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Abstract. We propose a new simulation-based technique for verifying
applications running within a large heterogeneous system. Our technique
starts by performing simulations of the system in order to learn the
context in which the application is used. Then, it creates a stochastic
abstraction for the application, which takes the context information into
account. This smaller model can be verified using efficient techniques
such as statistical model checking. We have applied our technique to an
industrial case study: the cabin communication system of an airplane.
We use the BIP toolset to model and simulate the system. We have
conducted experiments to verify the clock synchronization protocol i.e.,
the application used to synchronize the clocks of all computing devices
within the system.

1 Introduction

Systems integrating multiple heterogeneous distributed applications communi-
cating over a shared network are typical in various sensitive domains such as
aeronautic or automotive embedded systems. Verifying the correctness of a par-
ticular application inside such a system is known to be a challenging task, which
is often beyond the scope of existing exhaustive validation techniques. The main
difficulty comes from network communication which makes all applications in-
terfering and therefore forces exploration of the full state-space of the system.

Statistical Model Checking [8,13,15] has recently been proposed as an alterna-
tive to avoid an exhaustive exploration of the state-space of the model. The core
idea of the approach is to conduct some simulations of the system and then use
statistical results in order to decide whether the system satisfies the property
or not. Statistical model checking techniques can also be used to estimate the
probability that a system satisfies a given property [8,7]. Of course, in contrast
with an exhaustive approach, a simulation-based solution does not guarantee
a correct result. However, it is possible to bound the probability of making
an error. Simulation-based methods are known to be far less memory and time
intensive than exhaustive ones, and are sometimes the only option [16,10]. Statis-
tical model checking is widely accepted in various research areas such as systems
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biology [6,11] or software engineering, in particular for industrial applications.
There are several reasons for this success. First, it is very simple to implement,
understand and use. Second, it does not require extra modeling or specification
effort, but simply an operational model of the system, that can be simulated
and checked against state-based properties. Third, it allows model-checking of
properties [5] that cannot be expressed in classical temporal logics. Nevertheless,
statistical-model checking still suffers from the system’s complexity. In particu-
lar, for the case of heterogeneous systems, the number of components and their
interactions are limiting factors on the number and length of simulations that
can be conducted and hence on the accuracy of the statistical estimates.

We propose to exploit the structure of the system in order to increase the
efficiency of the verification process. The idea is conceptually simple: instead
of performing an analysis of the entire system, we propose to analyze each ap-
plication separately, but under some particular context/execution environment.
This context is a stochastic abstraction that represents the interactions with
other applications running within the system and sharing the computation and
communication resources. We propose to build such a context automatically by
simulating the system and learning the probability distributions of key charac-
teristics impacting the functionality of the given application.

The overall contribution of this paper is an application of the above method
on an industrial case study, the heterogeneous communication system (HCS for
short) deployed for cabin communication in a civil airplane. HCS is a heteroge-
neous system providing entertainment services (e.g., audio/video on passengers
demand) as well as administrative services (e.g., cabin illumination, control, au-
dio announcements), which are implemented as distributed applications running
in parallel, across various devices within the plane and communicating through
a common Ethernet-based network. The HCS system has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and syn-
chronization constraints. An important requirement, which will be studied in this
paper, is the accuracy of clock synchronization between different devices. This
latter property states that the difference between the clocks of any two devices
should be bounded by a small constant, which is provided by the user and de-
pends on his needs. Hence, one must be capable of computing the smallest bound
for which synchronization occurs and compare it with the bound expected by the
user. Unfortunately, due to the large number of heterogeneous components that
constitute the system, deriving such a bound manually from the textual speci-
fication is an unfeasible task. In this paper, we propose a formal approach that
consists in building a formal model of the HCS, then applying simulation-based
algorithms to this model in order to deduce the smallest value of the bound
for which synchronization occurs. We start with a fixed value of the bound and
check whether synchronization occurs. If yes, then we make sure that this is the
best one. If no, we restart the experiment with a new value.

At the top of our approach, there should be a tool that is capable of modeling
heterogeneous systems as well as simulating their executions and the interac-
tions between components. In this paper, we propose to use the BIP toolset [2]
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for doing so. BIP (Behaviour-Interaction-Priority) supports a methodology for
building systems from atomic components encapsulating behavior, that commu-
nicate through interactions, and coordinate through priorities. BIP also offers
a powerful engine to simulate the system and can thus be combined with a
statistical model checking algorithm in order to verify properties. Our first con-
tribution is to study all the requirements for the HCS to work properly and
then derive a model in BIP. Our second contribution is to study the accuracy
of clock synchronization between several devices of the HCS. In HCS the clock
synchronization is ensured by the Precision Time Protocol (PTP for short) [1],
and the challenge is to guarantee that PTP maintains the difference between a
master clock (running on a designated server within the system) and all the slave
clocks (running on other devices) under some bound. Since this bound cannot
be pre-computed, we have to verify the system for various values of the bound
until we find a suitable one. Unfortunately, the full system is too big to be an-
alyzed with classical exhaustive verification techniques. A solution could be to
remove all the information that is not related to the devices under consideration.
This is in fact not correct as the behavior of the PTP protocol is influenced by
the other applications running in parallel within the heterogeneous system. Our
solution to this state-space explosion problem is in two steps (1) we will build a
stochastic abstraction for a part of the PTP application between the server and
a given device; the stochastic part will be used to model the general context in
which PTP is used, (2) we will apply statistical model checking on the resulting
model.

Thanks to this approach, we have been able to derive precise bounds that
guarantee proper synchronization for all the devices of the system. We also com-
puted the probability of satisfying the property for smaller values of the bound,
i.e., bounds that do not satisfy the synchronization property with probability 1.
Being able to provide such information is of clear importance, especially when
the best bound is too high with respect to the user’s requirements. We have
observed that the values we obtained strongly depend on the position of the
device in the network. We also estimated the average and worst proportion of
failures per simulation for bounds that are smaller than the one that guarantees
synchronization. Checking this latter property has been made easy because BIP
allows us to reason on one execution at a time. Finally, we have also considered
the influence of clock drift on the synchronisation results. The experiments high-
light the generality of our technique, which could be applied to other versions of
the HCS as well as to other heterogeneous applications.

Due to space limitations, several constructions and algorithms are given in a
technical report [3].

2 An Overview of Statistical Model Checking

Consider a stochastic system S and a property φ. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions: (1) Qualitative: Is the probability that S satisfies φ greater or equal



Statistical Abstraction and Model-Checking of Large Heterogeneous Systems 35

to a certain threshold? and (2) Quantitative: What is the probability that S
satisfies φ? Contrary to numerical approaches, the answer is given up to some
correctness precision. In the rest of the section, we overview several statistical
model checking techniques. Let Bi be a discrete random variable with a Bernoulli
distribution of parameter p. Such a variable can only take 2 values 0 and 1 with
Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is
associated with one simulation of the system. The outcome for Bi, denoted bi,
is 1 if the simulation satisfies φ and 0 otherwise.

2.1 Qualitative Answer Using Statistical Model Checking

The main approaches [15,13] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ, we
can test H : p ≥ θ against K : p < θ. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (α, β) of a test is determined by two parameters, α and β, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-II error ) is less or equal to α
(respectively, β). A test has ideal performance if the probability of the Type-I
error (respectively, Type-II error) is exactly α (respectively, β). However, these
requirements make it impossible to ensure a low probability for both types of
errors simultaneously (see [15] for details). A solution is to use an indifference
region [p1, p0] (with θ in [p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. We
now sketch two hypothesis testing algorithms.

Single Sampling Plan. To test H0 against H1, we specify a constant c. If
∑n

i=1 bi

is larger than c, then H0 is accepted, else H1 is accepted. The difficult part in this
approach is to find values for the pair (n, c), called a single sampling plan (SSP
in short), such that the two error bounds α and β are respected. In practice, one
tries to work with the smallest value of n possible so as to minimize the number
of simulations performed. Clearly, this number has to be greater if α and β are
smaller but also if the size of the indifference region is smaller. This results in
an optimization problem, which generally does not have a closed-form solution
except for a few special cases [15]. In his thesis [15], Younes proposes a binary
search based algorithm that, given p0, p1, α, β, computes an approximation of
the minimal value for c and n.

Sequential probability ratio test. The sample size for a single sampling plan is
fixed in advance and independent of the observations that are made. However,
taking those observations into account can increase the performance of the test.
As an example, if we use a single plan (n, c) and the m > c first simulations
satisfy the property, then we could (depending on the error bounds) accept
H0 without observing the n − m other simulations. To overcome this problem,
one can use the sequential probability ratio test (SPRT in short) proposed by
Wald [14]. The approach is briefly described below.
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In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A, and H1

if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of m until

either H0 or H1 is satisfied; the algorithm terminates with probability 1[14]. This
has the advantage of minimizing the number of simulations. In his thesis [15],
Younes proposed a logarithmic based algorithm SPRT that given p0, p1, α and
β implements the sequential ratio testing procedure.

2.2 Quantitative Answer Using Statistical Model Checking

In [8,12] Peyronnet et al. propose an estimation procedure to compute the prob-
ability p for S to satisfy φ. Given a precision δ, Peyronnet’s procedure, which
we call PESTIMATION, computes a value for p′ such that |p′ − p|≤δ with con-
fidence 1 − α. The procedure is based on the Chernoff-Hoeffding bound [9]. Let
B1 . . . Bm be m discrete random variables with a Bernoulli distribution of pa-
rameter p associated with m simulations of the system. Recall that the out-
come for each of the Bi, denoted bi, is 1 if the simulation satisfies φ and
0 otherwise. Let p′ = (

∑m
i=1 bi)/m, then Chernoff-Hoeffding bound [9] gives

Pr(|p′ − p| > δ) < 2e−
mδ2

4 . As a consequence, if we take m≥ 4
δ2 log( 2

α ), then
Pr(|p′ − p|≤δ) ≥ 1 − α. Observe that if the value p′ returned by PESTIMA-
TION is such that p′≥θ − δ, then S |= Pr≥θ with confidence 1 − α.

2.3 Playing with Statistical Model Checking Algorithms

The efficiency of the above algorithms is characterized by the number of simu-
lations needed to obtain an answer. This number may change from executions
to executions and can only be estimated (see [15] for an explanation). However,
some generalities are known. For the qualitative case, it is known that, except
for some situations, SPRT is always faster than SSP. When θ = 1 (resp. θ = 0)
SPRT degenerates to SSP; this is not problematic since SSP is known to be op-
timal for such values. PESTIMATION can also be used to solve the qualitative
problem, but it is always slower than SSP [15]. If θ is unknown, then a good
strategy is to estimate it using PESTIMATION with a low confidence and then
validate the result with SPRT and a strong confidence.

3 Validation Method and the BIP Toolset

Consider a system consisting of a set of distributed applications running on sev-
eral computers and exchanging messages on a shared network infrastructure.



Statistical Abstraction and Model-Checking of Large Heterogeneous Systems 37

Assume also that network communication is subject to given bandwidth restric-
tions as well as to routing and scheduling policies applied on network elements.
Our method attempts to reduce the complexity of validation of a particular ap-
plication of such system by decoupling the timing analysis of the network and
functional analysis of each application.

We start by constructing a model of the whole system. This model must be
executable, i.e., it should be possible to obtain execution traces, annotated with
timing information. For a chosen application, we then learn the probability dis-
tribution laws of its message delays by simulating the entire system. The method
then constructs a reduced stochastic model by combining the application model
where the delays are defined according to the laws identified at the previous step.
Finally, the method applies statistical model-checking on the resulting stochastic
model.

Our models are specified within the BIP framework [2]. BIP is a component-
based framework for construction, implementation and analysis of systems
composed of heterogeneous components. In particular, BIP fulfills all the re-
quirements of the method suggested above, that are, models constructed in BIP
are operational and can be thoroughly simulated. BIP models can easily inte-
grate timing constraints, which are represented with discrete clocks. Probabilistic
behaviour can also be added by using external C functions.

The BIP framework is implemented within the BIP toolset [4], which includes
a rich set of tools for modeling, execution, analysis (both static and on-the-fly)
and static transformations of BIP models. It provides a dedicated programming
language for describing BIP models. The front-end tools allow editing and pars-
ing of BIP programs, and generating an intermediate model, followed by code
generation (in C) for execution and analysis on a dedicated middleware platform.
The platform also offers connections to external analysis tools. A more complete
description of BIP can be found in [3].

4 Case Study: Heterogeneous Communication System

The case study concerns a distributed heterogeneous communication system
(HCS) providing an all electronic communication infrastructure to be deployed,
typically for cabin communication in airplanes or for building automation. The
HCS system contains various devices such as sensors (video camera, smoke de-
tector, temperature, pressure, etc.) and actuators (loudspeakers, light switches,
temperature control, signs, etc.) connected through a wired communication net-
work to a common server. The server runs a set of services to monitor the sensors
and to control the actuators. The devices are connected to the server using net-
work access controllers (NAC) as shown for an example architecture in Figure 1.
An extended star-like HCS architecture with several daisy chains of NACs and
devices is presented in [3].

The system-wide HCS architecture is highly heterogeneous. It includes hard-
ware components and software applications ensuring functions with different
characteristics and degree of criticality e.g., audio streaming, device clock syn-
chronisation, sensor monitoring, video surveillance. It also integrates different
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Fig. 1. HCS Example Model

communication and management protocols between components. The HCS sys-
tem has to guarantee stringent requirements, such as reliable data transmission,
fault tolerance, timings and synchronization constraints. For example, the la-
tency for delivering alarm signals from sensors, or for playing audio announce-
ments should be smaller than certain predefined thresholds. Or, the accuracy of
clock synchronization between different devices, should be guaranteed under the
given physical implementation of the system.

The HCS case study poses challenges that require component-based design
techniques, since it involves heterogeneous components and communication
mechanisms, e.g. streaming based on the data-flow paradigm as well as event
driven computation and interaction. Its modeling needs combination of exe-
cutable and analytic models especially for performance evaluation and analysis
of non-functional properties.

We have modeled an instance of the HCS system in BIP. As shown in Fig-
ure 1, the system consists of one Server connected to a daisy chain of four NACs,
addressed 0 · · · 3, and several devices. Devices are connected in daisy chains with
the NACs, the length of each chain being limited to four in our example. For
simplicity, devices are addressed (i, j), where i is the address of the NAC and j is
the address of the device. The model contains three types of devices, namely Au-
dio Player, Video Camera and Smoke Sensor. The devices connected to NAC(0)
and NAC(2) have similar topology. The first two daisy-chains consist of only
Audio Player devices. The third daisy-chain ends with a Smoke Sensor, and the
fourth daisy-chain consists of just one Video Camera. The devices connected to
NAC(1) and NAC(3) have exactly the same topology, consisting of several Audio
Player and one Smoke Sensor devices.

The system depicted in Figure 1 contains 58 devices in total. The BIP model
contains 297 atomic components, 245 clocks, and its state-space is of order 23000.
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The size of the BIP code for describing the system is 2468 lines, which is trans-
lated to 9018 lines in C. A description of the key components is given in [3].

5 Experiments on the HCS

One of the core applications of the HCS case study is the PTP protocol, which
allows the synchronization of the clocks of the various devices with the one of
the server. It is important that this synchronization occurs properly, i.e., the
difference between the clock of the server and the one of any device is bounded
by a small constant. Studying this problem is the subject of this section. Since
the BIP model for the HCS is extremely large (number of components, size of
the state space, ...), there is no hope to analyse it with an exhaustive verification
technique. Here, we propose to apply our stochastic abstraction. Given a specific
device, we will proceed in two steps. First, we will conduct simulations on the
entire system in order to learn the probability distribution on the communication
delays between this device and the server. Second, we will use this information to
build a stochastic abstraction of the application on which we will apply statistical
model checking. We start with the stochastic abstraction for the PTP.

5.1 The Precision Time Protocol IEEE 1588

The Precision Time Protocol [1] has been defined to synchronize clocks of several
computers interconnected over a network. The protocol relies on multicast com-
munication to distribute a reference time from an accurate clock (the master)
to all other clocks in the network (the slaves) combined with individual offset
correction, for each slave, according to its specific round-trip communication de-
lay to the master. The accuracy of synchronization is negatively impacted by
the jitter (i.e., the variation) and the asymmetry of the communication delay
between the master and the slaves. Obviously, these delay characteristics are
highly dependent on the network architecture as well as on the ongoing network
traffic.

We present below the abstract stochastic model of the PTP protocol between
a device and the server in the HCS case study. The model consists of two (deter-
ministic) application components respectively, the master and the slave clocks,
and two probabilistic components, the media, which are abstraction of the com-
munication network between the master and the slave. The former represent the
behaviour of the protocol and are described by extended timed i/o-automata.
The latter represent a random transport delay and are simply described by prob-
abilistic distributions. Recap that randomization is used to represent the context,
i.e., behaviors of other devices and influence of these behaviors on those of the
master and the device under consideration.

The time of the master process is represented by the clock variable θm. This
is considered the reference time and is used to synchronize the time of the slave
clock, represented by the clock variable θs. The synchronization works as follows.
Periodically, the master broadcast a sync message and immediately after a fol-
lowUp message containing the time t1 at which the sync message has been sent.
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!followUp(t1)

?request

[x = P ]x := 0

!sync

t1 := θm

t4 := θm

!reply(t4)

?followUp(t1)

t2 := θs

?sync

!request

t3 := θs

?reply(t4)

θs := θs − o

o := (t2 + t3 − t1 − t4)/2

ρ1

ρ2

sync, followUp, reply

request

Fig. 2. Abstract stochastic PTP between the server and a device

Time t1 is observed on the master clock θm. The slave records in t2 the reception
time of the sync message. Then, after the reception of the followUp, it sends a
delay request message to the master and records its emission time t3. Both t2
and t3 are observed on the slave clock θs. The master records on t4 the reception
time of the request message and sends it back to the slave on the reply message.
Again, t4 is observed on the master clock θm. Finally, upon reception of reply,
the slave computes the offset between its time and the master time based on
(ti)i=1,4 and updates its clock accordingly. In our model, the offset is computed
differently in two different situations. In the first situation, which is depicted
in Figure 2, the average delays from master to slave and back are supposed to
be equal i.e., μ(ρ1) = μ(ρ2). In the second situation, delays are supposed to be
asymmetric, i.e., μ(ρ1) �= μ(ρ2). In this case, synchronization is improved by
using an extra offset correction which compensate for the difference, more pre-
cisely, o := (t2 + t3 − t1 − t4)/2 + (μ(ρ2) − μ(ρ1))/2. This offset computation is
an extension of the PTP specification and has been considered since it ensures
better precision when delays are not symmetric (see Section 5).

Encoding the abstract model of timed i/o-automata given in Figure 2 in BIP
is quite straightforward and can be done with the method presented in [2]. The
distribution on the delay is implemented as a new C function in the BIP model.
It is worth mentioning that, since the two i/o automata are deterministic, the
full system depicted in Figure 2 is purely stochastic.

The accuracy of the synchronization is defined by the absolute value of the
difference between the master and slave clocks |θm − θs|, during the time. Our
aim is to check the (safety) property of bounded accuracy φΔ, that is, always
|θm − θs| ≤ Δ for arbitrary fixed non-negative real Δ.

Finally, a simpler version of this protocol has been considered (see [3]) and ana-
lyzed. In that study, delay components have been modeled using non-
deterministic timed i/o automata as well and represent arbitrary delays bounded
in some intervals [L, U ]. It has been shown that, if the clock drift is negligible,
the best accuracy Δ� that can be obtained using PTP is respectively U−L

2 in the
symmetric case, and U1+U2−L1−L2

4 in the asymmetric case. That is, the property
of bounded accuracy holds trivially iff Δ ≥ Δ∗.
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5.2 Model Simulations

In this section, we describe our approach to learn the probability distribution
over the delays. Consider the server and a given device. In a first step, we run
simulations on the system and measure the end-to-end delays of all PTP mes-
sages between the selected device and the server. For example, consider the case
of delay request messages and assume that we made 33 measures. The result will
be a series of delay values and, for each value, the number of times it has been
observed. As an example, delay 5 has been observed 3 times, delay 19 has been
observed 30 times. The probability distribution is represented with a table of 33
cells. In our case, 3 cells of the table will contains the value 5 and 30 will contain
the value 19. The BIP engine will select a value in the table following a uniform
probability distribution.

According to our experiments, 2000 delay measurements are enough to obtain
an accurate estimation of the probability distribution. However, for confidence
reasons, we have conducted 4000 measurements. We have also observed that
the value of the distribution clearly depends on the position of the device in
the topology (see [3] for an illustration). It is worth mentioning that running
one single simulation allowing 4000 measurements of the delay of PTP frames
requires running the PTP protocol with an increased frequency i.e., the default
PTP period (2 minutes) being far too big compared with the period for sending
audio/video packets (tens of milliseconds). Therefore, we run simulations where
PTP is executed once every 2 milliseconds and, we obtain 4000 measurements
by simulating approximately 8 seconds of the global system lifetime. Each sim-
ulation uses microsecond time granularity and takes around 40 minutes on a
Pentium 4 running under a Linux distribution.

5.3 Experiments on Precision Estimation for PTP

Three sets of experiments are conducted. The first one is concerned with the
bounded accuracy property (see Section 5.1). In the second one, we study average
failure per execution for a given bound. Finally, we study the influence of drift
on the results.

Property 1: Synchronization. Our objective is to compute the smallest
bound Δ under which synchronization occurs properly for any device. We start
with an experiment that shows that the value of the bound depends on the place
of the device in the topology. For doing so, we use Δ = 50μs as a bound and then
compute the probability for synchronization to occur properly for all the devices.
In the paper, for the sake of presentation, we will only report on a sampled set
of devices: (0, 0), (0, 3), (1, 0), (1, 10), (2, 0), (2, 3), (3, 0), (3, 3), but our global
observations extend to any device. We use PESTIMATION with a confidence
of 0.1. The results, which are reported in Figure 3a, show that the place in the
topology plays a crucial role. Device (3, 3) has the best probability value and
Device (2, 0) has the worst one. All the results in Figure 3a have been conducted
on the model with asymmetric delays. For the symmetric case, the probability
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Fig. 3. Probability of satisfying the bounded accuracy property and average proportion
of failures for a bound Δ = 50μs and the asymmetric version of PTP

values are much smaller. As an example, for Device (0, 0), it decreases from
0.388 to 0.085. The above results have been obtained in less than 4 seconds. As
a second experiment, we have used SPRT and SSP to validate the probability
value found by PESTIMATION with a higher degree of confidence. The results,
which are presented in Table 1 for Device (0, 0), show that SPRT is faster than
SSP and PESTIMATION.

Table 1. Number of simulations / Amount of time required for PESTIMATION, SSP
and SPRT

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Our second step was to estimate the best bound. For doing so, for each device
we have repeated the previous experiments for values of Δ between 10μs and
120μs. Figure 4a gives the results of the probability of satisfying the bounded
accuracy property as a function of the bound Δ for the asymmetric version of
PTP. The figure shows that the smallest bound which ensure synchronization for
any device is 105μs (for Device (3, 0)). However, devices (0, 3) and (3, 3) already
satisfy the property with probability 1 for Δ = 60μs. A comparison between
SSP and PESTIMATION is given in [3].
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Fig. 4. Probability of satisfying the bounded accuracy property and average proportion
of failures as functions of the bound Δ for the asymmetric version of PTP

The above experiments have been conducted assuming simulations of 1000
BIP interactions and 66 rounds of the PTP protocol. Since each round of the
PTP takes two minutes, this also corresponds to 132 minutes of the system’s
life time. We now check whether the results remain the sames if we lengthen
the simulations and hence system’s life time. Figure 5 shows, for Devices (0, 0)
and (3, 0), the probability of synchronization for various values of Δ and various
length of simulations (1000, 4000, 8000 and 10000 (660 minutes of system’s life
time) steps). We used PESTIMATION with a precision and a confidence of 0.1.
The best bounds do not change. However, the longer the simulations are, the
more the probability tends to be either 0 or 1 depending on the bound.

Property 2: Average failure. In the previous experiment, we have computed
the best bound to guarantee the bounded accuracy property. It might be the case
that the bound is too high regarding the user’s requirements. In such case, using
the above results, we can already report on the probability for synchronization
to occur properly for smaller values of the bound. We now give a finer answer
by quantifying the average and worst number of failures in synchronization that
occur per simulation when working with smaller bounds. For a given simulation,
the proportion of failures is obtained by dividing the number of failures by the
number of rounds of PTP. We will now estimate, for a simulation of 1000 steps
(66 rounds of the PTP), the average and worst value for this proportion. To
this purpose, we have measured (for each device) this proportion on 1199 sim-
ulations with a synchronization bound of Δ = 50μs. As an example, we obtain
average proportions of 0.036 and 0.014 for Device (0, 0) using the symmetric and
asymmetric versions of PTP respectively. As a comparison, we obtain average
proportions of 0.964 and 0.075 for Device (3, 0). The average proportion of fail-
ures with the bound Δ = 50μs and the asymmetric version of PTP is given in
Figure 3b. Figure 6a presents, for the sampled devices, the worst proportion of
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the length of the simulations for the asymmetric version of PTP
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Fig. 6. Worst proportion of failures for the industrial bound Δ = 50μs and as a
function of the bound Δ for the asymmetric version of PTP

failures using the asymmetric version of PTP. The worst value is 0.25, which is
obtained for Device (2, 0). On the other hand, the worst value is only 0.076 for
Device (0, 0). The experiment, which takes about 6 seconds per device, was then
generalized to other values of the bound. Figures 4b and 6b give the average and
worst proportion of failure as a function of the bound.

The above experiment gives, for several value of Δ and each device, the worst
failure proportion with respect to 1199 simulations. We have also used PESTI-
MATION with confidence of 0.1 and precision of 0.1 to verify that this value
remains the same whatever the number of simulations is. The result was then
validated using SSP with precision of 10−3 and confidence of 10−10. Each exper-
iment took approximately two minutes. Finally, we have conducted experiments
to check whether the results remain for longer simulations. Figure 7a shows that
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Fig. 7. Evolution of the average and worst proportion of failures with the length of
the simulations for the asymmetric version of PTP

the average proportion does not change and Figure 7b shows that the worst
proportion decreases when the length of the simulation increases.

Clock Drift. We have considered a modified version of the stochastic PTP
model with drifting clocks. Drift is used to model the fact that, due to the
influence of the hardware, clocks of the master and the device may not progress
as the same rate. In our model, drift is incorporated as follows: each time the
clock of the server is increased by 1 time unit, the clock of the device is increased
by 1 + ε time units, with ε ∈ [−10−3, 10−3]. Using this modified model, we
have re-done the experiments of the previous sections and observed that the
result remains almost the same. This is not surprising as the value of the drift
is significantly smaller than the communication jitter, and therefore it has less
influence on the synchronization. A drift of 1 time unit has a much higher impact
on the probability. As an example, for Device (0, 0), it goes from a probability of
0.387 to a probability of 0.007. It is worth mentioning that exhaustive verification
of a model with drifting clocks is not an easy task as it requires to deal with
complex differential equations. When reasoning on one execution at a time, this
problem is avoided.
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