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Statistical algorithm for nonuniformity
correction in focal-plane arrays

Majeed M. Hayat, Sergio N. Torres, Ernest Armstrong, Stephen C. Cain, and Brian Yasuda

A statistical algorithm has been developed to compensate for the fixed-pattern noise associated with
spatial nonuniformity and temporal drift in the response of focal-plane array infrared imaging systems.
The algorithm uses initial scene data to generate initial estimates of the gain, the offset, and the variance
of the additive electronic noise of each detector element. The algorithm then updates these parameters
by use of subsequent frames and uses the updated parameters to restore the true image by use of a
least-mean-square error finite-impulse-response filter. The algorithm is applied to infrared data, and
the restored images compare favorably with those restored by use of a multiple-point calibration tech-
nique. © 1999 Optical Society of America

OCIS codes: 100.2550, 040.1520, 110.3080, 100.3010.
n
fi
t
n

1. Introduction

The performance of focal-plane array ~FPA! infrared
imaging systems is known to be strongly affected by
the spatial nonuniformity in the photoresponse of the
detectors in the array. This nonuniformity results
in a spatial pattern superimposed on the infrared
image that reduces the resolving capability of the
FPA imaging system.1–3 What makes this problem
even more challenging is that the spatial nonunifor-
mity varies slowly in time.4 For instance, external
conditions, such as the surrounding temperature,
variation in the transistor bias voltage, and the time-
dependent nature of the object irradiance, can cause
the gain and the offset of each detector to drift slowly
and randomly in time. The task of any nonunifor-
mity correction ~NUC! algorithm is to compensate for
he spatial nonuniformity and update the compensa-
ion as needed to account for the temporal variation
n the detectors’ responses.

Numerous NUC techniques have been reported in
he literature. These techniques can be grouped
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into two main categories. The first category consists
of NUC methods that rely on calibrating the FPA at
distinct temperatures by use of flat-field data gener-
ated from a black-body radiation source.1,5,6 Typi-
cally, calibration of the FPA often requires stopping
the normal operation of the camera for the duration
of the calibration. The second category consists of
techniques that are scene based and require no cali-
bration of the FPA. Scribner et al.3,7 developed a
least-mean-square-based ~LMS-based!-NUC tech-

ique that resembled adaptive temporal high-pass
ltering. By adjusting the time constant of the fil-
er, they used their algorithm to reduce the spatial
oise caused by offset nonuniformity ~the gain cor-

rection was performed separately!. The effective-
ness of their algorithm relies on the presence of
motion in the image. A neural-network implemen-
tation of the adaptive LMS algorithm was also devel-
oped.8 Narendra and Foss,9 and more recently,
Harris et al.,10,11 developed algorithms that continu-
ally compensate for the offset and the gain nonuni-
formity by using the concept of constant statistics,
which postulates that the statistics ~mean and vari-
ance! of the irradiance do not vary from detector to
detector. The algorithm reported by Harris et al.11

subtracts the estimated detector offset ~estimated by
a moving windowed time average of the detector volt-
age! and then normalizes the outcome by the detector
gain ~measured by a windowed L1 norm of the volt-
age!. Their method is motivated by clues from neu-
robiological ~linear and nonlinear! adaptation.
Using simulated data, they showed that their method
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compares well with the results obtained with Scrib-
ner’s LMS algorithm.7

Cain et al.12 considered a Bayesian approach to
NUC and developed a maximum-likelihood algo-
rithm that jointly estimates the high-resolution im-
age, the detectors’ parameters, and any possible
spatial shift ~arising from motion or vibration!. The
lgorithm relies on the assumption that the image
as Poissonian statistics and that the detector re-
ponse is nonlinear. The performance of the
aximum-likelihood algorithm12 was shown to be

comparable, in certain cases, to the performance of
two-point calibration NUC. The algorithm is com-
putationally extensive, and it is intended for cases in
which only a few frames of data are available.

In this paper we develop a statistical algorithm
that adaptively performs NUC, using the scene data.
The correction is performed by a finite-impulse-
response ~FIR! LMS filter ~i.e., a discrete-time Wie-
ner filter! that involves current estimates of the gain,
the offset, and the variance of the additive electronic
noise. The model assumes a linear detector re-
sponse and irradiance at each detector that is a uni-
formly distributed random variable. The gain, the
offset, and the variance of the additive noise are all
assumed to be time varying but approximately con-
stant within certain blocks of time. As a new block
of scenes is captured, the Wiener filter adapts itself to
it by statistical extraction of the changes in the de-
tector parameters and electronic noise. We applied
the algorithm to data acquired by using an Amber
FPA camera and were able to achieve NUC results
that compare favorably with those obtained by using
a multiple-point calibration method.

2. Model

In many applications sensors are operated in a range
of irradiance within which detectors exhibit linear
input–output characteristics. In this paper we adopt
the following statistical linear model for the detector
response. For the ~i, j!th detector in the array, and at
ime n, the measured signal ~detector response! Yij~n!

is given by the approximate linear relation

Yij~n! 5 Aij~n!Xij~n! 1 Bij~n! 1 Nij~n!, (1)

where Aij~n! is the gain associated with ~i, j!th detec-
or at time n, Bij~n! is an offset voltage term, and

Xij~n! is the irradiance collected by the detector dur-
ing the integration time. For ease of notation the
subscript ij is dropped from all the quantities with
the understanding that all operations are performed
on a pixel-by-pixel basis. The term N~n! represents
additive electronic noise that is modeled by a zero-
mean Gaussian random variable that is statistically
independent of the noise in other detectors. For
simplicity it is assumed that the noise N~n! is inde-
pendent of the irradiance X~n!; however, information
from black-body-radiation data shows a weak corre-
lation between the noise variance and the irradiance.

The dependence of the gain and the offset on n is
used to capture the temporal variation ~or drift! in the
parameters of the detector response. The gain and
the offset are assumed to be statistically independent
of the irradiance and the noise. We assume that, for
each n, the collected irradiance X~n! is a uniformly
distributed random variable in some range @xmin,
xmax# constituting the range ~common to all detectors!
of possible irradiance levels prior to saturation.
This assumption merely states that no a priori infor-
mation on the scene is available other than the fact
that it is in a certain range. It is also assumed that
the temporal correlation in the irradiance is known
$i.e., the autocorrelation function E@X~l !X~m!# is as-
sumed to be known%. In the examples considered in
this paper, we obtained good correction by simply
assuming that X~l ! and X~m! are uncorrelated for l Þ
m. The algorithm operates on an individual detec-
tor independently of all other detectors. Knowledge
of the spatial statistics of the irradiance is therefore
not required.

3. Description of the Algorithm

We first give a brief description of the algorithm.
Suppose that an initial set of data corresponding to n
in the range 2np # n # 21 is used to generate
estimates of the model parameters at time n 5 0, i.e.,
or a given detector estimates of A~0!, B~0!, and sN,0

2

are available. These parameters are assumed to be
almost constant within the block of frames 0 # n # nb
and are denoted by A0, B0, and sN,0

2, respectively.
The choice of the block length nb depends on how
frequently adjustments to the estimated model pa-
rameters are required, which in turn depends on the
type of the FPA and prior knowledge of the level of
drift of the parameters. On the other hand, the re-
quired number of frames in the initial data, np, must
be large enough to yield statistical stability and yet
allow fast processing. Specific choices of np and nb
are given in Section 4.

The initial parameters A0, B0, and sN,0
2 can then

be used in the design of a linear LMS estimate of
X~n!, denoted by X̂~n!, in the block of frames 0 # n #
nb. The output of the linear LMS estimator X̂~n! is
a weighted sum of the current scene Y~n! and the past
L 2 1 frames, where L $ 1 is a fixed parameter and
is chosen on the basis of the knowledge of the tem-
poral correlation of the irradiance.

For the next block of frames, nb , n , 2nb, the
updated parameters A1, B1, and sN,1

2 must be com-
puted by use of the gain and the offset from the
previous block and from the scene data from the tail
of the previous block in the range nb 2 np # n # nb
2 1. A new LMS filter is then designed to generate
X̂~n! in the block of frames indexed by nb # n , 2nb,
and so on.

There are therefore two interrelated operations in-
volved in the algorithm: the periodic updating of the
model parameters and the frame-by-frame estima-
tion ~restoration! of the signal. A block diagram of
the algorithm is shown in Fig. 1. We now give a
more detailed description of the algorithm.
10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 773
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A. Initial Parameter Estimation

An initial estimate of the parameters A0, B0, and
N,0

2 must be obtained from a rich set of data. Rich
data consist of a sequence of frames for which the
signal X, in each detector, varies in the range @xmin,

max# common to all other detectors in the array.
ne way to generate such rich data is to expose the

amera to a scene containing warm and cold objects
nd then move the camera in such a way that all
etectors are eventually exposed to the same high
nd low levels of irradiance. Let

Ymax
~0! – max

2np#n#21
$Y~n!%,

Ymin
~0! – min

2np#n#21
$Y~n!%.

By equating the values of Ymax
~0! and the Ymin

~0! to the
maximum and the minimum, respectively, of Eq. ~1!
nd ignoring the noise term, we obtain

Ymax
~0! < A0 max

2np#n#21
$X~n!% 1 B0, (2)

Ymin
~0! < A0 min

2np#n#21
$X~n!% 1 B0. (3)

By assuming that the range of temperatures used to
generate the initial data is sufficiently large $i.e.,
omparable to @xmin, xmax#% and that all detectors are

eventually exposed to the same range of irradiance,
we obtain

max
2np#n#21

$X~n!% < xmax,

min
2np#n#21

$X~n!% < xmin,

Fig. 1. Block diagram of the statistical NUC algorithm.
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for all detectors. The parameters A0 and B0 are then
readily computed from expressions ~2! and ~3! as

A0 5
Ymax

~0! 2 Ymin
~0!

xmax 2 xmin
, (4)

B0 5 Ymax
~0! 2 A0 xmax. (5)

To obtain an estimate of sN,0
2, we consider the

one-step difference signal D~n! – Y~n! 2 Y~n 2 1!.
Because the temporal variation in the irradiance is
typically much slower than the variation in noise, we
obtain

D~n! < N~n! 2 N~n 2 1!. (6)

Hence sN,0
2 can be estimated as one half of the sam-

ple variance of the difference signal D~n!:

sN,0
2 5

1
2

1
np

(
n52np

21

@D~n! 2 D̂~0!#2,

where D̂~0! is the sample mean of the difference sig-
nal associated with the initial data, given by

D̂~0! –
1
np

(
n52np

21

D~n!.

B. Design of the Least-Mean-Square Filter

Suppose that estimates of the parameters Ak, Bk, and
sN,k

2 are available and are to be used in designing a
linear FIR filter with L coefficients that are subject to
minimizing the mean-squared error. More pre-
cisely, let W~k! 5 @w~k!1 . . . w~k!L# be a vector of L
oefficients representing the FIR filter. A linear es-
imate of X~n! can be obtained as

X̂~n! 5 (
i5n2L11

n

w~k!iY~i! 1 b, (7)

where b is a term making Eq. ~7! an unbiased esti-
mator. The filter parameters W~k! and b are chosen
to minimize the mean-squared error defined by

E@~X̂~n! 2 X~n!!2#.

This LMS linear filter ~or discrete-time Wiener filter!
can be obtained by solution of the Wiener–Hopf equa-
tions associated with the minimization,13 and the op-
timal filter coefficients are given by

W~k! 5 CYY~k!21CXY~k!, (8)

b 5 mX 2 ~AkmX 1 Bk! (
i51

L

w~k!i, (9)

where CYY~k! is the data covariance matrix, CXY~k! is
the cross covariance of the signal and the data, and
mX is the mean signal and is given by 0.5~xmax 1
xmin!. For the model considered in Eq. ~1! the above
ovariances are

CXY~k! 5 CXX~k!Ak, (10)

CYY~k! 5 Ak
2CXX~k! 1 sN,k

2I, (11)
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where I is the L 3 L identity matrix and CXX~k! is the
ovariance matrix of the vector @X~n 2 L 1 1!, . . . ,

X~n!#9.
In the special case when L 5 1, the LMS filter

simplifies to

W~k! 5
AksX

2

Ak
2sX

2 1 sN,k
2

b 5 mX 2 w~k!~AkmX 1 Bk!,

where

sX
2 5

1
12

~xmax 2 xmin!
2

is the variance of a uniformly distributed random
variable14 representing the irradiance.

C. Updating the Model Parameters

We now proceed to use the data Y~n! in the range knb
2 np # n # knb 2 1 in estimating the updated pa-
ameters Ak, Bk, and sN,k

2 of the kth block. ~Recall
that these updated parameters will be used in the
LMS filter used to process the kth block of data.!
The updated noise variance sN,k

2 can be computed by
use of the same difference technique used in the ini-
tial parameter estimation discussed in Subsection
3.A. In particular,

sN,k
2 <

1
2

1
np

(
n5knb2np

knb21

@D~n! 2 D̂~k!#2, (12)

where D̂~k! is the sample mean of the difference sig-
nal, given by

D̂~k! –
1
np

(
n5knb2np

knb21

D~n!. (13)

The parameters Ak and Bk are generated by means
of matching the sample mean and the sample vari-
ance of Y~n! with the ensemble mean and the ensem-
ble variance of Yn. More precisely, the sample mean
nd the sample variance of the data defined by

ŷ~k! –
1
np

(
n5knb2np

knb21

Y~n!, (14)

sY
2̂~k! –

1
np

(
n5knb2np

knb21

~Y~i! 2 ŷ~k!!2, (15)

respectively, are equated to the ensemble mean and
the ensemble variance of Y~n!, which are computed
by use of expression ~1!. In particular, if we let mX~k!
nd sX

2~k! denote the mean and the variance, respec-
tively, of the signal for the frames indexed by knb 2
np # n # knb 2 1, we obtain

ŷ~k! < AkmX~k! 1 Bk, (16)

sY
2̂~k! < Ak

2sX
2~k! 1 sN,k

2. (17)
Estimates of mX~k! and sX ~k!, denoted respectively

by mX̂~k! and sX
2̂~k!, can be obtained if we exploit the

assumption that the irradiance at each detector is a
uniformly distributed random variable in a range
whose upper and lower limits are obtained as follows:
Recall that X̂~n!, in the range knb 2 np # n # knb 2
1, represents the estimate of X~n! obtained by use of
the LMS filter of the ~k 2 1!th block. If we substi-
tute the maximum and the minimum of X̂~n! over the
prescribed range @denoted, respectively, by xmin~k!
and xmax~k!# in the formulas14 for the mean and the
variance of the uniformly distribution random vari-
able X~n!, we obtain

mX̂~k! 5 @xmax~k! 1 xmin~k!#y2, (18)

sX
2̂~k! 5 @xmax~k! 2 xmin~k!#2y12. (19)

Now by substituting Eqs. ~14! and ~15! into expres-
ions ~16! and ~17!, respectively, and by using the
stimates in Eqs. ~18! and ~19!, we can compute the
pdated parameters Ak and Bk as the solution to a

system of two linear equation with two unknowns.

4. Applications and Discussion

The proposed algorithm has been applied to two sets
of real data from a 128 3 128 pixel InSb Amber Model

E-4128 infrared FPA camera operating in the wave-
ength range of approximately 3–5 mm. Terrestrial
cenes are taken at two times during the day. There
s a 3.5-h time lapse between the two sets of data.
wo sets of parameter-estimation data are gener-
ted: A sequence of 3000 frames from the first data
et is used for the initial parameter estimation, and
nother sequence of 3000 frames from the second
ata set is used to update the parameters. The pa-
ameter np, introduced in Section 3, is therefore 3000,

and the block-length parameter nb is approximately
23 3 106 ~corresponding to a real-time duration of 3.5

!. In capturing both sets of data the camera was
oved manually by the operator.
Figure 2 shows a single frame of the uncorrected

mage from the first data set, and Fig. 3 shows a
ingle frame from the second data set. In all of the
xamples described below, we took the length of the
MS filter as L 5 1 and assumed that the irradiance

rom distinct frames was uncorrelated. This as-
umption simplified the design of the LMS filter and
lso generated good results. Note that increasing
he number of coefficients L will result in better
locking of temporal noise because it amounts to the
emporal weighted averaging of the frames. How-
ver, the improved temporal-noise performance is ac-
ompanied by a reduction in the temporal resolution.

For purposes of comparison a black-body radiator
s used under laboratory conditions to generate six
ets of flat-field images in the linear range of the
etectors. These data are used to estimate the gain,
he offset, and the noise variance associated with
ach detector. These parameters are computed by
he fitting of the flat-field data to the mean, the vari-
10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 775
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ance, and the third central moment of Y~n! obtained
by use of the model equations ~1!. These parameters
are then used to design a LMS filter to compensate for
the spatial noise.

As a quantitative measure of performance, we use
the performance parameter r, which measures the
roughness in an image. More precisely, for any dig-
ital image f, we define

r~ f ! –
ih1 p f i1 1 ih2 p f i1

i f i1
, (20)

where h1 is a horizontal mask @1, 21#, h2 5 h1
T is a

ertical mask, the asterisk denotes discrete convolu-
ion, and, for any image f, i f i1 is its L1 norm. ~The

L1 norm is simply the sum of the magnitudes of all

Fig. 2. Single frame from the uncorrected first data set.

Fig. 3. Single frame from the uncorrected second data set.
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pixels.! The two terms in the numerator of Eq. ~20!
measure the pixel-to-pixel roughness in the horizon-
tal and the vertical directions, respectively. Nor-
malization by i f i1 in Eq. ~20! makes r invariant
under scaling. Clearly, r is zero for a constant im-
age, and it increases with the pixel-to-pixel variation
in the image.

A. Applying the Algorithm to an Initial Set of Data

The initial parameter estimation ~as described in Sub-
section 3.A! of the gain A0 and the offset B0 is per-
formed with 300 frames uniformly sampled from the
initial 3000 frames of the first data set. The reduction
in sample size is carried out to reduce computation,
and it does not result in a noticeable change in the
performance. The noise parameter is computed by
the application of the difference-of-frames method de-
scribed in Subsection 3.A to all the 3000 frames in the
first data set. The initial estimation of the noise vari-
ance, the gain, and the offset took approximately 25
min on a SUN-SPARC 120 workstation with MATLAB.
The estimated gain is approximately 6%–10% greater
than the gain computed by use of the black-body-
radiation data. The offset varied approximately 16%
from that computed by use of the black-body-radiation
data. The standard deviation associated with data
set 1 can be up to an order of magnitude higher than
the one computed with the black-body radiation.
This difference is expected because scene data were
captured under outdoor conditions. The standard de-
viation of the noise, computed by use of black-body
radiation, is found to be approximately 0.1% of the
detector response.

Figure 4 shows the corrected version of the image
in Fig. 2 when the above-described initial parameters
are used in the design of the filter, as discussed in
Subsection 3.B. The performance parameter r asso-

Fig. 4. Frame from Fig. 2 but with NUC by use of the initial
estimates of the gain, the offset, and the noise variance.
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Table 1. Performance Parameter r for Data Set 1
ciated with the images in Figs. 2 and 4 are shown in
Table 1 and indicate a reduction of approximately
25% in r after the correction. We found that, when
the above initial gain and offset are updated by use of
the same sample of data set 1 ~with the technique
described in Subsection 3.C!, a significant improve-
ment in the results is achieved. To generate these
updates, we compute the range of irradiance for each
detector by taking the maximum and the minimum of
the initially corrected images in the 300 frames from
data set 1. These statistics are then used to calcu-
late the ensemble mean and the ensemble variance
from Eqs. ~18! and ~19!, which are subsequently used
n obtaining the new gain and offset. The updated
ain and offset are within approximately 21% of their
nitial values.

Figure 5 shows the corrected version of the image
n Fig. 2 that was obtained by use of the updated LMS
lter. It is clear that the updating of the gain and
he offset results in a significant improvement in the
erformance. In fact, the performance parameter
ssociated with Fig. 5 is only 5% greater than that
ssociated with the image obtained by use of the
alibration method ~as shown in Fig. 6!, as can be
een from Table 1. The performance parameter as-
ociated with Fig. 5 is approximately 36% less than
hat associated uncorrected image.

Performance
Parameter

Uncorrected Image
~Fig. 2!

Without
~F

r 3.4 3 103 2.6

Fig. 5. Corrected version of the image of Fig. 2 obtained by use of
the updated gain and offset. Note the improvement, which is due
to recursion, in the correction compared with that of the image of
Fig. 4.
B. Updating the Algorithm

Next we apply the algorithm to the second data set.
The first step is to generate the updated gain, offset,
and noise variance, denoted by A1, B1, and sN,1

2,
respectively. Because the updated parameters asso-
ciated with the first data set yielded improved re-
sults, we use them as a point of departure for
generating the updated parameters A1, B1, and sN,1

2.
The parameters A1 and B1 are generated by use of the
theory presented in Subsection 3.A, and the updated
noise variance sN,1

2 is generated by use of the
difference-of-frames technique applied to all 3000
frames of data set 2. After these parameters are
updated the updated LMS filter is constructed and
used to perform NUC. For computational conve-
nience, once again, we use a sample of only 300
frames from data set 2 to update the gain and the
offset.

Figure 7 shows the corrected version of the image
in Fig. 3 that was obtained by use of the updated LMS
filter. The correction achieved compares well with
the correction obtained by use of calibration, as
shown in Fig. 8. In fact, both cases result in approx-
imately the same performance parameter r, as can be
seen from Table 2. The reduction in r is approxi-
mately 56%, which is greater than the reduction in r
associated with data set 1 ~36%!.

To emphasize the role of updating the gain, the

Corrected Images

ating With Updating
~Fig. 5!

Calibration
Correction ~Fig. 6!

3 2.2 3 103 2.1 3 103

Fig. 6. Corrected version of the frame of Fig. 2 obtained by use of
a multiple-point calibration method.
Upd
ig. 4!

3 10
10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 777
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offset, and the noise variance, we attempted to per-
form NUC on data set 2 by using the LMS filter
designed for data set 1, and the corrected image is
shown in Fig. 9. By comparing Figs. 9 and 7 and by
observing the parameter r for each image ~see Table

Fig. 7. Corrected version of the scene from Fig. 3 obtained by use
of the updated gain and offset.

Fig. 8. Corrected version of the frame of Fig. 3 obtained by use of
a multiple-point calibration method.

Table 2. Performance

Performance
Parameter

Uncorrected Image
~Fig. 3!

With Up
~Fig.

r 4.9 3 103 2.2 3
78 APPLIED OPTICS y Vol. 38, No. 8 y 10 March 1999
!, we can clearly see that updating the parameters
ignificantly improves the performance.

C. Further Comments

The key requirement for obtaining accurate initial
estimates of the gain and the offset is that the range
of irradiance ~that each detector is exposed to! in the
nitial frames must be the same for all detectors.
his requirement can easily be met, for instance, if
he camera is exposed to a scene with a wide range of
rradiance levels and is moved as the frames are ac-
uired, so that all detectors are exposed to approxi-
ately the same range of irradiance. The above

onstant-range requirement resembles the constant-
tatistic assumption required by other scene-based
lgorithms.11,9,3 However, the requirement that all

detectors be exposed to the same range of irradiance
~i.e., all detectors are exposed to the same minimum
and maximum irradiance levels! is less restrictive
than the traditional constant-statistic assumption,
which requires that the mean and the variance of the
irradiance be common to all detectors. For example,
if the detectors in the center of the array are exposed
to a warm object most of the time and the detectors on
the perimeter of the array are exposed to that object
only a fraction of the time, then, clearly, both groups
of detectors are exposed to the same range. None-

meter r for Data Set 2

Corrected Images

g Calibration
Correction ~Fig. 8!

Correction by Set 1
Filter ~Fig. 9!

2.2 3 103 2.9 3 103

Fig. 9. Corrected version of the frame of Fig. 3 obtained by use of
the new algorithm but with use of the gain and the offset that
correspond to data set 1. The advantage of updating the gain and
the offset is evident compared with the image of Fig. 7.
datin
7!

103
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theless, the sample mean and the sample variance of
the irradiance at the two detector groups can be sig-
nificantly different because of the difference in the
amounts of time each detector is exposed to the warm
object.

In addition to the constant-range requirement, it is
also desirable that the range of irradiance in the
initial data set be comparable with the actual range
of irradiance required for linear operation of the de-
tectors. Our results indicate, however, that this re-
quirement is not as important as the constant-range
requirement. In our examples both of the data sets
adequately satisfied both of the foregoing require-
ments. In fact, the algorithm was also tested with
300 frames of another set of initial data collected in
the early morning when the irradiance level is low,
and the quality of correction was found to be compa-
rable with that of the previous cases of data sets 1
and 2.

An advantage of the reported algorithm over other
existing scene-based NUC algorithms10,9,3 is that the
constant-range assumption is required here only in the
nitial parameter estimation of the gain and offset.
ubsequent updates do not require the constant-range
ssumption. In addition, our algorithm has the
dded feature of updating the noise variance, which
as not been included in most of the previous algo-
ithms.

5. Conclusion

We have developed a statistical technique for esti-
mating the gain, the offset, and the temporal-noise
variance of each detector in a FPA by using only
scene data. The estimated parameters are used in
designing a linear LMS FIR filter that compensates
for the spatial nonuniformity in the array gain, the
offset, and the temporal-noise variance. The ini-
tial set of data used to start the algorithm is as-
sumed to be spatially well distributed so that all
detectors in the array are exposed to approximately
the same minimum and maximum irradiance.
The algorithm is subsequently updated by use of
new data so that the estimated values of the gain,
the offset, and the noise variance of each detector
are current.

The algorithm was tested with terrestrial scenes
captured by an Amber infrared FPA camera. The
achieved NUC was found to be comparable with the
correction obtained by use of a multiple-temperature
calibration technique. The examples considered
showed that the algorithm is robust in the sense that,
even if the initial data lack a large dynamic range,
the performance of the correction is quite good. Fur-
thermore, the updating aspect of the algorithm al-
lows the correction filter to adapt to the temporal
changes in the characteristics of the individual detec-
tors. These temporal changes include the well-
known drift in the offset that traditionally has been
compensated for by means of performing frequent
calibrations. Although no temporal correlation in
the irradiance was considered in the examples, the
algorithm can readily utilize such added information
to improve performance in cases in which the initial
data are extremely poor. The use of such correlation
information in the algorithm is akin to high-pass fil-
tering, which is often employed in existing scene-
based NUC algorithms.

The reported algorithm has the feature that, al-
though correction is executed on a frame-by-frame
basis, the updating of the parameters of the correc-
tion filter is carried out sparingly, which reduces the
computational complexity. The average number of
operations per frame per pixel is approximately 10.
Such a low complexity level may lead to the real-time
implementation of the algorithm.
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