contaminants simulated using a Matern ηmix= 3/2 co-

variance function with frequency coherence scale of lmix = 2 MHz

and a variance (σmix/σn)2 = 2. The 21-cm signal is simulated from

21cmFAST with a variance (σ 21/σ n)2= 0.007. The noise realization

corresponds to 1200 h of LOFAR-HBA observations and an SEFD

= 4000 K. The input parameters of the reference simulation are

summarized in Table 1.

4.2.1 Power-spectrum results

We generate a total of 200 simulations, each with different noise

and instrumental mode-mixing contaminants realizations, but with

exactly the same astrophysical foregrounds and 21-cm signal. The

power spectra of the different components are shown in Fig. 4. The

top panel shows the spherically averaged power spectra. The intrin-

sic foregrounds are orders of magnitude brighter than the 21-cm

Table 1. Summary of the input parameters of the reference simulation and

estimate on the median and confidence interval of their respective GP model

hyper parameters obtained using an MCMC method. The input intrinsic

sky is simulated using astrophysical foreground simulation from Jelić et al.

(2008), while the 21-cm signal is simulated from 21cmFAST (Mesinger et al.

2011).

Input Prior Estimate

σ sky/σ n – U (30, 45) 37.4+0.4
−0.4

lsky (MHz) – U (60, 100) 80.1+1.2
−1.2

σmix/σ n 1.478 U (1, 2) 1.47+0.01
−0.01

lmix (MHz) 2 U (1.5, 2.5) 2.01+0.02
−0.02

σ 21/σ n 0.083 U (0.002, 0.25) 0.11+0.03
−0.04

l21 (MHz) – Ŵ(3.6, 4.2) 0.90+0.05
−0.04

signal on large scales (small k), but drop below the 21-cm signal

at k > 0.3 h cMpc−1. While the mode-mixing component is only

a small percent of the total power, it occupies a wider range of k

modes. This is better understood when looking at the cylindrically

averaged power spectra as a function of k� (bottom panel in Fig. 4);

while most of the power of the intrinsic foregrounds is concentrated

at low k�, the mode-mixing components still dominate the 21-cm

signal at large k�, due to their smaller coherence in the frequency

direction. This illustrates the importance of adding mode mixing to

any foreground removal strategy. We note that the k mode at which

the foreground power steeply decreases depends on the maximum

baseline considered for the analysis. For this baseline configuration,

we also note that a characterization of the power spectra is theoret-

ically possible for k ≤ 0.3 h cMpc−1 assuming perfect foreground

removal and considering only the thermal noise uncertainty on the

21-cm signals (see also Fig. 6).

The initial GPR runs with uniform priors on all hyper parameters

reveal that, in about 40 per cent of the cases, the 21-cm coherence-

scale hyper-parameter l21 converges to the prior higher bound. A

more informative prior can be used to solve this issue and better

constrain l21. Fig. 2 shows that the simulated 21-cm signal coherence

scales range between about 0.3 and 1.2 MHz. A gamma distribution

prior, thus honoring the positivity of the hyper parameter, can then

be used instead of the uniform prior with a variance broad enough

such that it includes all probable values. The PDF of the gamma

distribution Ŵ(α, β), parametrized by the shape α and rate β, is

defined as,

P (x|α, β) =
βαxα−1e−βx

γ (α)
, (24)

where γ (α) is the gamma function. For the hyper-parameter l21, we

use the Ŵ(3.6, 4.2) prior which is characterized by an expectation

value of 0.85, a median value of 0.77, a 16th percentile value of 0.42

and an 84th percentile value of 1.29. To test the impact of this prior

on the recovery of the 21-cm signal, we perform simulations similar

to the ones described above but with the 21-cm signal simulated

from a GP for which we know the true value of l21. We then compare

the input value of l21 and the value estimated from the GPR. This

shows that in case of a uniform prior, the values of l21 are not well

estimated while, using a Ŵ(3.6, 4.2) prior, the estimated values of

l21 are significantly less biased and have an uncertainty of ∼0.2. We

found that using this prior is only necessary because the reference

simulation is characterized by a low signal-to-noise ratio (S/N) of

the 21-cm signal and a low-frequency coherence scale of the mode-
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Figure 4. Detection of the EoR signal with the reference simulation. The top

panel shows the spherically averaged power spectra. The central and bottom

panels show the cylindrically averaged power spectra, averaged over k� and

over k⊥ respectively. The simulated observed signal (dark blue) is composed

of intrinsic astrophysical foregrounds (dotted dark blue), instrumental mode-

mixing contaminants (dashed light blue), noise (green), and a simulated

21-cm signal (dashed grey). Using our GPR method to model and remove

the foregrounds from the simulated cube, the 21-cm signal (orange) is well

recovered with limited bias. The orange filled region represents the standard

deviation of the recovered 21-cm signal over 200 simulated cubes.

mixing component. The gamma prior helps in better separating the

contributions from the mode-mixing and 21-cm signal.

The initial GPR runs are also used to set the values of η of the

Matern covariance function for the different GP components. We

find that the evidence is maximized using ηsky = 5/2, ηmix= 3/2,

and η21 = 1/2.

Having found the most probable settings of GP model and hyper-

parameter priors, we perform a final GPR on each of the simulated

cubes. Fig. 4 shows the power spectra of the recovered 21-cm sig-

nal compared to the input cosmological signal power spectra. The

orange filled region represents the standard deviation of the recov-

ered signal over the 200 simulated cubes, the line corresponding

to the mean. This provides an estimate respectively of the variance

and the bias of the method. The bias is overall limited but is more

pronounced at low k modes. It is maximum at k = 0.073 h cMpc−1

where we have a bias equal to 86 per cent of the uncertainty. The

variance is almost always similar or below, on the k modes probed,

the thermal noise limit. We however find it to be 30 per cent greater

at k = 0.18 h cMpc−1. We recall that the noise bias is estimated

using the same noise cube used in the simulated cube. Hence, the

variance that we estimate is inherent to GPR and does not include

thermal noise sampling variance.

Investigating the cylindrically averaged power spectra reveals that

most of the bias of the current implementation of the GPR method

is introduced because of the one-dimensional fit to the data in the

frequency direction. The power spectra as a function of k� (bottom

panel of Fig. 4) show an excellent correspondence between the input

and recovered signal with small uncertainty. On the contrary, the

power spectra as a function of k⊥ (central panel of Fig. 4) show a

much larger bias and uncertainty. The method is capable of retaining

the correct variance in the frequency direction but not so well in the

baseline direction. This is explained by the fact that the regression is

currently only done in the frequency direction and assumes that the

frequency coherence scale of the different components is spatially

invariant.

In Section 5, we explore various improvements to the method

that may be implemented to reduce the bias and uncertainty. Nev-

ertheless, current results already demonstrate that the approach is

able to achieve a reliable first measurement of the 21-cm signal and

an initial characterization of its power spectra in 1200 h of LOFAR

observations.

4.2.2 Estimating the model hyper-parameter uncertainties

The MAP solution of the model hyper parameters is evaluated

through an optimization algorithm, using the analytically defined

likelihood function (equation8). However, to fully sample the pos-

terior distribution of the hyper parameter, characterize its topology,

and analyse the correlations between parameters, we resort to Monte

Carlo Markov Chain (MCMC).

An MCMC method samples the posterior probability distribu-

tion of the model parameters given the observed data. We use an

ensemble sampler algorithm based on the affine-invariant sampling

algorithm (Goodman & Weare 2010), as implemented in the EM-

CEE PYTHON package8 (Foreman-Mackey et al. 2013). Fig. 5 shows

the resulting posterior probability distribution of the GP model hy-

per parameters. We find that the input values are always inside the

68 per cent confidence interval. The hyper parameters of the mode-

mixing covariance function are very well constrained. The con-

fidence interval on the 21-cm signal kernel hyper parameters are

relatively larger, because in this particular simulation, the 21-cm

signal is an order of magnitude fainter than the noise. The param-

eter estimates and confidence intervals are summarized in Table 1,

along with their input values and associated priors. We note that for

this setup the 21-cm signal has no input l21 because it was simulated

using 21cmFAST.

8http://dfm.io/emcee/current/
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Figure 5. Posterior probability distributions of the GP model hyper pa-

rameters for the reference simulation. We show here the coherence scale

and strength of the EoR covariance function (l21 in MHz and σ 21), and the

coherence scale and strength of the mode-mixing foreground kernel (lmix

in MHz and σmix). The input parameters of the simulation are marked in

blue. The orange contours show the 68 per cent and 95 per cent confidence

interval. We note that the PDFs are all narrower than their priors.

Figure 6. Spherically averaged power spectra of the foreground modelling

error using the GPR and GMCA method. With GPR (blue line), the fore-

ground error is at the level of the 21-cm signal (dashed black line) and is

close to the thermal noise uncertainty (plain black line) which is the inher-

ent statistical error level we could achieve, while the foreground error with

GMCA is at the level of the noise (dotted black line).

4.2.3 Comparison between GPR and GMCA

Next, we compare GPR to another well-tested foreground removal

method. From the currently available algorithms, the GMCA (Bobin

et al. 2008; Chapman et al. 2013) is the one that has demonstrated

the best results (Chapman et al. 2015; Ghosh et al. 2018). We use

the PYTHON based toolbox PYGMCALAB
9 and run the algorithm on

our simulated cubes. We model the foregrounds by the minimum

numbers of components that minimize the overall fitting error. An

optimal eight components are used to represent the foregrounds. We

then compare the power spectra of the foreground modelling error

9http://www.cosmostat.org/software/gmcalab

when using GPR and GMCA. Fig. 6 shows that GMCA has difficulty

to correctly model the complex mode-mixing contaminants and

does not reach a level of modelling error better than the noise

for k ≤ 0.3 h cMpc−1. Using GPR, we improve these results by

an order of magnitude, and this allows us to achieve an error in the

foreground power spectra that is at or below the 21-cm signal power

spectrum. We also note that this level is similar to the thermal noise

uncertainty which is the ultimate error level we can achieve.

4.3 Performance of the GPR method

4.3.1 Exploring the input parameter space

The efficiency of a foreground removal algorithm depends on the

characteristics of the foregrounds and of the 21-cm signal. To ex-

plore the performance of GPR in terms of bias and variance, we

explore the input parameters of the simulated cube, varying one pa-

rameter at a time. As a quality criterion, we use the fractional bias

of the recovered spherically averaged 21-cm signal power spectra,

rrec(k) =
	2

rec(k) − 	2
21(k)

	2
21(k)

. (25)

where 	2
rec(k) is the GPR recovered power spectrum, and 	2

21(k) is

the power spectrum of the input 21-cm signal.

For these tests, we build simulation cubes with central parameters

σ mix = 1.478σ n, lmix = 3 MHz, σ 21 = 0.12σ n, and l21= 0.75 MHz

around which we vary the parameters. We use a GP with an ex-

ponential covariance function (see Section 3.1) to generate 21-cm

signals such that we can control the frequency correlation of the

signal (i.e. l21). A total of 3000 simulations with different realiza-

tions of the noise, 21-cm signal, and mode-mixing contaminants

are generated. We determine the relative difference between recov-

ered and input power spectra for different k bins and compute its

mean and standard deviation10 over the full set of simulated cubes

(Fig. 7). This provide us with an estimate of the fractional bias and

uncertainty introduced by the method. We also compare the later to

the minimal uncertainty due to thermal noise.

By varying the strength of the 21-cm signal, we find that the

bias is limited (below 35 per cent) for the full range of the inves-

tigated values and falls below 20 per cent for σ 21 ≥ 0.12σ n. The

uncertainty and bias increase with lower S/N as expected, and we

find it to be significantly higher than the thermal noise uncertainty

for σ 21 � 0.1σ n. Varying the frequency coherence scale of the

mode-mixing contaminants, we also find limited bias and a small

increase of the uncertainty at low lmix. As lmix approaches that of l21,

it becomes increasingly more difficult to statistically differentiate

the two signals. This is the reason why the uncertainty increases

for values lmix < 3 MHz. A decrease in the value of lmix also corre-

sponds to increasing the extent of the foreground wedge (or ‘brick’),

and equivalently reducing the EoR window. Varying the frequency

coherence scale of the 21-cm signal, we find that some bias is in-

troduced at small and large l21, related to the use of a Gamma prior

to this GP hyper parameters.

Overall, GPR is limited in situation of very low S/N and/or when

the foregrounds start to mix with the 21-cm signal. In most situa-

tions, it performs relatively well, with limited bias and uncertainty

level on par with the thermal noise uncertainty.

10We note that the distribution of rrec is actually not Gaussian, being the

ratio of two distributions, but the mean and standard deviation were found

to be appropriate enough to characterize this distribution.
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Figure 7. Fractional bias of the recovered 21-cm signal (rrec) with varying coherence scale of the 21-cm signal (l21, left-hand panel), coherence scale of the

mode-mixing contaminants (lmix, central panel), and strength of the 21-cm signal (σ 21/σ n, right-hand panel), for different k ranges. We show the mean (plain

line) and standard deviation (filled area) of the fractional bias calculated from a total of 3000 simulations, giving an estimate of the bias and uncertainty,

respectively, introduced by the method. GPR performance is optimal for lmix > 3.0 MHz, σ 21 � 0.1σ n, and for 0.6 MHz <l21 < 1 MHz. The vertical dashed

lines represent the nominal values around which we vary the parameters.

Figure 8. Detection confidence interval for the reference simulation as a

function of the S/N of the 21-cm signal σ 21/σ n. The measured confidence

levels (blue points) are fitted using an inverse function (blue line). The

dashed grey lines show the 95 per cent and 99.7 per cent confidence level.

4.3.2 Detection confidence level

We define the detection confidence level as the probability that the

model is preferred (i.e. the evidence is maximal) if it contains a

21-cm signal component compared to one that does not. In GPR,

the evidence as a function of the hyper-parameters θ is analytically

defined (equation 7) and can be efficiently estimated for the optimal

values of θ . We note that comparing this maximum evidence for two

different covariance structures parametrized by different numbers

of hyper parameters does not usually provide definitive answer on

which kernel is the most suitable to model the data, especially if the

difference of the evidences is small (Rasmussen & Williams 2005;

Fischer et al. 2016). Nevertheless, this criterion is fast to compute

and can still provide informative approximation on the confidence

level of the detection. To determine it as a function of S/N of the 21-

cm signal, we generate new reference simulations, varying now the

input 21-cm signal strength σ 21. We use equation (7) to compute the

evidence for the optimal values of the hyper-parameters θ . In Fig. 8,

we show the detection confidence level as a function of the input

21-cm signal σ 21/σ n, calculated using a total of 3000 simulations. A

95 per cent and 99.7 per cent detection confidence level is observed

for σ 21 � 0.09 σ n and σ 21 � 0.12σ n respectively, rapidly increasing

with S/N.

The above calculation is obtained using the expression of the evi-

dence from equation (7) which is a function of the hyper-parameters

θ . A more robust way to compare the models is to estimate the ev-

idence values integrated over the hyper parameters and take their

ratio, also called the Bayes factor. This is generally much more

computationally expensive, and we only perform this test, as a

confirmation of the above results, for a limited number of cases.

We compute the evidence with an implementation of the nested

sampling algorithm of Mukherjee, Parkinson & Liddle (2006). For

σ21 = 0.083 σn (i.e. the reference simulation), we obtain Bayes fac-

tors ranging between 3.8 and 19 corresponding to a ‘substantial’

to ‘strong’ strength of evidence according to the scale of Jeffreys

(1961). For σ21 = 0.12 σn, we obtain Bayes factors ranging between

5.2 and 55 corresponding to a ‘substantial’ to ‘very strong’ strength

of evidence. Finally, for σ21 = 0.2 σn, we obtain a Bayes factors

ranging between 328 and 1.9 × 104 corresponding to a ‘decisive’

strength of evidence.

We note that these estimates are only for a single frequency

bandwidth of 12 MHz, and that usually several redshift bins are

combined which will increase the overall confidence level on the

detection of the 21-cm signal.

4.4 Testing different methods of simulating mode mixing

In this sub-section, we test the versatility of GPR against alterna-

tive form of mode-mixing contaminants. In previous simulations,

we used a Matern kernel with fixed coherence scale. We now per-

form similar simulation with three others methods to generate the

instrumental mode-mixing components. The simulation cubes are

generated with parameters σ mix = 1.478σ n, σ 21 = 0.12σ n, and

l21 = 0.75 MHz.

4.4.1 Random polynomial

We generate mode-mixing visibilities using polynomial functions

of random order taken in the range 3 –omax and random coefficients.

Applying GPR to this simulation shows that this component is best

modelled (i.e. the evidence is maximized) using a Matern covariance

MNRAS 478, 3640–3652 (2018)
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Figure 9. Fractional bias of the recovered 21-cm signal (rrec) for mode-mixing contaminants generated using random polynomials with maximum order

omax (left), GP with random coherence scale selected in the range lmax
mix − lmin

mix with lmin
mix = 3 (middle), and GP with decreasing coherence scale as function

of baseline length with l50
mix = 6 MHz (right). The top panel shows the two-dimensional cylindrically averaged power spectra of the different mode-mixing

contaminants for the most extreme tested scenarios (the axis are in log scale). The bottom panel show the mean (plain line) and standard deviation (filled area)

of the fractional bias calculated from a total of 1000 simulations.

function with ν = ∞ (equivalent to a Gaussian covariance kernel).

The results of this test are shown in the left-hand panel of Fig. 9.

The measured bias is minimal for all tested cases.

4.4.2 Random coherence scale

We now generate mode-mixing visibilities using a Matern ker-

nel and randomly selected coherence-scale lmix in the range

3 − lmax
mix MHz for each different visibilities modes u. For this test,

we set ν = ∞. Running GPR on this simulation shows that the

mode-mixing component is best modelled by a Rational Quadratic

covariance function which is defined as:

κRQ(xp, xq) =
(

1 +
|xq − xp|2

2αl

)−α

, (26)

and can be seen as an infinite sum of Gaussian covariance func-

tions with different characteristic coherence scales (Rasmussen &

Williams 2005). The results of this test is shown in the middle panel

of Fig. 9. We again find limited bias which is also independent of

the range of coherence scales.

4.4.3 Decreasing coherence scale

A wedge-like feature can be simulated by generating mode-mixing

visibilities with decreasing coherence scale as a function of baseline.

For this test, we use a Matern kernel with ν= ∞, and a coherence

scale that is linearly decreasing as a function of baseline with the

coherence scale of the 50 lambda baselines l50
mix = 6 MHz, and the

coherence scale of the 250 lambda baselines l250
mix taken in the range

3 − 5.5 MHz. The result of this test is shown in the right-hand panel

of Fig. 9. It shows that an increase of the bias with increasing range

of coherence scales. The maximum bias is nevertheless limited to

about 30 per cent.

In the future, we will implement the ability of GPR to perform a fit

of the hyper parameters with different coherence scale for different

baselines ranges, which should reduce further this bias.

5 D I SCUSSI ON AND CONCLUSI ON

In this paper, we have introduced a novel signal separation method

for EoR and CD experiments. The method uses GPR to model

various mixed components of the observed signal, including the

spectrally smooth sky, mode mixing associated with the instrument

chromaticity and imperfect calibration, and a 21-cm signal model.

Including covariance functions for each of these components in the

GPR ensures a relatively unbiased separation of their contribution

and accurate uncertainty estimation, even in very low signal-to-

noise observations.

In building the GP model, we make use of prior information

about the different components of the signal. This makes the method

very useful in the initial diagnostic and analysis stage of the data

processing as it allows one to get a better insight into the data

in terms of potential contaminants (i.e. mode mixing but also the

ionosphere). Additionally, GPR is flexible, and the GP model can

be easily adapted to integrate new systematics. Cable reflexion,

for example, could be easily modelled in this framework, adding a

periodic covariance function component to the model.

MNRAS 478, 3640–3652 (2018)
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GPR is shown to accurately model the foreground contaminants

including instrumental mode mixing which have proven to be an

Achilles heel of current foreground removal algorithms. When ap-

plied to simulation data sets, equivalent to LOFAR 1200 h of obser-

vations and based on its current assessment of noise and systematic

errors, GPR limits biasing the 21-cm signal, and recovers the input

power spectrum well across the whole k range 0.07 − 0.3 h cMpc−1.

When compared to GMCA, we find that GPR decreases the uncer-

tainty on the recovered 21-cm signal power spectra by an order

of magnitude, in the presence of mode mixing. Exploring the per-

formance of GPR using a range of different foregrounds and EoR

signal, we find an optimal recovery for lmix ≥ 3 MHz and σ 21 �

0.12σ n, with fractional bias below 20 per cent and with at least a 3σ

confidence level on the detection. Outside this range, the detectabil-

ity of the signal is still adequate, but with larger bias and larger

uncertainty. These values hold for a single-frequency bandwidth

of 12 MHZ, and combining several redshift bins will improve the

confidence limit on the detection. They partially depend as well on

the observation configuration, such as uv-coverage, the lower and

upper baseline limits, the FoV, and so they are most representatives

for LOFAR–HBA in 1200 h of observations.

The fundamental improvement of GPR resides in its complete sta-

tistical description of all components contributing to the observed

signal. In its current implementation,11 we use a generic model for

the 21-cm signal and mode-mixing components which only make

use of our prior knowledge on the frequency dependence of the

signals. While this treatment may be sufficient for a detection of

the 21-cm signal and its characterization with LOFAR, an improved

model may be built for future experiments with e.g. the more sen-

sitive SKA. The mode-mixing model for example can be improved

by integrating the k⊥ dependency of the foreground wedge and

folding into the model the analytic work describing the effect on

the signal of the instrumental chromaticity, calibration errors and

sky-model incompleteness. Exploiting the isotropic nature of the

21-cm signal and its evolution at different redshift bins will also en-

sure a more sensitive and accurate modelling. Finally, in the course

of determining the physical 21-cm signal parameters from the 21-

cm signal power spectra using, for example, an MCMC sampler

(Greig & Mesinger 2015; Kern et al. 2017), the GPR bias could be

determined and integrated at each MCMC steps.
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1587

Ghosh A., Mertens F. G., Koopmans L. V. E., 2018, MNRAS, 474, 4552

Goodman J., Weare J., 2010, Commun. Appl. Math. Comput. Sci., 5, 65

Greig B., Mesinger A., 2015, MNRAS, 449, 4246

Harker G. et al., 2009, MNRAS, 397, 1138

Hazelton B. J., Morales M. F., Sullivan I. S., 2013, ApJ, 770, 156

Hogg D. W., 1999, preprint (arXiv:9905116)

Hojjati A., Kim A. G., Linder E. V., 2013, Phys. Rev. D, 87, 123512

Jackson C., 2005, PASA, 22, 36

Jeffreys H., 1961, Theory of Probability, 3rd edn. Clarendon Press, Oxford
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APPEN D IX A : G PR AS A LINEAR

RE GR ESSION PROBLEM

In a linear regression problem, one models the data d as,

d = Hf + n (A1)

where f are the weights of the basis functions that form the columns

of matrix H. The noise on the data is n with a covariance matrix

�n = 〈nnT 〉. In GPR often no basis functions are chosen, such that

H = I and f are the true function values where the data was taken.

Hence,

d = f + n (A2)

We note that equation (A2) is ill-posed and additional constraints

need to be set on f. In GPR, this constraint is statistical and set in the

form of a covariance matrix �f = 〈ffT 〉. In other words, the values

in f should follow a particular covariance structure, which is set by

some simple functional form, such as e.g. a Matern Kernel. If we

assume that both n and f are Gaussian distributed between any two

values in n or f, we have a GP. We show this as follows. We can

rewrite equation (A2) in matrix notation as,

z =
[

d

n

]

=
[

II

0I

][

f

n

]

(A3)

Here, z is also a Gaussian random variable because it is a linear com-

bination of two Gaussian random variables f and n. The covariance

matrix of z then becomes,

�z = 〈zzT 〉 =
[

�d�f

�f�f

]

(A4)

where �d ≡ �f + �n. Now, given this covariance structure, we

have the joint PDF as,

P(z) =
1

√
det(2πCz)

e(− 1
2

zT Cz
−1z) (A5)

We can think of this as a multivariate Gaussian PDF with correla-

tions between d and f, where d is a noisy version of f (d = f + n).

We note that we actually know d and hence this PDF is a conditional

PDF. The conditional PDF is another Gaussian with an expectation

value,

〈f|d〉 = 〈d〉 + �f�d
−1(d − 〈d〉) (A6)

Now, if 〈f〉 = 0 and 〈n〉 = 0 as often assumed then we have 〈d〉 = 0

and equation (A6) becomes,

〈f|d〉 = �f (�f + �n)−1 d. (A7)

With a little more linear algebra, it can be shown that the covariance

of this expectation value is given by,

�〈f|d〉 = �f − �f (�f + �n)−1 �f . (A8)

We note these sets of equations (A7) and (A8) are exactly similar

to mean and covariance quoted in Section 2, equation (4). On the

other hand, the posterior probability of the data given f times a prior

on f, can be written as,

logP(f|d) = −
1

2
(f − d)T �n

−1(f − d) −
1

2
fT �f

−1f + constant

= −
1

2
fT �n

−1f −
1

2
fT �f

−1f +
1

2
fT �n

−1d

+
1

2
dT �n

−1f + constant (A9)

Now, maximizing equation (A9) with respect to the functional val-

ues f, we can find the MAP solution,

〈f〉 = (�f
−1 + �n

−1)−1�n
−1d = �f(�f + �n)−1d (A10)

here, we used the Searle identity

(�f
−1 + �n

−1)−1�n
−1 = �f(�f + �n)−1�n�n

−1

with �n�n
−1 = I. Hence, 〈f〉 is the MAP solution of d = f + n with

n ∼ N(0, �n) and f ∼ N(0, �f). In conclusion, equations (A7) and

(A10) show that GPR is fully equivalent to the usual linear regres-

sion d = Hf + n, where d is the data, H = I is assumed the identity

matrix, f are the inferred functional value, and n is the (Gaussian)

noise. If one then assumes n ∼ N(0, �n) and f ∼ N(0, �f), where

the �’s are the covariance matrices of the noise and the functional

values, with the former used in the likelihood function and the latter

in a prior, in the usual Bayesian sense, then one arrives exactly at

the GPR equations (for x = x′ in equation A7) in Section 2 (we

assume as in the paper that mean = 0 for the Gaussian PDFs).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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