
Bioconductor Project
Bioconductor Project Working Papers

Year  Paper 

Statistical Analyses and Reproducible

Research

Robert Gentleman∗ Duncan Temple Lang†

∗Department of Biostatistics, Harvard University, rgentlem@fhcrc.org
†Department of Statistics, University of California, Davis, duncan@wald.ucdavis.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/bioconductor/paper2

Copyright c©2004 by the authors.



Statistical Analyses and Reproducible

Research

Robert Gentleman and Duncan Temple Lang

Abstract

For various reasons, it is important, if not essential, to integrate the computa-

tions and code used in data analyses, methodological descriptions, simulations,

etc. with the documents that describe and rely on them. This integration allows

readers to both verify and adapt the statements in the documents. Authors can

easily reproduce them in the future, and they can present the document’s con-

tents in a different medium, e.g. with interactive controls. This paper describes a

software framework for authoring and distributing these integrated, dynamic doc-

uments that contain text, code, data, and any auxiliary content needed to recreate

the computations. The documents are dynamic in that the contents, including

figures, tables, etc., can be recalculated each time a view of the document is gen-

erated. Our model treats a dynamic document as a master or “source” document

from which one can generate different views in the form of traditional, derived

documents for different audiences.

We introduce the concept of a compendium as both a container for the different

elements that make up the document and its computations (i.e. text, code, data,

...), and as a means for distributing, managing and updating the collection.

The step from disseminating analyses via a compendium to reproducible research

is a small one. By reproducible research, we mean research papers with accom-

panying software tools that allow the reader to directly reproduce the results and

employ the methods that are presented in the research paper. Some of the issues in-

volved in paradigms for the production, distribution and use of such reproducible

research are discussed.



Statistical Analyses and Reproducible Research

R. Gentleman

D. Temple Lang

May 29, 2004

Abstract

For various reasons, it is important, if not essential, to integrate the com-

putations and code used in data analyses, methodological descriptions, simu-

lations, etc. with the documents that describe and rely on them. This integra-

tion allows readers to both verify and adapt the statements in the documents.

Authors can easily reproduce them in the future, and they can present the doc-

ument’s contents in a different medium, e.g. with interactive controls. This

paper describes a software framework for authoring and distributing these in-

tegrated, dynamic documents that contain text, code, data, and any auxiliary

content needed to recreate the computations. The documents are dynamic in

that the contents, including figures, tables, etc., can be recalculated each time

a view of the document is generated. Our model treats a dynamic document

as a master or “source” document from which one can generate different

views in the form of traditional, derived documents for different audiences.

We introduce the concept of a compendium as both a container for the

different elements that make up the document and its computations (i.e. text,

code, data, . . .), and as a means for distributing, managing and updating the

collection.

The step from disseminating analyses via a compendium to reproducible

research is a small one. By reproducible research, we mean research papers

with accompanying software tools that allow the reader to directly reproduce

the results and employ the methods that are presented in the research paper.

Some of the issues involved in paradigms for the production, distribution and

use of such reproducible research are discussed.

Key Words: Compendium, Dynamic documents, Literate programming,

Markup language, Perl, Python, R.

1

Hosted by The Berkeley Electronic Press



1 Introduction

Statistical methodology generally involves algorithmic concepts. The descriptions

of how to perform a specific analysis for a given dataset or generally how to per-

form a type of analysis tend to be similarly procedural or algorithmic. Expressing

these concepts in a purely textual format (such as a paper or a book) is seldom

entirely satisfactory for either the author or the readers. The former is trapped in

a language that is not conducive to succinct, exact expression and the audience is

separated from the actions and details of the algorithm and often forced to make

assumptions about the precise computational details.

Some of these difficulties can be overcome by supplying computer code and

data that explicitly describe the required operations. While there are many ex-

amples of such approaches, there is no generally good strategy that benefits both

authors and readers alike. There are few instances which do not simply relegate

the associated code and data in a disjoint manner to appendices or which use refer-

ences to a Web site, thus leaving each user to navigate between the text, data and

code herself. She must also manually synchronize different versions of the differ-

ent inputs. In this article, we describe a new mechanism that combines text, data,

and auxiliary software into a distributable and executable unit which we will refer

to as a compendium.

A compendium contains one or more dynamic documents which can be trans-

formed into a traditional, static document in much the same way we generate PDF

(Portable Document Format) files from TEX. However, what is important about the

concept of a compendium is that the dynamic documents can also be transformed

and used in other ways. The elements of a dynamic document (i.e. text, code, data)

can be extracted and processed in various different ways by both the author and

the reader. Hence a compendium has one, or more, self-contained live documents

that can be regenerated in absolute detail by others, and that can often be used

in contexts other than the author’s original work. Figure 1 presents the different

pieces and the flow from the creation of the dynamic documents to the creation of

different views.

Since we will use common terms in specific ways throughout the paper we

begin by defining and describing them. We will use the terms reader and user

2

http://biostats.bepress.com/bioconductor/paper2



3

Hosted by The Berkeley Electronic Press



interchangeably; both convey the notion of a member of the audience for which

the compendium was produced by the author. We emphasize at the outset that

the mode of interaction with a “published” compendium is determined by the user

not by the author. We define a dynamic document as an ordered composition of

code chunks and text chunks that describe and discuss a problem and its solution.

The ordering of the chunks need not be simply sequential but can support rich and

complex document structures. For example, the ordering of the chunks may have

branches and generally may form a graph with various paths through the nodes

(chunks) that allow different readers to navigate the document in different ways.

Code chunks are sequences of commands in some programming language such

as R or Perl. Code chunks are intended to be evaluated according to the language

in which they are written. These perform the computations needed to produce

the appropriate output within the paper, and also to produce intermediate results

used across different code chunks. Text chunks describe the problem, the code, the

results and often their interpretation. Text chunks are intended to be formatted for

reading.

By auxiliary software we mean software that is specific to the problem at hand

but which does not appear in the dynamic document. Auxiliary software is not gen-

eral purpose software such as R, SAS or Perl or any general libraries, but rather it is

support utilities that simplify the computations in the code chunks in the particular

dynamic document (or family of related documents). It might be R functions, Perl

subroutines, or C routines. For example, such auxiliary code might fit a particular

statistical model and the dynamic document may include calls to the model fit-

ting routine but the document would not necessarily contain the model fitting code.

Each separate language (or system) used in a dynamic document may have its own

auxiliary software. Essentially, auxiliary software allows us to more effectively

organize the computations in code chunks in one or more dynamic documents. By

allowing support software to exist outside of the dynamic documents, we avoid

redundant copies of the same code, and allow the functionality to be used inde-

pendently of the dynamic documents, for example by readers who want to use the

basic computations described in the dynamic documents in different ways.

The mechanism or system used to transform a dynamic document into some

desired output or view will be called a transformer. The transformer takes as input

4

http://biostats.bepress.com/bioconductor/paper2



a compendium and the desired target and produces the appropriate output. Thus,

it is responsible for identifying the appropriate languages for all code chunks, for

ensuring access to any auxiliary software, for evaluating the code chunks in the

appropriate environment, for assembling the outputs and finally for producing the

desired result. Transformers can be written in any high level language.

Generally speaking a dynamic document will describe a problem such as a pro-

posed methodology, a data analysis, a simulation, or a tutorial on a particular topic.

The compendium is a mechanism for associating both the data and the software

needed to process the data, together with the text that the author wants to present.

A dynamic document provides a means for interweaving the textual description of

the problem and the computer code that processes the data to produce the necessary

facts, figures and tables that the author wants to present. Finally, the transformer

provides the means for turning the dynamic document into different desired out-

puts such as static papers or web pages. Importantly, it is the compendium that is

distributed so that the data and auxiliary software are available to the reader. This

allows readers themselves to generate and interact with different views.

A reader may have many different interactions with a single compendium. For

example, a user might extract only the code chunks from a dynamic document,

or perhaps only those code chunks for a particular language. Alternatively, a user

might create a traditional document which contains the text intermingled with var-

ious outputs derived from the code chunks. In this paradigm, tables and figures in

the output documents are not susceptible to the common errors introduced by man-

ually inserting them and they are automatically updated, by reprocessing, when

earlier computations or inputs are modified. This mixing together of computer

programs and textual descriptions that can be transformed into different views is

the basis of literate programming (Knuth, 1992). In this paper, we consider the

adoption and adaptation of some of the ideas put forward by Knuth and others.

Essentially, we are describing an executable or “runnable” document that can

be used to recreate the author’s original text and results. However, dynamic doc-

uments also provide the reader with the explicit details of all computations. Thus

compendiums are a specific form of software and extend our usual notions of doc-

uments. This concept of a dynamic document can itself be extended to allow the

reader to parameterize the computations with different inputs such as tuning pa-

5

Hosted by The Berkeley Electronic Press



rameters for algorithms or alternative datasets. And a different view derived from

the compendium facilitates the readers interactive control of the computations and

content as they browse that view/document.

1.1 Applications

An increasingly important aspect of statistical practice is the dissemination of

statistical methodology, data analyses and statistical reasoning. While statistical

practice has evolved to encompass more computation and larger and more com-

plex datasets and models, the primary vehicle for delivery has remained the static,

printed page. We believe that the concepts of dynamic documents and compendi-

ums will greatly facilitate disseminating sophisticated statistical concepts and anal-

yses. They allow the author to express her ideas using a combination of languages,

each appropriate to the particular concept. They allow the reader to explore both

the document and the entire compendium in her own way. This allows her to nav-

igate the details of the actual computations as desired in a non-linear manner. We

are describing a framework that would allow, for example, the reader, upon en-

countering a figure in a paper to obtain explicit details about the computations that

generated that figure. Ideally, they would have access to the inputs and be able to

explore alternative computations or parameter values. Compendiums, combined

with the tools we envisage, provide this and many more interactive opportunities

for the reader which engender fundamental changes in the way we read and use

technical documents.

Compendiums have the potential to be useful in a broad array of disciplines and

activities. In the interest of concreteness, we consider two related situations where

the sharing of data, scripts for analyzing the data, and a discussion of the analysis

are important. The first example is the conveyance of a particular analysis which

has scientific merit but which is quite complex. Our second example deals with

tutorials on good statistical practice that are intended for students or practitioners

from other disciplines. These situations have their roots in pedagogy, reproducible

research and information science. The focus is not on statistics itself, but on the

dissemination of descriptions of statistical analyses. Issues that will need to be

considered include obtaining, interacting with and curating compendiums.

In the first case there is a particular analysis (methodology and data) that the

6

http://biostats.bepress.com/bioconductor/paper2



author wants to convey. In the field of computational biology, complex analyses

are routinely applied to large, intricate data sets. Page limits on printed material

prevent complete descriptions of the analyses to say nothing of the problems, men-

tioned earlier, of conveying algorithmic concepts in English. To overcome this

problem, many authors provide the data and code as separate, supplemental mate-

rials. This also tends not to be completely satisfactory since each author chooses

different conventions and typically has no good way of conveying the exact set of

steps involved.

In concrete terms, the author selects the data that she will use to defend a

particular point of view or conclusion. She then transforms that data to produce

figures, tables and to fit models. The output of these computations is assembled

into the finished document and used to convince the readership that the point of

view or conclusion is valid. In these terms one may then view papers based on

computation as advertisement. There is a leap of faith required by the reader; they

must believe that the transformations and model fitting were done appropriately

and without error.

The compendium concept can alter this situation quite dramatically. The orig-

inal printed material can be created directly, by author and reader alike, from a

compendium using one transformation. But, additionally, the code and data will

allow the reader to exactly replicate the reported analysis. The inclusion of the en-

tire history of computations performed by the author allows readers to examine the

techniques at different levels of detail. Implicit assumptions and mistakes can be

discovered by peer review in the scientific tradition. Publication of more than the

final results should be the rule rather than the exception. And while compendiums

allow curious readers to zoom in on details, they also permit more casual read-

ers to view just the higher level content. Additionally, different transformations

can create views that exploit different media, such as for interactive viewing and

presentations.

In the second instance, we consider a situation where an individual would like

to provide a detailed and explicit description of how to use a particular statistical

method. For example, we might like to explain cross–validation as a general prin-

ciple while possibly providing some more elaborate extensions. Such documents

are routinely produced (though not always published) by individuals and research

7

Hosted by The Berkeley Electronic Press



groups. In most cases, their authors have produced accompanying software, but in

the absence of a standard mechanism for distribution, the software is often over-

looked or treated separately from the document by both author and reader. And

generally different authors use different solutions, thereby imposing a substantial

burden on users who move between the text and the tools being described.

In both examples considered above, the author would like to provide code,

data, and textual information in a coherent framework. The compendium provides

a method to combine and distribute these materials. Much of the compendium

concept is merely the adoption of specific conventions, and can, in some sense, be

considered a form of markup or “packaging”.

We have discussed some applications that will be immediately available and

interesting to authors and readers alike. It is also useful to summarize some of the

many uses and implications of compendiums:

• they encapsulate the actual work of the author, not just an abridged version,

and allow different levels of detail to be displayed in different derived docu-

ments;

• they are easy to re-run by any interested reader, potentially with different

inputs;

• by providing explicit computational details they make it easier for others to

adapt and extend the reported methodology;

• they enable the programmatic construction of plots and tables (in contrast

with most of the current methods that are equivalent to cut and paste method-

ologies and have the associated problems);

• they allow the document to be treated as data or inputs to software and ma-

nipulated programmatically in numerous ways.

The compendium framework lends itself immediately to the concept of repro-

ducible research as described by Buckheit and Donoho (1995). They proposed

that any published figures should be accompanied by the complete software envi-

ronment necessary for generating those figures. Extending these ideas to a more

general context where the content and results (i.e. tables, figures, etc.) being pub-

lished rely on computation or on data analysis suggests that the authors should

8

http://biostats.bepress.com/bioconductor/paper2



provide explicit inputs and code that can be used to replicate those results. The

compendium concept provides the necessary structure to satisfy these demands

and, in fact, is capable of supporting a much richer set of ideas and operations than

those in Buckheit and Donoho’s original proposal.

The layout of the paper is as follows. In the next sections, we discuss concrete

aspects of our proposal, beginning with motivation and followed by a framework

for software that implements the concepts. Finally we comment on an implemen-

tation, or prototype, that is currently available. In Section 6, we consider future

directions and extensions of the concepts put forward in Sections 1 through 5. This

is followed by a discussion of the concepts and some of the more general implica-

tions. Because there are a number of specialized terms and software components

that may not be familiar to all readers, we have provided a glossary. The specific

details of different languages and their Web locations and other details are confined

to the glossary. We are intentionally minimizing our focus on the actual implemen-

tation of such a system. Our purpose is to promote the benefits of, and the need for,

viewing documents involving computations in broader terms that include the com-

putations and data themselves and not just their static output or representation. We

also consider the software infrastructure that will be needed to support a general

version of these documents.

2 Concepts in Dynamic Documents

Before focusing on a prototype system for creating and processing compendiums, it

is beneficial to consider some important general concepts that form the foundation

and motivation of our approach.

2.1 Literate Programming

A few of the main concepts of literate programming are well known, but have

not been widely adopted. As noted previously one of the major requirements of

reproducible research is to provide methodology that allows the author to easily

assemble and relate both textual and algorithmic descriptions of the task or research

being described. In many cases algorithmic descriptions are more useful to the

reader if they are in the form of (annotated) runnable code.

9

Hosted by The Berkeley Electronic Press



Literate programming is an idea that was introduced by Knuth (Knuth, 1992)

and implemented in a variety of software tools such as noweb (Ramsey, 1994).

A literate program is a document that is a mixture of code segments and text seg-

ments. It is written to be read by humans rather than a computer and is organized as

such. The text segments provide descriptions and details of what the code is sup-

posed to do. The code itself must be syntactically correct but need not be organized

in a fashion that can be directly compiled or evaluated.

A literate program should support two types of transformation: weaving and

tangling. A program is tangled to suppress the textual content and arrange the

code segments into a form suitable for machine processing (such as compilation or

direct evaluation). In short, one tangles a document to get usable code. A program

is woven to produce a document suitable for human viewing. In its standard sense,

weaving produces a document that displays the code and its annotations. In our

world of dynamic documents, we use the term weaving to describe the process of

creating the document for the reader, with content generated during the transfor-

mation to create the figures, tables, etc. by executing, or evaluating, the code and

inserting its output into the document. In this sense, the content of the document

is dynamically generated. The essential idea we are borrowing from literate pro-

gramming is the combination of the text and code within the same document. An

additional consequence is that we can leverage the structure of the compendium

to provide programmatic processing of the different elements of the documents to

provide richer views, essentially treating the compendium as data itself.

While literate programming has never gained a large following, it seems that

there are some good reasons to recommend it to statisticians. The original inten-

tion of literate programming was to provide a mechanism for describing a program

or algorithm, but it may be more useful as a mechanism for describing data anal-

yses and methodologies (either explicit or conceptual). When coupled with other

tools for testing and validating code, it provides a powerful mechanism for convey-

ing descriptions, carrying out reproducible research and enhancing readability and

understanding.

Temple Lang (2001) describes an approach for processing dynamic and inter-

active literate documents using R and XML. Sweave (Leisch, 2002) provides an

environment within the R system and more traditional tools (e.g. LATEX) that al-

10

http://biostats.bepress.com/bioconductor/paper2



lows us to mix a narrative (textual) description of the analysis together with the

appropriate code segments. An Sweave document is similar to a literate program

(apart from minor technical differences) and is basically a mixture of code and text.

The text is marked up in a LATEX like syntax. When weaving the document, there is

a great deal of control that can be exhibited over the running of the code segments

and the interested reader is referred to the documentation for Sweave. The end

result of weaving is a LATEX file that can be further processed into PDF or any other

desired format. The result of tangling an Sweave document is the code – extracted

and rearranged – that can be used within R.

There has been some interest in literate programming and reproducible re-

search within the statistical community for some time now. Examples include,

Carey (2001) and Buckheit and Donoho (1995). Rossini (2001) provides an overview

of the area. Sweave uses a traditional literate programming format to mark up the

text and code chunks of a dynamic document. Other markups have been used for

the same effect. XML is a natural choice with many significant and useful benefits

and advantages.

2.2 Reproducible Research

Recall that by reproducible research, we simply mean that individuals in addition

to the author can recreate all of the computations described in a body of work.

Since a compendium contains all of the inputs (e.g. data, parameters) for the com-

putations in every dynamic document it contains, it is independently reproducible.

Readers can transform each dynamic document in the compendium in the same

manner as the author to generate the author’s published view. The author can use

this reproducibility to verify and update her original report by running it on a dif-

ferent machine or at a different time. And when delivered to another reader, the

compendium constitutes independent reproducibility; the author has provided suf-

ficient detail (in the form of code and data) for a reader to reproduce the details of

the author’s presentation. The user can simply invoke the programs that the author

has provided and verify that (using the data and code the author has provided) one

can create the tables, figures and other outputs on which the author has based her

conclusions. Note that it is important to separate the idea of reproducible research

from independent verification or scientific reproducibility. Independent verifica-

11

Hosted by The Berkeley Electronic Press



tion requires that others repeat the entire experiment, under similar conditions, and

obtain similar results. Compendiums and dynamic documents are useful and nec-

essary for evaluating and verifying the evidence provided by an author, but do not

necessarily verify the conclusions or inferences about the subject matter.

Scientific reproducibility requires an independent verification of a particular

fact or observation. For in silico experiments, on the other hand, this require-

ment is for an independent implementation of the experiment. The level to which

independence in computational statistical research is required is not yet well es-

tablished. There are many different levels possible and while the de facto standard

seems to be an independent implementation in some high level language, legiti-

mate concerns still exist. For example, should one require a different language or

is it sufficient to use a different compiler but the same language? Does one have

to consider a different operating system? Do all libraries used have to be reimple-

mented? Clearly bugs in, or failures of, any of these components will affect all

experiments that relied on them.

The practical notion of complete repeatability is limited. However, developing

a truly independent experiment will generally be easier if reproducible research,

in the spirit mentioned here, is available. Compendiums will provide substantially

more detail about the process that was actually used to produce the results than

a static paper. Compendiums can provide scientific reproducibility but they are

not sufficient for independent verification. While the challenges of independent

verification are interesting and important, we will ignore them and remain focused

on our narrow definition of reproducible research.

It is also important to consider some limitations associated with data capture

in the process of creating a compendium. While ideally we would like to capture

the data at as early a stage as possible, it is not feasible to do so in a entirely repro-

ducible way (except for simulation experiments). For example, transformations to

anonymize the data for privacy reasons may introduce errors but we cannot verify

these. Thus, in the context of real data, some decision will need to be made about

the point at which the data are captured in the compendium. The compendium

then documents all transformations and manipulations from that point forward, but

clearly can provide no verification of any previous aspects of the analysis. This is

no different than the present situation. Authors that put their data on the Web must

12

http://biostats.bepress.com/bioconductor/paper2



make some decision with regard to what their starting point is. However, the com-

pendium approach has the advantage of ensuring that the supplied data are capable

of reproducing the claimed outputs. Baggerly et al. (2004) demonstrate many of

the problems that can arise when using standard publications together with author

supplied data. After having expended considerable effort they are unable to repro-

duce the results claimed. We also note that there is nothing in the concept of a

compendium that prohibits the capture of more details. It is a practical matter, not

a conceptual one.

While we have described weaving and tangling as two transformations to create

different views of a dynamic document and compendium, many other transforma-

tions are possible. At its simplest, we can include or exclude different text chunks

for different audiences, for example to present more or less detail, or different as-

pects of the analyses. Generally, adding more detail to the compendium is valuable,

since it need not be displayed in the documents generated for readers, but is avail-

able to interested parties. We would also like to point out that there is, in principle,

no need to put all aspects of an analysis into a single document or compendium.

A compendium can contain multiple dynamic documents, and the early manipu-

lations could be contained in one document while the analyses are described in

another. Similarly, an author might separate these into different compendiums, one

suitable for publication and the other for reference. Users that want to understand

the whole process would obtain two compendiums while those that wanted only

to understand one of the aspects would obtain only the appropriate compendium

for their interests. Since the dynamic documents are programmatically accessible

and the transformers can operate on different aspects of different documents, the

choice of describing different aspects of a study in a single document or several

documents can be left to the author and is a matter of style and convenience.

2.3 Conceptual Overview

It is worth briefly reviewing and adding some context to the ideas that have been

expressed. A compendium is a collection or archive containing data, code and text.

A compendium can be processed in many different ways to produce many different

outputs or views. The author makes certain transformations available (e.g. a PDF

file, a script file containing the commands to perform all the computations) and

13

Hosted by The Berkeley Electronic Press



the user/reader has complete access to the computational details and can apply or

carry out any of the transformations on her own computer at any time. There are

basically two different types of processing or evaluation. One is the transforma-

tion of the data inputs by the code chunks via one or more specific programming

languages (e.g Perl or R) to provide output. A second type of processing takes the

outputs from these evaluations, combines them with textual descriptions (in many

cases) and provides a narrative output for the user. In the abstract there is no clear

delineation between these two steps as all transformations are merely computa-

tions on “data” – problem-related or document elements – to yield outputs. This

is unfortunate from the perspective of providing a simple, stepwise explanation of

how the creation of a document works, but it greatly reduces the complexity of and

enhances the processing itself.

In simple terms, processing a compendium consists of two sets of computa-

tions. One set pertains to processing the structure of the compendium by iden-

tifying and manipulating the different text, code and data elements. The second

set of computations involves evaluating the code chunks within the compendium

structure. The evaluation of each code chunk will take place in the appropriate

language for that code and is delegated to that programming system. So this set of

computations for the code chunks may involve one or more different programming

languages such as R, Perl or Matlab. The first set computations on the structure

of the compendium can be written in any general programming language. What

is imperative is that some form of markup language is needed to identify different

components of a dynamic document.

3 A Functional Prototype

In the interest of concreteness, we describe software tools that are currently avail-

able with which we constructed a basic, functional compendium. We note that the

concept of a compendium is much broader and that there are already more general

implementations than we will detail in this section. We present this as a “straw-

man” so that we can discuss the need for a more general system.

Our goal is to start with the data in some raw or unprocessed state and describe

the set of transformations or computations, jointly in words and in software, that

14

http://biostats.bepress.com/bioconductor/paper2



are needed in order to properly interpret the data. The resulting compendium can

be processed by the author, or by any reader, to yield a final report. After describing

the general structural requirements, we provide some explicit details about Sweave

and its role in our prototype.

This prototype can be thought of as a single-language compendium. That is,

we will make heavy use of a single language – R (Ihaka and Gentleman, 1996),

in order to create, distribute and transform the compendiums. The code chunks

will be restricted, being written only in this single language. This is not such a

restriction since R has conventions for calling code written in other languages, but

the author cannot detail the use of different tools and languages he may use in

practice. This is an issue in a general system, but not for our description of the

basic architecture and authoring pipeline.

To create compendiums, we need a way to combine data, problem specific

software and scripts together with the text chunks in such a way that the desired

computations can be carried out. And we must provide access to the more general

data analytic and computational tools needed to carry out the analysis, e.g. R.

We will also consider the need for tools to verify (test), maintain and distribute

compendiums. And readers of compendiums will need tools for locating, obtaining

and installing them.

The major components in the prototype are the R package system (R Devel-

opment Core Team, 1999), Sweave, and the R programming environment itself.

The existing package system in R is able to satisfy most of the requirements of

combining, verifying, maintaining and distributing the elements of a compendium.

This system insists on a particular hierarchical structure for the files that make up a

package and provides software to help create, distribute and install such packages.

Complete details can be found in the documentation for R (R Development Core

Team, 1999). For this discussion, it is sufficient to mention that there are different

locations (i.e. directories or folders) in which to place R functions (R/), datasets

(data/), C/C++ and Fortran code (src/), help files for the R code (man/), and

documents (inst/doc/).

The dynamic documents are written in a modified version of the nowebmarkup,

with text chunks written in a modified version of LATEX and the code chunks written

as regular R code. Sweave provides software for processing dynamic documents to

15

Hosted by The Berkeley Electronic Press



create different outputs. Primarily the transformations are either weaving, to obtain

a finished document or tangling to extract the code chunks. Thus, Sweave plays

the role of the transformer. It takes a dynamic document and transforms it (mainly

using tools in R) into the different outputs. A reader can use Sweave, or any other

available tools, to carry out desired transformations at any time.

Representing a compendium as an R package has many benefits. The author

has a convenient and structured way of organizing each of the data, the auxiliary

software, scripts, and the dynamic document. There are a variety of testing and

verification tools available in R that allow the author to process the document and

to compare various outputs with those obtained on previous runs. The man/ di-

rectory allows (and encourages) the author to document any auxiliary functions.

Importantly, the data and auxiliary functions can be used independently of the dy-

namic documents providing additional utility of the compendium. However, it is

important that the reader not confuse a compendium with an R software package:

the former is intended to provide support for a scientific paper while the latter is a

general piece of software that can be applied to a variety of inputs.

Some examples of compendiums written using this paradigm are available

through the Bioconductor Project www.bioconductor.org. Readers are en-

couraged to download one or more of these to see specific examples of some of the

concepts presented here. In particular Gentleman (2004) is based on the GolubRR

compendium and provides a more substantial discussion of how to create R based

compendiums.

4 General Software Architecture for Compendiums

We now turn our attention to the general set of characteristics we feel are nec-

essary for any implementation of compendiums. In order to see what support is

required, it helps to consider what constitutes a compendium and how it might

be used throughout its lifetime. A compendium contains one or more dynamic

documents. By its nature, a dynamic document requires supporting software for

generating the dynamic content. We distinguish between general purpose software

and auxiliary software. By general purpose software, we mean the basic language

interpreters (e.g. S, Perl, SAS, Java, Excel), compilers (e.g. gcc, Visual Basic)

16

http://biostats.bepress.com/bioconductor/paper2

www.bioconductor.org


and add-on modules such as those available from software archives such as CPAN

(Comprehensive Perl Archive Network) and CRAN (Comprehensive R Archive

Network). We presume that the necessary general purpose software is available in

the reader’s environment and that the transformer is able to detect and use it.

The auxiliary software is formally part of the compendium, and typically is

made up of software specially written for the topic(s) discussed in the dynamic

documents in the compendium. For example, a function that embodies code that is

used in several places within the code chunks of the dynamic document(s) would be

best centralized in the auxiliary software. It could also contain specific versions of

any of the general purpose software, such as the particular version of an R package

if general availability of that version is unlikely, now or in the future, or the com-

putations depend explicitly on that version. In simple cases the auxiliary software

may be entirely included within the code chunks of the dynamic documents.

A compendium can be represented entirely in a suitably marked up document,

e.g. an XML document can contain <data> <auxiliaryCode>, etc. sections.

The software environment for working with compendiums requires relatively

few tools. We next list these and subsequently discuss the first three in more detail.

1. Authoring Software:

tools to enable the author to integrate code and textual descriptions in a nar-

rative fashion to create the dynamic documents;

2. Auxiliary Software:

a mechanism for organizing the supporting or auxiliary software and data

such as C code, S functions, documentation and datasets so that they can be

combined with the dynamic document;

3. Transformation Software:

tools for processing the compendium to yield different outputs, typically in-

volving transformations of the dynamic document(s);

4. Quality Control Software:

tools for testing and validating a compendium, for both the author and the

reader;

17

Hosted by The Berkeley Electronic Press



5. Distribution Software:

tools for distributing the compendiums and for managing them on both the

client- (i.e. reader-) side and the server side; on the server side this includes

organization and versioning; and on the client side, it includes tools to access

the documentation, code and data.

Authoring Software For the compendium to become an accepted publication mech-

anism, we will ultimately need easy to use tools for creating compendiums and for

authoring dynamic documents. Easy integration and editing of code together with

the text will be vital. The author should be able to use a text editor or word pro-

cessor of her choice, but of course, this will depend on demand and whether open

source or commercial offerings are available. When editing the text chunks, all the

usual tools (e.g. spell check, outline mode) should be available. For writing code,

we want the usual tools for that process (e.g. syntax highlighting, parentheses

matching) to also be available. The code chunks need to be functional and sim-

ple mechanisms for evaluating them while authoring in the appropriate language

are essential. Systems that display some of this functionality include Emacs with

Emacs Speaks Statistics (Rossini et al., 2004), and AbiWord, the Gnome project’s

word processing application. Paradigms for leveraging these familiar tools in the

context of creating compendiums need to be explored.

Auxiliary Software The components in a compendium (documents, data, auxiliary

software) will essentially be arranged by some convention and in such a way that

the transformer can locate them. This convention is usually hierarchical in manner

(e.g. the R packaged directory structure) where the conceptual units of the com-

pendium map to physical units such as directories/folders and files. Frameworks

that provide similar functionality include file archives (e.g. zip and tar files),

software language package mechanisms (e.g. the R package system and Perl mod-

ules), and XML documents which contain not only the contents of the dynamic

documents, but also code, data, etc.. Thus, it is perfectly reasonable (and a likely

eventuality) that there will be many different forms of compendiums. For some

authors, compendiums will be R packages, while for others they will be single

XML documents. Both forms have advantages and disadvantages over the other

and both can easily co-exist, together with many other additional formats. The es-

sential characteristic of the compendium is that it is an archive or collection which

18

http://biostats.bepress.com/bioconductor/paper2



can be accessed programmatically to locate the different components.

Transformation Software We use the compendium simply as a container for el-

ements from which we generate various different views or outputs such as a PDF

document, code, or graphics. We need a collection of filters to generate the differ-

ent outputs or views. For example, it would be natural to use a general transfor-

mation utility such as XSL to transform dynamic documents that are marked-up

in XML. Sweave provides a transforming mechanism for R, and similar filters can

be written within and for other languages and communities. Ideally, additional fil-

ters, beyond weave and tangle, will be created by users to generate new views (e.g.

interactive documents, bibliographies, citations, data relationships) and program-

matically operate on the compendium’s content.

One might argue that the compendium concept could be simplified. Indeed,

many people have produced their own approaches to creating documents that they

can produce by running a script. One can easily write an S script to produce all

figures in a paper. Similarly, a script that generates LATEX tables in separate files

can be used for the non-graphical content. The use of the make facility suggested

in Buckheit and Donoho (1995) is an improvement over this as it provides ex-

plicit dependencies between computations and content. Any of these somewhat

ad hoc approaches is useful and aids others in reproducing the results. The im-

portant idea is that the creation of the document is an atomic action in which the

inputs are synchronized. We argue that providing a well-defined structure that

others can use directly makes it easier for both authors and readers to work with

such documents. So, for example, the additional complexity imposed by the R

packaging mechanism is very small relative to the gains in familiarity and tools

to create, distribute and process the resulting compendiums. Similar gains will be

made by adhering to language specific standards for compendium systems devel-

oped in Perl or Python, or using standard transformation utilities (e.g. XSL) rather

than home grown, community-specific tools. And, importantly, the structure of the

compendiums will make them accessible to programmatic manipulation such as

refined search, cataloging, versioning, and so on.

One can also argue that the complexity of dynamic documents and intermin-

gling code and text is not generally needed. Instead, if authors provide a script

that generates the figures and tables that are then incorporated into the static doc-

19

Hosted by The Berkeley Electronic Press



ument then the goals of the compendium will be achieved. There is some truth

to that statement and, to a large extent, this is only a minor detail about how dy-

namic documents are authored. However, there is also great benefit to the single

document approach that combines code and text chunks together. By interleaving

the code chunks directly into the document and atomically processing the docu-

ment as a whole via the transformer, we have a well-defined computational model.

The dependencies between the chunks are clear and centralized in a single place.

From the reader’s perspective, the dynamic document removes any questions about

which computations were applied to produce a particular estimate, table or figure.

The output, the code and the data are inextricably mixed and the reader can de-

termine exactly which processes were applied, in what order and which specific

values were used. And there are less connections to manage between the creation

of the sub-elements (e.g. figures and tables) and the different code chunks.

A well documented script will provide the same level of detail as a dynamic

document. However, there is a disconnect between the processing and the output.

The reader must match these different sources together to reproduce the actual

computations and output. For the author, using scripts to create the content requires

some form of synchronization. A formal mechanism (e.g. the make utility Oram

and Talbott (1991)) is needed to ensure that this synchronization is accurately done,

and this amounts to a need for robust software and careful attention to detail every

time the script is run. The construction of a compendium moves that effort and

attention to detail into the construction process, and once created the compendium

can be processed repeatedly by many users in an identical manner. Many of us have

managed this synchronization manually by explicitly cutting and pasting material

from the computational environment into the document. At best, this is tedious and

must be undone and repeated when new results are needed; at worst, it introduces

errors. The elimination of these errors that arise due to ad hoc synchronization such

as cutting and pasting is, by itself, a good recommendation for the compendium

concept. And indeed, using any dynamic document system is to be encouraged,

independent of the compendium concept.

It is also worth considering the role of the processing language, or transformer,

that operates on the dynamic document to produce the desired output. Its primary

role is to identify the relevant chunks (text or code) and to marshal these code

20

http://biostats.bepress.com/bioconductor/paper2



chunks to the other relevant software components that process them appropriately.

The languages that can be used in the code chunks of the dynamic documents are

limited by the capabilities of the transformer. For example, the transformer can

use a shell process to evaluate system-level commands, invoke Perl to execute a

chunk as a Perl script, or pass the code to an R interpreter. Different transform-

ers will support different languages for code chunks and dynamic documents can

reasonably use several languages to implement the overall task.

It will be important to develop appropriate evaluation models for compendi-

ums. For example, in the R language prototype the evaluation model is that each

chunk is evaluated sequentially. All values and intermediate results from one chunk

are available to any other code chunk that appears after it in the dynamic document.

In this prototype there is no linking of computations between dynamic documents.

For compendiums in Perl or Python, suitable evaluation models that reflect the

views of those communities will need to be developed. In compendiums with

mixed language code chunks, a different model may be needed.

Quality Control Software In addition to the sets of conventions and tools

needed to create compendiums and to author dynamic documents, a variety of

other software tools will be needed. These deal primarily with issues such as unit

testing, applying version numbers and distribution.

An author needs a mechanism to verify that the code chunks perform as in-

tended. There are many situations in which the reader will also need such valida-

tion. For example, she may want to verify that a specific static document was an

output of a particular compendium. While the testing process is generally open-

ended and context-specific, there are some relatively simple and achievable bench-

marks. For example, we can compare output from components of the compendium

with a master copy. Diagnostic checks for intermediate results (i.e. evaluating

sub-groups of code chunks) are also relevant in many situations. While we are not

aware of any general, widely-adopted strategies for doing this, most good software

has some self-verification mechanism that can be run at installation.

Distribution Software Authors will generally want to provide readers with ac-

cess to their compendiums and hence require mechanisms for distribution. Readers

will need tools to help search for and locate interesting compendiums, and then to

download and process the compendium for reading or other purposes. While no

21

Hosted by The Berkeley Electronic Press



major system yet handles compendiums, many languages support transparent dis-

tribution and installation of modules. For example, CRAN for R and CPAN for Perl

are software archives that provide the search and distribution facilities, albeit in a

single centralized location. Tools provided with these languages (e.g distutils

for Python and install.packages in R) provide the client-side installation

mechanism that might be extended to support compendiums.

A system for attaching version numbers to compendiums will be very useful.

Such a system will allow users, for example, to identify newer versions (perhaps

with new data or with errors fixed), differentiate between different versions, and so

on. Version numbers can be used in general distribution systems that allow users

to automatically obtain updates, as the author makes them available.

5 Implementation Details

We now look at several commonly used programming languages and explore how

we can make use of them to implement compendiums. We first consider and explic-

itly identify different roles for programming languages with respect to authoring,

transforming and distributing compendiums. We focus on notions of what might be

called single language compendiums, namely one that involves code chunks writ-

ten for use in one language. The prototype we have discussed is a single language

compendium for R and while such an approach is limiting it, can be very helpful

as well. Users familiar with R and LATEX have had little trouble using the system in

a manner consistent with the general strategies and concepts we are proposing. We

believe that similar gains can easily be made within other programming language

communities, such as the Perl and Python communities.

A compendium is simply a software module or archive and can be organized

according to accommodate processing by some specific language. We will call this

language the definition language or perhaps the definition system. Next the dy-

namic documents themselves must be marked up in some language such as LATEX

or XML. We will call this the document markup. When a dynamic document is

transformed some software language will need to be used to carry out the transfor-

mations. This could be any high level language such as R, Perl, Python or XSL;

we refer to this as the transformation language. The actual software that carries

22

http://biostats.bepress.com/bioconductor/paper2



out the transformations is called the transformer and the capabilities of the pro-

cessing system are embodied here. The more general the transformer the more

general the dynamic documents and hence the compendium. And finally, each of

the code chunks within a dynamic document can be written in any supported lan-

guage. Whether or not a dynamic document can support code chunks written in a

particular language will depend on the transformer that is available.

The simplest setting is when the definition language and the transformation

language are the same and the code chunks are also written in that same language.

This is the case with our prototype system. Only the R language is involved. The

markup language for the dynamic documents in that system is noweb with LATEX

for the text chunks. One could of course use a different transformer, if one were

available. That transformer would need to understand the organization of the R

compendiums and would need to understand the markup used for the dynamic

documents, but it does not need to be written in R.

As we have mentioned previously there are many different candidate languages

for carrying out each of these different roles. It is also important to emphasize that

most languages can easily perform more than one role. For example, XML can

be used as the markup language for the dynamic documents and it can be used to

provide an organization and structure for compendiums themselves.

Perl, Python and R are widely used languages each of which has a mecha-

nism for users to provide add-on functionality to the base system. Each provides

tools for collecting the code and documentation into a module so that it can be

distributed and installed on the user’s machine. Additionally, each allows users to

include additional files in that distribution. Table 1 identifies existing tools in these

systems that can be used to carry out Steps 1 through 5 listed on page 17. This

structure and extensibility provide a very natural basis for constructing compendi-

ums. Further, the software engineering tools provided by these languages can form

the basis for validity checking and other quality control procedures that the authors

of compendiums will need. The path to complete implementations, while not en-

tirely trivial, is clear. More importantly, we can see that the compendium concept

fits well with different languages and is in no way specific to R.

Perl has its own language for writing documentation named POD (Plain Old

Documentation) and that might be more natural for authoring Perl-based dynamic

23

Hosted by The Berkeley Electronic Press



R Perl Python

Document

Format

XML or Sweave XML or POD XML

Skeleton package.skeleton h2xs

Distribution

unit

R package Perl module Python module

Distribution

Mechanism

Repository tools CPAN Vaults of Parnassus

Installation R CMD INSTALL perl

Makefile.PL

make install

python

setup.py

install

Test Com-

mand

R CMD check make test python

unittest.py

file

Test Tools tools package Test module PyUnit

Table 1: The tools in the different languages R, Perl, Python available to author,

create, manage and distribute a compendium.

24

http://biostats.bepress.com/bioconductor/paper2



documents than XML or noweb. Python’s documentation mechanism is more nar-

rowly focused and not appropriate for writing documents. As a result, it is likely

that we would adopt XML or a similar language for writing Python dynamic doc-

uments.

Both Perl and Python have XML parsing capabilities which can be used to

process dynamic documents authored in XML into the different chunks. Perl also

provides classes for processing POD input which can be used to extract the dif-

ferent chunks. Regardless of how the chunks are obtained, it is straightforward to

iterate over them, evaluate the code chunks, and interleave the output into the target

document with the text chunks.

Both Perl and Python provide a well-defined structure for creating modules for

the auxiliary software and data present in a compendium. Perl’s h2xs tool creates

a template for a module and the necessary code for installing that module. Python’s

distutils module provides facilities for specifying the contents, configuration

details, etc. for a module. The resulting modules in either language can then be eas-

ily installed by the author and reader alike using the standard and simple commands

perl Makefile.PL ; make for Perl and python setup.py install

for Python.

Perl and Python also have well-developed modules to perform testing. In Perl

these are contained in the Test modules, while in Python they are contained

within the PyUnit module. Both mechanisms support test files that can be run

on the installer’s machine to verify that the module is working correctly. We be-

lieve that these mechanisms can be readily extended to process dynamic documents

and provide verification that compendium produces the expected output.

5.1 General Comments

The tools and paradigms described in Table 1 provide support for authoring, man-

aging and transforming the compendiums in each of the three different languages.

They do not however restrict the choice of languages that can be used in the code

chunks. A compendium authored in the R system could have code chunks in Perl

or Python or any other language provided that the transformer is capable of iden-

tifying and managing that process. We note that Sweave currently only supports

chunks written in R but that is a limitation due only to implementation and could

25

Hosted by The Berkeley Electronic Press



be eliminated.

As indicated above there is no need for the language used to transform the

dynamic documents to be the same language that was used to author the com-

pendium. Instead a general transformation tool (e.g. XSL) which identifies the

chunks itself and passes them to the appropriate processing system, e.g. R for S

language code chunks and XSL rules for text chunks, can be used. Our experience

with combining R and XSL (see http://www.omegahat.org/Sxslt) indi-

cates that using a general transformation mechanism will often be better since it

allows measure of language independence that other strategies do not. That is, the

transformation tools are written once and can be applied to compendiums based on

R, Perl, Python or a mixture of these (or other languages).

We also want to be careful not to gloss over the difficulties that might be in-

volved in a general scheme. If a compendium is represented as a large XML file

and is transformed by XSL, much of the work that in our prototype is carried out by

R must be reimplemented. The transformer will need to do a reasonable amount of

work to locate the appropriate language and to marshal the auxiliary software and

data for processing. However, one gains flexibility and language independence.

6 Future Directions

In this section, we provide some discussion of what we think are likely short-term

and long-term directions that are worth pursuing.

Multi-language compendiums It seems quite natural to expect that many tasks

described in dynamic documents will be carried out using different pieces of

software and commands from different languages. For example, one might

use Perl code to collect and filter data, some system commands to combine

files, and S code for statistical analysis all as parts of a single overall task.

To faithfully reproduce these computations and transform the document, as

the processor encounters the different code chunks, it must be able to both

identify the associated software, and evaluate the code appropriately using

the current inputs to obtain the output. This basically requires a markup to

identify code chunks with particular processing software. The evaluation

of these chunks is more problematic and requires the document processing

26

http://biostats.bepress.com/bioconductor/paper2

http://www.omegahat.org/Sxslt


system to be able to pass those chunks to other systems for evaluation. An

inter-system interface is a mechanism by which one system can access func-

tionality and evaluate code in another. Omegahat’s inter-system interfaces

(e.g. SJava, RSPython, RSPerl) provide these in R, while the Inline module

provides similar capabilities for Perl.

Conditional Chunks Producing target documents in different formats is an im-

portant facility for the compendium. It is equally important to be able to cre-

ate documents with different content for different audiences from the same

compendium. For example, the output documents from a clinical trial rep-

resented as a compendium would naturally include interim reports, final re-

ports and specialized reports for safety and data monitoring, each of which

are created at different times during the evolution of the trial and intended

for different readers. Such multi-targeted output requires support both in the

authoring and the processing of the dynamic documents to handle the text

chunks in a richer and more complex manner, e.g. conditional inclusion in

the target document. Again markup for specifying attributes for text chunks

is needed.

Some dynamic documents may provide alternative implementations for sev-

eral languages. For example, an author might offer code for R and Matlab

to appeal to a wider audience. In such cases, the processing system should

be parameterizable to identify the target language of interest and ignore the

code for the alternative system(s).

Interactivity The advent of the Web and browsers has familiarized many of us

with interactive content within documents, e.g. HTML forms for data in-

put and sliders for controlling a display. One of the uses of compendiums

is pedagogy and providing interactive facilities with which the readers of

the output documents can manipulate and control the computations directly

will be a powerful facility. This is yet another type of transformation of the

dynamic document with a different intended readership. Sawitzki (2002) de-

scribes a system for creating interactive documents and discusses some of

the issues involved.

27

Hosted by The Berkeley Electronic Press



Metadata Inclusion of programmatically accessible meta-information in docu-

ments facilitates both richer interactions and better descriptions of the con-

tent. Many scientific documents contain keywords as part of the text. Mak-

ing these explicitly available to cataloging and indexing software as pro-

grammatically extractable elements of the dynamic document will facilitate

richer distribution services. Since dynamic documents are software, licens-

ing also becomes pertinent. One may wish to restrict evaluation or access

to data within the compendium. This can be done with meta-information

such as license key matching or explicit code within the document to verify

authorization. Another use of meta-information is the inclusion of digital

signatures which can be used to verify the origin and legitimacy of the com-

pendium.

6.1 XML

Literate programming is a major component in the concept of compendiums. Dy-

namic documents as described in earlier sections are a relatively straightforward

extension of literate programming. The extensions outlined in the previous para-

graphs introduce both technical and conceptual challenges to the traditional literate

programming paradigm. Adding attributes to text chunks (e.g. target languages,

conditional evaluation,) changes the underlying model of noweb and Sweave.

The addition of meta-information moves away from the two type chunk format

(text and code) to allowing many different types of document elements. While we

could adapt noweb and Sweave to handle each of these extensions, we feel that

adopting a widely-used and extensible markup language will be a more advanta-

geous strategy. The natural candidate is XML.

Over the past several years, XML has become the standard for document and

data representation and interchange within and between a multitude of different

and diverse communities. Not only is XML a de facto standard, it has a well-

documented, formal specification. Since XML is a general, extensible markup

language framework, it is sufficient for specifying all the elements of any dynamic

document. It is also extensible and so allows us and others to introduce new tags

or chunk types and attributes for the different pieces of the document, as needed.

The fact that XML is in widespread use has two immediate consequences.

28

http://biostats.bepress.com/bioconductor/paper2



There is a large, knowledgeable user-base and an active development community.

Through the work of this development community, there is a vast collection of

both low- and high-level tools for working with XML. These include software for

authoring, transforming and validating XML documents, available in almost every

programming language. Hence, we neither need to specify or invent the general

markup structure, nor develop all required tools to process dynamic documents

as much of this work has already been done or is being done by others. These

same advantages are available to developers of compendiums in other languages

such as Perl and Python. This common structure provides a unification across the

languages and also the various communities which is essential for disseminating

statistical ideas. In addition to the infra-structural tools, there are several existing

higher-level frameworks for processing technical documents such as DocBook and

Jade. More related to the statistical community, we have provided general support

for XML in S that makes it possible to both read and write XML from the S system.

Also, S can be combined with XSL by either embedding the XSL transformer in

R or extending the XSL engine to be able to call S functions (Temple Lang (2001)

and www.omegahat.org/Sxslt).

Data play an important role in our concept of the compendium. Our previous

considerations suggested including the datasets as files within the compendium,

i.e. within the specific packaging mechanism. In some cases, it is simpler to be

able to include the data directly within a dynamic document. General processing

tools will only be able to interpret these data if they are self-describing according to

some standard which does not rely on ad hoc conventions. The data representation

aspects of XML again make this easy. For example, we might include a dataset

encoded using SOAP, an image using SVG or a graph using GXL. This makes the

same data available to all languages that are being used.

6.2 Practical Issues

One can argue that compendiums would be good accompaniments to papers sub-

mitted to journals or that compendiums should be the preferred form of submission.

Currently, referees of papers that are largely based on computation can face sub-

stantial difficulties. They are often faced with the dilemma of either doing a great

deal of work to reproduce the authors computations or they must take on faith what

29

Hosted by The Berkeley Electronic Press



the authors report. When these referees are provided with compendiums, their job

will be much easier. They can explore the dynamic documents, see which com-

putations were carried out, and answer the specific questions of when and how.

Compendiums offer great opportunities and should substantially ease the burden

of refereeing such papers in detail.

A secondary issue that should also be addressed is to understand the role or

purpose of compendiums. Are they software implementations that should work on

a variety of inputs? The answer to this is an emphatic no. That is not the intention

of such a device. The purpose of the compendium concept is to provide support (by

reproducing the output) for the claims made in a scientific article. The production

of high quality software is a related but very different task.

Another practical issue that will arise is the problem of proprietary content. It

is reasonably common for authors to be able to disseminate results of an analysis

or descriptions of an algorithm but not to be able to make the data or the software

available. This is already a problem for peer-reviewed publication. Undoubtedly,

data and code are vital components of an actual executable compendium. However,

the absence of either from the compendium still leaves available many more of the

details for the referee or reader than a regular static document. However, even in

cases where only the static document is submitted for publication, there are benefits

to the author from creating and working with a compendium. If questions arise in

the future or if new data are made available their inclusion is much easier if a

compendium has been created.

The richer concept of an executable document that we have described is likely

to support a form of limited or restricted execution. Digital signatures or “license

managers” that allow only privileged recipients to re-run the computations appear

to be a practical extension.

It is also worth noting that publication is quite a broad term. And within that

compendiums have general applicability. An author might publish their work by

sending it to handful of close associates. One post-doc in a lab might publish

their work by making a compendium available to their lab-mates. In all cases the

purpose is the same – to enable the reader to comprehend and reproduce the results

of the author. In all cases it is a valuable tool, there is no need for publication in

journals or widespread distribution for the compendium concept to be worthwhile.

30

http://biostats.bepress.com/bioconductor/paper2



As another example, cancer clinical trials often extend for many years and the

study statistician often changes several times before the research is complete. In

many cases, one may want to revisit an analysis at a later date. In this setting, a

compendium will make it easier for other statisticians to take on the study and for

the results to be used in future studies. But again there is no need or reason to

publish the whole compendium; portions of it may appear in interim reports or in

final publications.

The lifetime of a compendium may be limited. As programming languages

evolve or disappear it may not be possible to ensure that all existing compendiums

are runnable. However, the same is true for any electronic document format; will

Word or PDF exist forever? The answer, of course, is no. But, it is often the case

that software tools that aid in migration are developed and used for formats that are

popular. We would also like to point out that even so, we will be no worse off than

we are now with static papers. And in the event that a reconstruction is necessary,

it will be much easier to do so from a compendium than from a paper.

We would also like to indicate that we are cognizant of the security issues

that will be involved in obtaining and running compendiums. In essence we are

proposing that users download and run programs on their local machine. There is

some potential for malicious behavior and research into methods that may help to

make the process more secure is certainly warranted. This is currently no more of

an issue than using code from an R package or Perl module downloaded from the

Internet. However, it does illustrate the need to provide some sandbox mechanism

in which the compendium can be processed with secure limitations.

7 Discussion

As noted, our focus in this paper has been on the concept of the compendium and

to point out that sufficient tools exist to build and distribute them now. We have

intentionally not gone into details about the process of authoring such a document

or different aspects of rendering it for the reader. We plan to explore these issues

in our future research.

In this multi-media era, it seems appropriate to consider interactive documents

which allow the reader to control different aspects of the computations (e.g. adjust-

31

Hosted by The Berkeley Electronic Press



ing a tuning parameter via a slider widget) or even introduce their own data. Such

interactivity has been discussed in Temple Lang (2001) and Sawitzki (2002). These

concepts are also being explored in the StatDocs project (www.statdocs.org).

Much more development will be needed as we learn what does and does not work

and what is and is not useful. These explorations will lead to new tools and im-

provements to old ones. However, we feel that currently available technology pro-

vides a structure that can support a much richer environment than is currently avail-

able.

The ideas put forward in this article are mainly aggregations based on other

tools and we consider the implications when these methods are applied to the con-

cept of reproducible research. What is remarkable is that using very few tools and

conventions, we have been able to construct a workable system. Granted that sys-

tem is too reliant on a single engine (R) to be generally viable, but it seems to be a

more than adequate starting point.

The compendium concept, and that of reproducible research, has the potential

to improve the state of publication about computational science. The tools we have

proposed and discussed will allow us to move from an era of advertisement to one

where our scholarship itself is published. This exposes the computations them-

selves to the scientific method and enhances the potential for iterative refinement

and extension.

Acknowledgments

We would like to thank the R Core Development Team for providing an intellec-

tual environment that stimulates research. We particularly thank Vincent Carey,

Friedrich Leisch and Kurt Hornik for helpful discussions and advice. We would

also like to thank an Associate Editor and two referees for their patience and in-

sightful comments.

Glossary

The following provides a description and some references for some of the software

and standards referenced in the paper.

32

http://biostats.bepress.com/bioconductor/paper2

www.statdocs.org


AbiWord is the Gnome word processor, (http://www.abiword.org)

Emacs is the GNU text editor (and more), www.emacs.org.

GXL The Graph eXchange Language (GXL) is an XML-based representation for

describing graphs, i.e. nodes and connecting edges. It is used in a variety of

different domains ranging from Bioinformatics to software engineering. See

http://www.gupro.de/GXL/ for more information.

Perl (Practical Extraction and Report Language) is a general high-level program-

ming language that excels at text manipulation. See http://www.perl.

org and the Comprehensive Perl Archive Network (CPAN) for available

add-ons to the system.

Python is another high-level scripting language, more structured than Perl with an

increasing user-base and collection of contributed extension modules. More

information is available from http://www.python.org.

R is an Open Source implementation of the ACM award winning S language

and similar to the commercial implementation S-Plus. S is both a general

programming language and an extensible interactive environment for data

analysis and graphics. See http://www.r-project.org for infor-

mation on the project and CRAN (the Comprehensive R Archive Network)

http://cran.r-project.org for available software and packages.

SOAP is an acronym for the Simple Object Access Protocol which is an XML

dialect for representing distributed or remote method calls between applica-

tions. It has become a very popular protocol for implementing Web services,

using HTTP as the communication mechanism and XML as the data repre-

sentation. See http://www.w3.org/TR/SOAP/ for more information.

SVG Scalable Vector Graphics is another XML dialect used to represent two-

dimensional graphical displays. It provides a way to describe drawing op-

erations for graphics objects as well as interactivity in the form of event

action descriptions and animations. More details are available from http:

//www.w3.org/Graphics/SVG.

33

Hosted by The Berkeley Electronic Press

http://www.abiword.org
www.emacs.org
http://www.gupro.de/GXL/
http://www.perl.org
http://www.perl.org
http://www.python.org
http://www.r-project.org
http://cran.r-project.org
http://www.w3.org/TR/SOAP/
http://www.w3.org/Graphics/SVG
http://www.w3.org/Graphics/SVG


XML stands for the eXtensible Markup Language, a text-based markup mecha-

nism for representing self-describing data. Its syntax is the same as the fa-

miliar HTML (the Hyper Text Markup Language). However, one can define

new and arbitrary tags or elements in XML to define new and different spe-

cialized dialects for representing arbitrary data in a self-describing manner.

XML documents are made up of nodes which are arranged hierarchically.

A class of XML documents (i.e. a dialect) can be described symbolically

via a Document Type Definition (DTD) which describes the possible rela-

tionships between different types of nodes, i.e. which nodes can be nested

within other node types and in what order. This allows one to also validate

XML documents according to this specification without actually interpret-

ing the specific content. Schema are a newer way to provide information not

just about the structure of the document, but also about the data types within

XML nodes.

The W3 organization (http://www.w3.org) provides much of the stan-

dardization and specification of XML and its dialects. The Cover Pages Web

site (http://www.coverpages.org) provides information on using

XML in a wide variety of different applications.

XSL (the eXtensible Stylesheet Language) is a specific XML dialect that is used

to describe transformations that map an XML document to an other XML

document or different format. Typically, an XSL transformer (XSLT) is used

to apply a stylesheet to an XML document.

References

Baggerly, K. A., Morris, J. S., and Coombes, K. R. (2004). Reproducibility of

seldi-tof protein patterns in serum: comparing datasets from different experi-

ments. Bioinformatics, 20:777–85.

Buckheit, J. and Donoho, D. L. (1995). Wavelab and reproducible research. In

Antoniadis, A., editor, Wavelets and Statistics. Springer-Verlag.

34

http://biostats.bepress.com/bioconductor/paper2

http://www.w3.org
http://www.coverpages.org


Carey, V. J. (2001). Literate statistical programming: concepts and tools. Chance,

14:46–50.

Gentleman, R. (2004). Reproducible research: A bioinformatics case study. Sta-

tistical Applications in Genetics and Molecular Biology, page to appear.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics.

Journal of Computational and Graphical Statistics, 5:299–314.

Knuth, D. (1992). Literate Programming. Center for the Study of Language and

Information, Stanford, California.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate

data analysis. In Härdle, W. and Rönz, B., editors, Compstat 2002 — Proceed-

ings in Computational Statistics, pages 575–580. Physika Verlag, Heidelberg,

Germany. ISBN 3-7908-1517-9.

Oram, A. and Talbott, S. (1991). Managing Projects with make. O’Reilly.

R Development Core Team (1999). Writing R Extensions. The R Foundation,

Vienna, Austria, 1.8 edition.

Ramsey, N. (1994). Literate programming simplified. IEEE Software, 11(5):97–

105.

Rossini, A. (2001). Literate statistical analysis. In Hornik, K. and Leisch, F., ed-

itors, Proceedings of the 2nd International Workshop on Distributed Statistical

Computing, March 15-17, 2002. http://www.ci.tuwien.ac.at/Conferences/DSC-

2001/Proceedings.

Rossini, A. J., Heiberger, R. M., Sparapani, R. A., Maechler, M., and Horniki, K.

(2004). Emacs speaks statistics: A multiplatform, multipackage development

environment for statistical analysis. Journal of Computational and Graphical

Statistics, 13:247–261.

Sawitzki, G. (2002). Keeping statistics alive in documents. Computational Statis-

tics, 17:65–88.

35

Hosted by The Berkeley Electronic Press



Temple Lang, D. (2001). Embedding S in other languages and environ-

ments. In Hornik, K. and Leisch, F., editors, Proceedings of the 2nd Inter-

national Workshop on Distributed Statistical Computing, March 15-17, 2002.

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings.

36

http://biostats.bepress.com/bioconductor/paper2


	Introduction
	Applications

	Concepts in Dynamic Documents
	Literate Programming
	Reproducible Research
	Conceptual Overview

	A Functional Prototype
	General Software Architecture for Compendiums
	Implementation Details
	General Comments

	Future Directions
	XML
	Practical Issues

	Discussion

