
Statistical Analyses for Studying Replication: Meta-Analytic Perspectives

Larry V. Hedges and Jacob M. Schauer
Northwestern University

Abstract
Formal empirical assessments of replication have recently become more prominent in several areas of
science, including psychology. These assessments have used different statistical approaches to determine
if a finding has been replicated. The purpose of this article is to provide several alternative conceptual
frameworks that lead to different statistical analyses to test hypotheses about replication. All of these
analyses are based on statistical methods used in meta-analysis. The differences among the methods
described involve whether the burden of proof is placed on replication or nonreplication, whether
replication is exact or allows for a small amount of “negligible heterogeneity,” and whether the studies
observed are assumed to be fixed (constituting the entire body of relevant evidence) or are a sample from
a universe of possibly relevant studies. The statistical power of each of these tests is computed and shown
to be low in many cases, raising issues of the interpretability of tests for replication.

Translational Abstract
The idea that a finding can be replicated is fundamental to scientific progress. However, several recent
studies have called into question the replicability of findings in different fields, including psychology.
These studies have garnered attention both in academia and in the popular press, and have become
important evidence of a crisis in science. On its face, replication seems like a straightforward idea: just
repeat an experiment and check that you get the same results. However, authors of replication studies
have noted that it is not that simple. Indeed, analyses of these studies have revealed that we might mean
several different (and conflicting) things when we refer to “results” being “the same.” This article
attempts to clarify some of this ambiguity. It describes a way to precisely define when study results are
the same. It also provides analyses that test whether data from replicate studies are consistent with that
definition. In general, we find that defining replication and properly framing the analysis requires serious
effort, and that unless several studies are conducted, the results of analyses about replication may be
inconclusive.
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The idea that scientific studies can be replicated is a fundamen-
tal aspect of the rhetoric of the scientific method, and is part of the
logic supporting the claim that science is self-correcting, because
replication attempts will identify findings that are incorrect (see,
e.g., McNutt, 2014). The replicability of scientific findings in
medicine has recently been called into question by empirical
analyses (e.g., Collins & Tabak, 2014; Ioannidis, 2005; Perrin,
2014). Similar challenges have also emerged in psychology (e.g.,
Open Science Collaboration, 2015) and economics (e.g., Camerer
et al., 2016). There is substantial evidence that scientists them-
selves are concerned about replicability in many disciplines (e.g.,

Baker, 2016; Bollen, Cacioppo, Kaplan, Krosnick, & Olds, 2015),
including psychology (e.g., Pashler & Harris, 2012). Such con-
cerns are not limited to academic journals but have also appeared
in the popular press, including Newsweek and The Economist.

There seems little doubt that empirical evaluation of the repli-
cability of research will continue. Yet there appear to be important
differences in the methods used to determine whether replication
has occurred. Ioannidis (2005) used agreement between “the final
interpretation of the results by the authors” (p. 219) as a criterion
for replication. The Open Science Collaboration (2015) used sev-
eral methods, including comparing p values of original and repli-
cation studies, and by assessing whether the effect size of the
original study was in the confidence interval of the replication, but
Gilbert, King, Pettigrew, and Wilson (2016) challenged their anal-
ysis methods. It is worth noting that the discussion of how to assess
replication has persisted for many years (see, e.g., Humphreys,
1980).

Because the concept of replication is so central to the logic and
rhetoric of science, it would be reasonable to expect a substantial
literature on the methodology of replication, including guidelines
for designing replication studies and analyzing ensembles of stud-
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ies that are replications. But as Schmidt (2009) has pointed out,
“the opposite is true” (p. 90). This is not to say that there is no
literature on replication; however, much of it (e.g., Lykken, 1968)
focuses on the definition and functions of replication, not on the
analysis of replications (see Schmidt, 2009). Note that the kind of
replication that is the focus of this article is what Schmidt would
call direct replication, which involves the “replication of an ex-
perimental procedure” (p. 91) as opposed to what he calls “con-
ceptual replication,” which involves the “repetition . . . of earlier
research work with different methods” (p. 91). Although it is not
always easy to distinguish between these two types of replication,
the intent of researchers is sometimes reasonably clear (as it is in
the programs of preregistered replications such as that considered
in our example).

One reason that findings may fail to replicate is because studies
are more likely to appear in the published literature if their results
are statistically significant, a phenomenon often called “publica-
tion bias” (see., e.g., Rothstein, Sutton, & Borenstein, 2005). There
is considerable evidence that publication bias exists in the biomed-
ical and social sciences (see, e.g., Dickersin, 2006). Such selection
can lead to biases in effect size estimates as much as 200% in
extreme cases (Hedges, 1984). Because a replication is not neces-
sarily subject to the same publication selection as the original
study (particularly in programs of replication that have registered
protocols in advance), effect sizes in replications are expected to
be smaller in absolute magnitude.

Consequently, some scholars have emphasized the need to ad-
just for the effects of publication bias in original published studies
before comparing their results with replications. Several methods
of adjustment for publication bias have been suggested, including
maximum likelihood estimation of effect sizes under selection
models specified a priori or estimated from the data (e.g., Hedges
& Vevea, 2005), or Bayesian methods (e.g., Guan & Vandeker-
ckhove, 2016). It is therefore natural to adjust for the effects of
publication bias in original published studies before comparing
their results with replications. A Bayesian method for doing so was
presented by Etz and Vandekerckhove (2016), and a hybrid model
was presented by van Aert and van Assen (2017). A frequentist
approach is presented by Hartgerink, Wicherts, and van Assen
(2017).

Publication bias is only one of many possible causes that might
lead to failures to replicate. A variety of questionable research
practices (such as modifying samples or analyses until the results
are statistically significant or erroneously rounding p values until
they are significant), often called p-hacking, reduce the replicabil-
ity of research (see, e.g., Head, Holman, Lanfear, Kahn, & Jen-
nions, 2015). There is empirical evidence that p-hacking occurs in
published research (see, e.g., Hartgerink, van Aert, Nuijten, Wich-
erts, & van Assen, 2016). Moreover, surveys of researchers sug-
gest that many psychologists admit to practices that constitute
p-hacking (see John, Loewenstein, & Prelec, 2012, or Fiedler &
Schwarz, 2016).

The purpose of this article is to offer several approaches to
testing hypotheses about replication that are consistent with meta-
analysis as a method of summarizing research findings. Ap-
proaches to the analysis of replication efforts that emphasize
comparison of effect sizes (rather than p values or qualitative
interpretations of findings) are not the only way to study replica-
tion empirically, but they are one way that is clearly in the same

spirit as meta-analysis and contemporary research synthesis. The
approaches we present do not include attempts to adjust for pub-
lication bias or p-hacking. Thus, they are suitable for situations in
which these considerations should be minimal, such as evaluating
studies that are part of designed programs of replication or other
situations in which study protocols have been registered in ad-
vance. We present methods to illustrate the sensitivity of these
tests (including power calculations), as well as examples of how to
conduct them using data from the Open Science Collaboration.
The approach we propose uses the Q-statistic that was introduced
to study replication in physics by Birge (1932). It was indepen-
dently introduced for studying heterogeneity of effects in some
analysis of variance models by Cochran (1954) and independently
introduced again by Hedges (1982) for studying heterogeneity of
effect sizes in psychology, who also gave its formal asymptotic
distribution when the effect sizes being combined were standard-
ized mean differences. The power function of the Q test was given
by Hedges and Pigott (2001). We introduce no new statistical
theory here.

Theoretical Considerations

This article explores replication somewhat differently than other
empirical evaluations or proposed methods. A common approach
in the literature compares a target study (typically the initial
finding) with one or several replications (e.g., Etz & Vandekerck-
hove, 2016; Klein et al., 2014). The general framework of “target
study versus replication” answers important questions but has
some limitations. For example, comparing an initial study with an
aggregate finding from replications may not address lack of agree-
ment among the replications. Likewise, methods that do not eval-
uate replication in terms of effect parameters (such as comparing
the sign and statistical significance of observed effects) may con-
clude that very different patterns of findings constitute replication.

The meta-analytic approach presented here addresses both of
these issues. This approach considers the effect size parameters of
the observed studies to be the underlying results of those studies,
unaffected by estimation error. The meta-analytic approach as-
sesses replication not in terms of observed estimates (which are
affected by estimation error), but in terms of the effect parameters
they estimate. Then, rather than singling out a privileged study for
comparison, this approach characterizes the overall heterogeneity
of effects across all studies. This allows one to answer questions
about differences throughout a body of evidence instead of vali-
dating one result.

As proposed in this article, statistical approaches to studying
replication depend on three considerations that are largely concep-
tual: how replication is defined (as exact or approximate replica-
tion), how the hypothesis test is structured (whether the burden of
proof lies with replication or nonreplication), and whether the
studies are conceived as the only studies relevant to the replication
question or as a random sample from a universe of studies relevant
to evaluating replication. Each of these considerations has impor-
tant consequences for the properties of tests for replication.

The Definition of Replication: Exact Replication or
Approximate Replication?

Perhaps the most important consideration is the precise defini-
tion of replication. One possible definition of replication is that all
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studies have exactly the same effect parameter. Although this is
logically appealing, it may be too strict to be useful in scientific
practice. Even in strong sciences like physics, there is awareness
that even the most careful experiments cannot eliminate all biases
(see, e.g., Hedges, 1987; Olive et al., 2014; Rosenfeld, 1975).
Therefore, some variation in effects across attempted replication
studies might be expected as a consequence of good scientific
practice. There is also an issue of how much precision is implicit
in the interpretation of a result. Small differences in the magnitude
of effects (associated with slight variations in instrumentation and
procedures) may not lead to different interpretations of a finding.

Alternatively, replication may correspond to practical equiva-
lence, in which effects are “almost the same” across studies, such
that “almost the same” is defined precisely. Later in this article, we
offer conventions used in three scientific areas to quantify this
notion. However, we regard the decision of what specific conven-
tion is appropriate in any field to be a matter of scientific judgment
that might well differ across fields.

How the Hypotheses Test Is Structured: Is the Burden
of Proof on Nonreplication or on Replication?

Another important consideration is exactly how the null hypoth-
esis is conceived. One possibility is to structure the null hypothesis
to correspond with replication (by some definition) and the alter-
native hypothesis with nonreplication. In this conception, we
maintain the hypothesis that the studies replicate unless the evi-
dence supports its explicit rejection. Thus, the burden of proof is
on nonreplication. In this setup, the finding of “replication” (fail-
ure to reject the null hypothesis) is inconclusive, but the finding of
“nonreplication” (rejection of the null hypothesis) is conclusive.

Conversely, one may structure the null hypothesis so that it
corresponds to nonreplication and the alternative hypothesis to
replication. In this case, we conclude only that studies replicate
when the evidence supports the explicit rejection of nonreplication.
Thus, the burden of proof is on replication. This is similar to the
framework for equivalence testing (see, e.g., Wellek, 2002). It
frames the underlying effect parameters as being not necessarily
identical but nearly so according to some indifference zone of
limited heterogeneity. The null hypothesis is that some effect
parameters are outside this indifference zone, so that rejection
implies that all effect parameters lie within the indifference zone.

Do the Observed Studies Comprise the Population or
a Sample?

Regardless of how replication is defined and how the hypothesis
test is structured, the studies available can be considered in either
of two different ways. If the observed studies constitute the entire
population of studies relevant to assessing replication, then infer-
ences about replication are inferences about the effect parameters
in the studies actually observed. This is consistent with the fixed
effects framework in meta-analysis (see, e.g., Hedges & Vevea,
1998). One might say that conclusions about replication in the
fixed studies framework are conclusions about how well the effect
parameters in the observed studies agree.

If the studies observed are a sample from a hypothetical popu-
lation or universe of studies, then their effect parameters are a
sample from a hypothetical universe of effect parameters. Infer-

ences about replication are inferences about the universe of effect
parameters from which the sample was taken. The observed stud-
ies and their effect parameters are of interest only in that they
provide information about this hypothetical universe. This is con-
sistent with the random effects framework in meta-analysis (see,
e.g., Hedges & Vevea, 1998). One might say that conclusions
about replication in the random studies framework are conclusions
about how well effect parameters agree in the universe of studies,
in which that universe is one that might have yielded the observed
studies as a random sample.

The difference between these two frameworks may seem trivial.
In fact, both use the same test statistic (the Q-statistic) from
meta-analysis. When there is perfect agreement across studies
(exact replication), Q has the same distribution regardless of
whether the studies are treated as fixed or random (see, e.g.,
Hedges & Olkin, 1985). However, there are two important differ-
ences between these models. First, they answer slightly different
questions. The fixed effects model addresses agreement between
only the observed studies, whereas the random effects approach
pertains also to an entire population of studies that might include
potential future studies. Second, when there is not perfect agree-
ment in effect parameters across studies, the Q-statistic has a
slightly different sampling distribution when studies are consid-
ered fixed than when they are considered random. This has impli-
cations for statistical power and constructing tests for approximate
replication. It should be noted that the choice of whether to treat
the studies as fixed or random is sometimes contentious in meta-
analysis (see, e.g., Hedges & Vevea, 1998). In fact, it is a special
case of the general issue of conditional versus unconditional in-
ference in statistics, which has been an important debate since the
beginning of modern statistics early in the 20th century (see
Camilli, 1990, for a review of the conditionality issue in conjunc-
tion with the analysis 2 � 2 contingency tables).

When the amount of heterogeneity is small or the number of
studies is large, Q has approximately the same distribution in both
the fixed and random effects analyses. To simplify presentation in
this article, we give only the results of the fixed studies analyses.
The corresponding random studies framework analyses exhibit
similar power to the values in Tables 1 to 4, which are computed
under the fixed studies assumption. In many practical scenarios,
the power differs only in the second decimal place.

Statistical Models

Suppose that k studies are potential replicates of one another.
Let �1, . . . , �k be the effect size parameters from the studies and
let T1, . . . , Tk be the effect size estimates with known estimation
error variances v1, . . . , vk. Assume that the effect size estimates are
approximately normally distributed so that

Ti � N(�i, vi).

A primary statistical tool used in this article is the Q-statistic,
which is also used in testing for heterogeneity of effects across
studies in meta-analysis, and is defined by

Q � �
i�1

k

(Ti � T•)2 ⁄ vi, (1)

where T• is the inverse variance weighted mean of the Ti given by
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T• �
�i�1

k Ti ⁄ vi

�i�1
k 1 ⁄ vi

(see, e.g., Hedges & Olkin, 1985).
When studies are conceived as fixed, but when

H0: �1 � · · · � �k

is false, then Q has the noncentral chi-squared distribution with
k � 1 degrees of freedom and noncentrality parameter

� � �
i�1

k (�i � �•)2

vi
, (2)

where �• is the weighted mean of the �i given by

�• �
�i�1

k
�i ⁄ vi

�i�1
k 1 ⁄ vi

.

(see, e.g., Hedges & Pigott, 2001). Note that the distribution of Q
when the null hypothesis of exact homogeneity is false is deter-
mined only by k, the number of studies, and the noncentrality
parameter �.

It is also worth noting here that we can define replication in this
model entirely in terms of �. This is not the only way to define
replication, but it provides a natural measure of heterogeneity
among the effect parameters. Exact replication, in which all of the
�i are equal, corresponds to � � 0. Small values of � can be
associated with approximate replication. For example, if � � �0

for some “small enough” value �0, we might conclude that the
studies approximately replicate. However, as described below,
characterizing the magnitude of negligible differences in effects is
an important consideration in assessments of replication.

Some authors have noted in the context of meta-analysis that the
heterogeneity test based on the statistic Q has low power. It is
important to recognize that this is the likelihood ratio test under the
model considered here. Thus, the test based on Q is the uniformly
most powerful unbiased test. This means that no other unbiased
test (including those that have not been proposed yet) can have
higher statistical power. Thus, the low power observed in some
situations is not a fault of the test but a limitation of the informa-
tion contained in the data in that situation, because no other
unbiased test could have higher power.

It is also true that the distribution of Q depends on the fact that
the effect size estimates are conditionally normally distributed
given the effect size parameters with known variances. Although
this is often a reasonable modeling assumption, for example, when
the effect sizes are standardized mean differences or Fisher
z-transformed correlations derived from normally distributed ob-
servations, substantial departures from normality of the effect size
distribution would be a cause for concern (as it is in other para-
metric tests such as the F test in analysis of variance). Note that no
distributional assumptions about the �i are required in the studies-
fixed model considered in this article, because the derivation of the
distribution of Q assumes that the �i are fixed, but unknown,
constants.

How Should We Assess the Magnitude
of Heterogeneity?

We argued previously that exact replication may be too stringent
a definition of replication to be scientifically useful because some

variation in results is expected even in strong sciences. Exact
replication is well defined, but the definition of approximate rep-
lication requires some characterization of how much heterogeneity
may be considered negligible. Even if the analysis is framed in
terms of exact replication, some judgment about the magnitude of
heterogeneity is required to carry out power analyses to evaluate
the sensitivity of the test.

We offer two frameworks that might be useful in evaluating the
magnitude of heterogeneity: one based on the variation of study
results and one based on the (largest) difference between any two
study’s results. The first of these is more natural when studies are
treated as having random effects, whereas the second conception is
more natural when studies are conceived as having fixed effects.
However, both frameworks can be seen to apply in a loose sense
regardless of whether studies are conceived as fixed or random.

Assessing Heterogeneity by Variation of Study Results

One way to gain insight about the noncentrality parameter � is
to note that if all the estimation error variances are the same so that
v1 � . . . � vk � v, then � can be seen as (k � 1)/v times the
“variance” of the �i values,

� � �
i�1

k (�i � ��)2

v � (k � 1)�2 ⁄ v, (3)

where �2 is the “variance” of the �i values. (The concept of
variance invoked here is as a descriptive statistic, not as a property
of a random variable, but we offer it as crude way to gain intuition
about �.)

We offer three conventions that have arisen in different sciences
for identifying a negligible value of �. In high-energy physics, the
Particle Data Group (which has been compiling meta-analyses of
high energy physics experiments for over 50 years) concludes that
Q/(k � 1) � 1.25 corresponds to negligible heterogeneity (see
Olive et al., 2014). Because the expected value of Q (under the
fixed effects model) is k � 1 � �, this implies that � � (k � 1)/4
would be a negligible value of �.

In personnel psychology, Hunter and Schmidt (1990) propose a
75% rule, which says that when the estimation error variance v is
at least 75% as large as the total variance of the effect size
estimates (v � �2), then the variance of the effect size parameters
�2 could be considered negligible. This implies that values of
�2/v � 1/3 and � � (k � 1)/3 correspond to negligible amounts of
heterogeneity in effect size parameters.

In medicine, a value of I2 � 100% � �2/(v � �2) of 40% or less
is considered to be “not important” (see Higgins & Green, 2008,
Section 9.5.2). This implies that �2/v � 2/3 would be a negligible
value of �2/v and that � � 2(k � 1)/3 would be a negligible value
of �.

These three conventions provide a range of definitions of neg-
ligible heterogeneity from � � (k � 1)/4 to � � 2(k � 1)/3. They
are certainly not the only way to characterize the magnitude of
heterogeneity (see, e.g., Pigott, 2012, pp. 55–66). But they are
conventions that are shared by large groups of researchers in each
of three different sciences. We will use these three conventions to
illustrate the methods suggested in this article, but the methods
could be used with any standard for negligible heterogeneity that
can be expressed as values of �.
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Relating Heterogeneity Parameters to Differences
Between Studies

It is natural to think of heterogeneity in terms of the differences
among the �i values. Here we mean a priori, theoretically justified
differences that are independent of the data under consideration.
When all the vi are equal so that v1 � . . . � vk � v, and we can
describe the �i as normally distributed about a common mean with
variance �2, then the average difference between any two �is is

E� |�i � �j |� � 2� ⁄ ��. (4)

When the �i are mean differences, then v � 2	2/n, where 	2 is the
variance of the n observations in each treatment group, and the
standardized difference (�i – �j)/	 can be interpreted as the differ-
ence between two Cohen’s d=s: It describes the difference between
study findings in units of the standard deviation of the observations
in each study. Thus, because � � (k � 1)�2/v, the average absolute
standardized difference between study effects is

E�|�i

	
�

�j

	 |�� 2� 2�
n�(k � 1) . (5)

Because � is a weighted sum of squares, it also provides a bound
on the largest contrast among the �i. In particular, for any two
values �i and �j

� 
 (�i � �j)
2 ⁄ 2v

and therefore

|�i � �j | � �2�v (6)

for all i, j � 1, . . . , k. When the observations are the differences
between sample means of n observations with variance 	2, then the
largest possible standardized difference between mean differences
becomes

|�i

	
�

�j

	 | ��2�
n . (7)

Thus, we might define a negligible value of � by starting with
the largest average difference or largest possible difference be-
tween any two �i (or standardized �i’s), and then solve either
Equation 5 or Equation 7 to obtain a corresponding value of �.

Conventional Heterogeneity Analysis in Meta-Analysis:
Testing for Exact Replication With Burden of Proof

on Nonreplication

Thus far, we have described how we might conceive of repli-
cation as the similarity of underlying effect parameters. The con-
ventional heterogeneity test in meta-analysis uses the null hypoth-
esis that effect size parameters are exactly the same and the
alternate hypothesis that studies do not have identical effect size
parameters. This perspective puts the burden of proof on the
alternate hypothesis of nonreplication. This section details how to
test null hypotheses structured to correspond to either exact or
approximate replication when the studies are treated as fixed.

The k studies replicate exactly if �1 � . . . � �k, so testing for
replication corresponds to testing the null hypothesis

H0: �1 � · · · � �k (8)

versus the alternative that at least one �i is different from the rest.
Statistically, this is equivalent to the conventional test for hetero-
geneity of effect sizes based on the Q-statistic in meta-analysis
(see, e.g., Hedges & Olkin, 1985, pp. 122–123). If the null hy-
pothesis H0 described in Equation 8 is true, that is, if the studies
replicate exactly, the statistic Q given in Equation 1 has a chi-
squared distribution with k � 1 degrees of freedom. Thus, the test
consists of rejecting H0 if the obtained value of Q exceeds c
, the
100 �
(1 – 
) percentile of the chi-squared distribution with k � 1
degrees of freedom.

In this situation, the significance level 
 controls the probability
of a Type I error (deciding that nonreplication has occurred when
in fact the studies replicate exactly). The statistical power is the
probability that the test would correctly decide that nonreplication
had occurred when in fact the studies did not replicate exactly.

The interpretation of the statistical analysis should be influenced
by the sensitivity of the statistical test. One way to characterize
sensitivity is via the statistical power of the test. When the null
hypothesis of exact replication is not true, Q has a noncentral
chi-squared distribution with k � 1 degrees of freedom and non-
centrality parameter � given in Equation 2. Therefore, for any
particular configuration of �1, . . . , �k the power of the 
-level test
is

P(�) � 1 – F(c� |k – 1, �), (9)

where F(x | �, �) is the cumulative distribution function of the
noncentral chi-squared distribution with � degrees of freedom and
noncentrality parameter �, and c
 is defined above.

Substantively meaningful power calculations using Equation 9
require that we input substantively meaningful values of �. We
illustrate power calculations using three conventions of negligible
heterogeneity, which are discussed in the previous section. This
provides insight into the test’s sensitivity to even negligible dif-
ferences in effect size parameters.

Table 1 gives the power of the test as a function of the number
of studies k to detect heterogeneity relative to three definitions a
negligible value for �: �0 � (k � 1)/4, �0 � (k � 1)/3, and �0 �
2(k � 1)/3. These values of �0 correspond to conventions proposed
in three different fields of science, as discussed in the previous
section. The table is organized into four vertical panels, with the
first three corresponding to different values of a negligible non-
centrality parameter �0. The columns within each panel show the
power when the true value of � is equal to multiples of �0. The
table shows that even the largest of the three conventional values
[�0 � 2v(k – 1)/3] would require between 20 and 30 studies to
achieve statistical power approaching 80% to detect heterogeneity
of 1.50�0.

Conventional power analysis starts with a presumed degree of
true heterogeneity and computes the probability that the test will
detect that amount of heterogeneity by rejecting the null hypoth-
esis. The power computed reflects the sensitivity of the test to
detect the specified amount of heterogeneity. Another way to
characterize sensitivity is to start with a desired statistical power
(e.g., 80%) and determine the smallest amount of true heteroge-
neity required to achieve that power. The amount of heterogeneity
required could be called the “minimum detectable heterogeneity”
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(MDH; at a certain specified level of statistical power). The
advantage of this characterization of sensitivity is that it does not
require specification of a hypothetical level of heterogeneity but
shows how much heterogeneity would be necessary for the test to
have adequate sensitivity.

The MDH for significance level 
 and power value � can be
computed by solving

� � 1 – F(c� |k – 1, �), (10)

for �, where F(x | �, �), �, �, and c
 are defined as in Equation 9,
which requires an iterative procedure. The fourth vertical panel of
Table 1 provides MDH values for 
 � .05 and � � 0.80,
expressed as the ratio �2/v. Displaying the MDH on this scale
makes it easier to evaluate the sensitivity of the test with the �0

values that were offered to represent conventional values of het-
erogeneity (or any other �0 values). If the MDH is less than any
particular � value, then the test will have at least the power used
to define the MDH (e.g., 80% in this table).

We see from the last column of Table 1 that the MDH is quite
large unless the number of studies is large. Over 40 studies are
needed to obtain an MDH of �2/v � 2/3 (corresponding to our
smallest convention of negligible heterogeneity), and over 200
studies are needed to obtain an MDH of �2/v � 1/4, which
represents the smallest convention of negligible heterogeneity.

Approximate Replication: Burden of Proof Is on
Failure to Replicate

In the previous section we evaluated tests for replication for
which the definition of replication was that the effect parameters
were identical in all studies. In this section, we evaluate tests for
when the definition of replication is that the effect size parameters
�1, . . . , �k are “almost the same,” that is, the studies replicate
approximately. Of course, the concept of almost the same needs to
be operationalized. One way to do that is in terms of the noncen-
trality parameter � defined in Equation 2. In the previous section,
we offered several ways to interpret � in terms of the largest

contrast among the �i, the typical deviation of �i from their mean
or the variation of the �is compared with that of the estimation
errors.

Testing for approximate replication requires choosing a value �0

of � that corresponds to the operational definition of the �i being
“almost the same” in the particular context. We then test whether
there is greater heterogeneity in the estimates than would be
expected had the actual amount been characterized by a noncen-
trality parameter of �0 or smaller. Specifically, to test the null
hypothesis

H0: � � �0 (11)

versus the alternative �  �0 at significance level 
, use the test
statistic Q given in Equation 1 and reject the null hypothesis if Q
exceeds the critical value c
, where c
 is defined by

1 – F(c� |k – 1, �0) � � (12)

or

c� � F�1(1 – � |k – 1, �0). (13)

Note that c
 is a function of �0 and should properly be written
c
(�0).

In this situation, the statistical power is the probability that the
test would correctly decide that nonreplication had occurred when
in fact the studies did not replicate approximately (as operationally
defined by �0). It can be computed using the noncentral chi-
squared distribution. Thus, the power of this test to detect an
amount of heterogeneity characterized by � at significance level 

is given by

P(�) � 1 – F(c� |k – 1, �). (14)

Note that the difference between tests of the null hypotheses for
exact replication (Equation 8) and approximate replication (Equa-
tion 11) is that the critical value for the former is based on the
central distribution of Q (the distribution when � � 0), whereas the
critical value of the test for approximate replication is based on the

Table 1
Power of the Test of H0: � � 0

k

�0 � (k � 1)/4 �0 � (k � 1)/3 �0 � 2(k � 1)/3

MDH (�2/v)� � �0 � � 1.5�0 � � 2�0 � � �0 � � 1.5�0 � � 2�0 � � �0 � � 1.5�0 � � 2�0

2 .08 .09 .11 .09 .11 .13 .13 .17 .21 7.85
3 .09 .11 .13 .10 .13 .16 .16 .23 .29 4.82
4 .10 .13 .15 .12 .15 .19 .19 .28 .36 3.63
5 .11 .14 .17 .13 .17 .22 .22 .32 .42 2.98

10 .14 .19 .25 .17 .25 .34 .34 .51 .66 1.74
20 .19 .29 .39 .25 .39 .53 .53 .76 .90 1.08
30 .24 .37 .50 .32 .50 .67 .67 .89 .97 .84
40 .28 .44 .60 .39 .60 .77 .77 .95 .99 .70
50 .32 .51 .68 .44 .68 .85 .85 .98 1.00 .61

100 .49 .75 .90 .67 .90 .98 .98 1.00 1.00 .41
200 .74 .94 .99 .90 .99 1.00 1.00 1.00 1.00 .28
300 .87 .99 1.00 .97 1.00 1.00 1.00 1.00 1.00 .22
500 .97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .17

Note. This table displays the power of the test for exact replication to detect given values of � as a function of the number of studies k. The table is divided
into three vertical panels that correspond to conventions for negligible values of �, and power is computed for multiples of these conventions. The final
panel displays the Minimally Detectable Heterogeneity (MDH) that could be detected with 80% power for a given number of studies k. The MDH is
displayed on the scale of �2/V; for reference, the conventions of negligible heterogeneity correspond to mdh values ranging from 1/4 to 2/3.
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noncentral distribution of Q when � � �0. Hence, the critical
values for the test of approximate replication are larger than the
corresponding critical values for exact replication. This means that
it is more difficult to reject (it requires a larger value of Q to reject)
the hypothesis of approximate replication than that of exact repli-
cation. Consequently, the test for approximate replication with
�0  0 will be less powerful than the test for exact replication. For
example, if k � 10, the 
 � .05 level test for exact replication has
critical value c0.05 � 16.92. The corresponding test for approxi-
mate replication with �0 � (k � 1)/3 has critical value c0.05 �
22.17. Therefore, in this instance, the power of test for exact
replication to detect heterogeneity of � � 2(k � 1)/3 (that is, � �
2�0) is P(2�0) � 0.34, and the corresponding test for approximate
replication with �0 � (k � 1)/3 has power P(2�0) � 0.14.

Table 2 gives the power of the test for approximate replication
as a function of the number of studies k to detect heterogeneity
beyond what might be considered negligible according to the three
conventions mentioned earlier. The table is organized with three
vertical panels that correspond to different values of �0. The first
three columns within each panel give the statistical power when
the true value of � is equal to multiples of �0. For example,
suppose the true heterogeneity in effect parameters was character-
ized by � � (k � 1). Using the largest of the three conventional
values [�0 � 2(k � 1)/3, � � 1.5�0], it would take nearly 300
studies to attain 80% power to conclude the studies do not approx-
imately replicate. The statistical power increases and the required
number of studies to obtain 80% power decreases as we decrease
our choice of �0, so that if �0 � (k � 1)/3 (and � � 3�0), we would
need between 50 and 100 studies for the same power.

The MDH for significance level 
 and power value � can be
computed by using an iterative procedure to solve

� � 1 – F(c� |k – 1, �), (15)

for �, where F(x | �, �), �, and �, are defined as in Equation 14 and
c
 is defined by Equation 13. The last column in each vertical
panel of Table 2 provides the MDH for 
 � .05 and � � 0.80 and

the value of �0 for that panel, expressed as the ratio �2/v for easier
comparison with the �0 values. We see from the last columns in
each vertical panel of Table 2 that the MDH values are quite large
unless the number of studies is also quite large.

Burden of Proof Is on Replication

In the previous sections, the methods for studying replication
formulated the problem as testing the null hypothesis that the
studies replicated (either exactly or approximately) with the
alternative hypothesis being failure to replicate. The inherent
problem with this formulation is that deciding that studies
replicate involves accepting the null hypothesis, which is con-
sidered inconclusive in conventional hypothesis testing proce-
dures. In this section, we describe tests that structure nonrep-
lication as the null hypothesis and replication as the alternative
hypothesis. Thus, by rejecting the null hypothesis of no repli-
cation, we may conclude that replication has occurred using a
test with a known false-positive (false conclusion that replica-
tion has occurred) error rate.

Exact Replication

Exact replication among k studies implies that �1 � . . . � �k, so
testing for replication using a test based on the Q-statistic would
involve testing the null hypothesis H0: �  0 versus the alternative
� � 0. No such test is available, so we offer no test of exact
replication when the alternative corresponds to the hyperplane in
the parameter space defined by �1 � . . . � �k.

Approximate Replication

The k studies replicate approximately if the effect size param-
eters �1, . . . , �k are “almost the same.” In terms of the noncen-
trality parameter � defined in Equation 2, we can test for approx-
imate replication by choosing a value �0 of � that corresponds to

Table 2
Power of the Test of H0: � � �0

k

�0 � (k � 1)/4 �0 � (k � 1)/3 �0 � 2(k � 1)/3

� � 1.5�0 � � 2�0 � � 3�0 MDH (�2/v) � � 1.5�0 � � 2�0 � � 3�0 MDH (�2/v) � � 1.5�0 � � 2�0 � � 3�0 MDH (�2/v)

2 .06 .07 .10 9.14 .06 .08 .11 9.53 .07 .10 .15 10.94
3 .06 .08 .11 5.76 .07 .09 .13 6.04 .08 .11 .19 7.07
4 .07 .09 .13 4.43 .07 .10 .15 4.67 .09 .13 .24 5.55
5 .07 .09 .14 3.70 .07 .10 .17 3.91 .09 .15 .28 4.00

10 .08 .12 .20 2.28 .09 .14 .26 2.45 .12 .22 .46 3.08
20 .09 .15 .31 1.53 .11 .19 .41 1.67 .16 .34 .72 2.20
30 .11 .19 .41 1.24 .13 .24 .53 1.37 .20 .44 .86 1.86
40 .12 .22 .49 1.08 .14 .29 .63 1.20 .24 .54 .93 1.67
50 .13 .25 .56 .98 .16 .33 .72 1.10 .27 .62 .97 1.55

100 .18 .39 .81 .74 .22 .52 .93 .85 .43 .86 1.00 1.27
200 .26 .61 .97 .58 .35 .77 1.00 .68 .66 .99 1.00 1.08
300 .33 .75 1.00 .52 .45 .90 1.00 .62 .81 1.00 1.00 1.00
500 .47 .91 1.00 .45 .62 .98 1.00 .55 .94 1.00 1.00 .92

Note. This table displays the power of the test for approximate replication to detect given values of � as a function of the number of studies k. The table
is divided into three vertical panels that correspond to conventions for negligible values of �0, and power is computed for multiples of these conventions.
The final column in each panel displays the Minimally Detectable Heterogeneity (MDH) that could be detected with 80% power for a null hypothesis H0:
� � �0 and number of studies k. The MDH is displayed on the scale of �2/V; for reference, the conventions of negligible heterogeneity correspond to MDH
values ranging from 1/4 to 2/3.
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some operational definition of the �i being “almost the same.”
Testing for approximate replication, therefore, is testing whether
there is less heterogeneity in the estimates than would be expected
if the actual amount was characterized by a noncentrality param-
eter of �0 or larger.

Specifically, to test the null hypothesis

H0: � 
 �0 (16)

versus the alternative � ��0 at significance level 
, use the test
statistic Q given in Equation 1 and reject the null hypothesis if Q
is smaller than the critical value c
, where c
 is defined by

F(c� |k – 1, �0) � �

or

c� � F�1(� |k – 1, �0), (17)

so that c
 is a function of �0 similar to that in Equation 13.
In this situation, the significance level 
 controls the probability

of a Type I error (deciding that approximate replication has oc-
curred when in fact the studies do not replicate approximately).
The statistical power is the probability that the test would correctly
decide that approximate replication had occurred when in fact the
studies did approximately replicate.

Note that the null hypothesis for approximate replication when
the burden of proof is on nonreplication (H0: � � �0) and when the
burden of proof is on replication (H0: � 
 �0) are mutually
exclusive. Thus, if the probability of rejecting the hypothesis � �
�0 is �1 � P{Q  c
}, and the probability of rejecting the
hypothesis � 
 �0 is �2 � P{Q � c
}, then �1 � 1 – �2.

The power of the test for approximate replication (as operation-
ally defined by �0) can be computed using the noncentral chi-
squared distribution. In the test described here, the power to detect
an amount of heterogeneity characterized by � at significance level

 is given by

P(�) � F(c� |k – 1, �). (18)

In contrast to tests that place the burden of proof on nonreplication,
the power of this test is a decreasing function of � and is maximum
when � � 0, that is, when there is no heterogeneity at all.

Table 3 gives the power of the test for approximate replication
(with the burden of proof on replication) as a function of the number
of studies k for three definitions of �0 corresponding to the conven-
tions mentioned earlier. The table is organized into three vertical
panels like Table 2, which correspond to different negligible values �0

of the noncentrality parameter. The first three columns within each
panel correspond to power when the true value of � corresponds to
multiples of �0. In contrast to Tables 1 and 2, the values of �
considered in Table 3 are multiples of �0 by numbers less than one
(1/2, 1/4, etc.). This is because, unlike when the burden of proof is on
nonreplication, when the burden of proof is on replication, power
increases as the noncentrality parameter � decreases. The table shows
that even the largest of the three conventional values [�0 � 2(k �
1)/3] would require between 40 and 50 studies to achieve statistical
power approaching 80% when there is no heterogeneity at all (that is,
when � � 0). Unless �0 is large relative to �, the power of this test is
likely to be low.

In the previous sections, in which the burden of proof was on
nonreplication, we defined the MDH to characterize the sensitivity
of the test. When the burden of proof is on replication, power of
the test is a decreasing function of � (not an increasing function of
�, as when the burden of proof is on nonreplication). This distinc-
tion gives rise to a corresponding concept of maximum allowable
heterogeneity (MAH) when the burden of proof is on replication.
The MAH is the largest amount of true heterogeneity for which the
test has some prespecified value of statistical power.

The MAH for significance level 
 and power value � can be
computed by solving

� � F(c� |k – 1, �), (19)

for �, where F(x | �, �) and � are defined as in Equation 9 and
Equation 2, and c
 is defined by Equation 17. Solving Equation 19
requires an iterative procedure, but it is straightforward to pro-

Table 3
Power of the Test of H0: � 
 �0

k

�0 � (k � 1)/4 �0 � (k � 1)/3 �0 � 2(k � 1)/3

� � �0/2 � � �0/4 � � 0 MAH (�2/v) � � �0/2 � � �0/4 � � 0 MAH (�2/v) � � �0/2 � � �0/4 � � 0 MAH (�2/v)

2 .05 .06 .06 — .05 .06 .06 — .06 .06 .07 —
3 .06 .06 .06 — .06 .06 .07 — .07 .08 .09 —
4 .06 .07 .07 — .06 .07 .08 — .08 .10 .12 —
5 .06 .07 .08 — .07 .08 .09 — .09 .11 .15 —

10 .07 .09 .10 — .08 .10 .13 — .12 .18 .26 —
20 .09 .12 .15 — .10 .15 .20 — .17 .29 .46 —
30 .10 .14 .19 — .12 .18 .27 — .22 .39 .62 —
40 .11 .17 .24 — .14 .22 .33 — .26 .49 .74 —
50 .13 .19 .28 — .16 .26 .40 — .31 .57 .83 .02

100 .18 .30 .46 — .24 .42 .64 — .50 .83 .98 .19
200 .27 .49 .72 — .38 .67 .90 .04 .76 .98 1.00 .32
300 .36 .63 .86 .02 .50 .82 .97 .09 .89 1.00 1.00 .38
500 .51 .83 .97 .07 .69 .96 1.00 .14 .98 1.00 1.00 .44

Note. This table displays the power of the test for approximate nonreplication to detect given values of � as a function of the number of studies k. The
table is divided into three vertical panels that correspond to conventions for negligible values of �0, and power is computed for fractions of these
conventions. The final column in each panel displays the Maximally Allowable Heterogeneity (MAH) that could be detected with 80% power for a null
hypothesis H0: � 
 �0 and number of studies k. The MAH is displayed on the scale of �2/V. When the mah is not reported, the test has a maximum power
below 80%.
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gram. Because the power of the test is a decreasing function of �,
the MAH shows how little heterogeneity there would have to be in
order for the test to have a “high” probability (specifically the
probability �) of detecting that the effects had replicated.

However, note that for some values of �, 
, and �0, there may
be no solution to Equation 19. This means that, even when studies
replicate exactly so that � � 0, the level 
 test may not have the
desired power �. This is not just a theoretical possibility. The last
column of each panel of Table 3 provides MAH values for 
 � .05
and � � 0.80 on the scale of �2/v. We see that there are many cases
in which no value is given in these columns, meaning that even if
� � 0 so that all studies involve exactly the same effect size
parameter, the test placing the burden of proof on replication has
less than 80% power. This includes all values of negligible heter-
ogeneity �0 considered with less than 50 studies.

Greater sensitivity could be obtained by increasing the signifi-
cance level of the test, but even with higher significance levels, the
maximum power of tests to detect replication is not large for the
conditions examined here. Table 4 shows the maximum power
(that is, power when � � 0) of tests to detect replication for 
 �
.05, 0.10, 0.15, and 0.20 level tests. Increasing he significance
level from 0.05 to 0.10 decreases the number of studies necessary
from between 40 and 50 to between 30 and 40 to detect exact
replication when �0 � 2(k � 1)/3. Even increasing the significance
level to 0.20 only decreases the number of studies necessary for
80% power to between 20 and 30.

Examples

The Many Labs Replication Project provides several examples
of experimental replications (Klein et al., 2014). The initial effort
recruited 36 labs from around the world to conduct the same 13
experiments under similar conditions. Each lab was required,
among other things, to recruit at least 80 participants, though most
recruited many more. Thus, for each experiment, the Many Labs
project amassed 36 effect size estimates and associated sampling
variances. These data are useful for demonstrating not only how to
conduct tests of replication but also how sensitive our ultimate
conclusions about replication are to the considerations outlined in
this article. Code for conducting these analyses are available as
part of the online supplemental materials.

To illustrate the methods proposed in this article, we focus on a
specific experiment, the Reverse Gambler’s Fallacy. In the repli-
cations, participants were randomly assigned to one of two con-
ditions and asked to imagine a man rolling dice at a casino. In one
condition, they imagined seeing the man roll three 6s. In the other,
they imagined him rolling two 6s and a 3. Participants were then
asked how many times they thought the man had rolled the dice
before they witnessed the result in their assigned condition. On
average, participants who imagined seeing three 6s tended to
estimate the man had rolled the dice more times than those who
imagined seeing only two 6s.

The examples below use only the data from the Many Labs
replications and not the original finding from Oppenheimer and
Monin (2009). The reason for this is primarily related to publica-
tion bias. This is a common concern in many analyses of replica-
tions (e.g., Etz & Vandekerckhove, 2016, or van Aert & van
Assen, 2017). Although the meta-analytic approach may be
adapted to correct for publication bias, as proposed here, it does T
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not. Therefore, we will exclude the original published study, which
mitigates the effects of publication bias on the analyses presented
in the following sections.

The data, published in the original article (Klein et al., 2014), is
also available from the Open Science Framework, which provides
the results of each replication, including treatment and control
group sample sizes, means, and standard deviations. Using this, we
calculate the bias-corrected standardized mean difference g be-
tween the three-6s and two-6s conditions, and associated sampling
variance vg. These are presented in Table 5. Note that the effect
sizes and variances presented here differ slightly from those doc-
umented by the Many Labs project, as we use a different method
to pool the variances of the two groups.

Conventional Meta-Analytic Test of Heterogeneity for
Exact Replication

Using Equation 1, we calculate the test statistic Q � 51.61.
Under the null hypothesis of exact replication, we compare the test

statistic with a central chi-squared distribution with k – 1 � 35
degrees of freedom. For an 
 � .05 level test, the critical value is
c
 � 49.80. Because Q  49.80, we would reject the null hypoth-
esis that the studies replicate exactly. The exact p value is p � .03.

In a previous section (“Assessing Heterogeneity by Variation of
Study Results”) we proposed three conventions for what consti-
tutes negligible heterogeneity: � � (k � 1)/4, (k � 1)/3, and 2(k �
1)/3. The power of this test to detect these levels of heterogeneity
in this ensemble of studies is 0.26, 0.36, and 0.74, respectively.
Note that the MDH at level 
 � .05 and power of � � 0.80 is � �
0.75(k � 1). In other words, the minimally detectable heterogene-
ity between effect parameters is on the order of three quarters of
the average within-study variance. For reference, standard indices
of heterogeneity in meta-analysis, such as the I2 and �̂2 statistics,
indicate that the ratio �2/v for these data is likely between 1/3 and
2/3.

Approximate Replication, Burden of Proof Is on
Failure to Replicate

The null hypothesis that the studies approximately replicate can
be written in terms of the noncentrality parameter determining the
distribution of Q as in Equation 2. In this case, we compare the test
statistic, Q � 51.61, with the critical value given in Equation 9
obtained from the noncentral chi-squared distribution with k �
1 � 35 degrees of freedom, and noncentrality parameter �0. To
carry out this test, we must select some value of �0 that reflects a
tolerable amount of between-study variation. As an illustration, we
will use the three conventions for tolerable levels of heterogeneity
from various scientific disciplines presented above: �0 � (k �
1)/4, (k � 1)/3, and 2(k � 1)/3.

First consider the most stringent margin of allowable heteroge-
neity: �0 � (k � 1)/4 � 8.75. For this choice of �0, the critical
value for the 
 � 0.05 level test based on the noncentral chi-
squared distribution is c
 � 61.83. Therefore, we fail to reject the
null hypothesis that the studies approximately replicate (p � .21).
Thus, allowing for this amount of tolerable between-study varia-
tion, the conclusion about replication is different than when exact
replication is required. When the true � � 2�0 � (k � 1)/2, the
power of this test is 0.21. The MDH for this value of �0 at level

 � .05 and power of � � 0.80 is � � 1.14(k � 1).

Increasing the margin of allowable heterogeneity leads to an
even larger p value. If �0 � (k � 1)/3 � 11.67, the critical value
for the 
 � .05 level test is c
 � 65.70. Again, we fail to reject the
null hypothesis that the studies approximately replicate (p � .30).
The power of this test to detect heterogeneity characterized by � �
2�0 � 2(k � 1)/3 is 0.27. The MDH for this value of �0 at level

 � .05 and power of � � 0.80 is � � 1.26(k � 1).

Finally, if �0 � 2(k � 1)/3 � 23.33, the critical value for the

 � .05 level test is c
 � 80.72, and we fail to reject the null
hypothesis that the studies approximately replicate (p � .68). Even
if we assume � � 2�0 � (k � 1), the power to of this test is still
only 0.50. The MDH for this value of �0 at level 
 � .05 and
power of � � 0.80 is � � 1.74(k � 1).

Two things are worth noting in this example. First, as we allow
�0 to increase, our null hypothesis considers increasingly looser
notions of “approximate” replication. Therefore, setting a large �0,
as in the third example above, will require much greater variation
between studies in order to reject the null hypothesis. This is also

Table 5
Effect Sizes and Variances of Replicated Studies on the Reverse
Gambler’s Fallacy

Site Effect size Variance

abington .590 .051
brasilia .355 .036
charles .886 .063
conncoll .622 .050
csun .517 .046
help .516 .043
ithaca .782 .053
jmu .715 .026
ku .527 .039
laurier .961 .042
lse .645 .016
luc .528 .029
mcdaniel .510 .046
msvu .340 .054
mturk .620 .004
osu .111 .038
oxy 1.188 .048
pi .724 .004
psu .605 .048
qccuny .419 .044
qccuny2 .338 .050
sdsu .616 .026
swps .114 .050
swpson .593 .027
tamu .747 .024
tamuc .749 .054
tamuon .592 .020
tilburg .687 .059
ufl .378 .034
unipd .765 .035
uva 1.108 .059
vcu .712 .040
wisc .785 .045
wku .441 .044
wl .072 .046
wpi .978 .053

Note. This table displays the bias-corrected standardized mean differ-
ences and their variances of 36 replications of the Reverse Gambler’s
Fallacy Experiment from the Many Labs Replication Project. Effect sizes
and variances were recomputed from the original data using standard
meta-analysis methods. Source: Open Science Framework.
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evident in the critical and p values, both of which increase with �0.
Second, and related, tests of approximate replication exhibit de-
cidedly less power than tests of exact replication, and neither are
particularly well-powered for these data. Given the number of
studies (k � 36), the minimally detectable heterogeneity for level

 � .05 and power � � 0.8 is � � 0.75(k � 1) for testing the null
hypothesis for exact replication.

Burden of Proof Is on Replication

When the burden of proof is on replication, the null hypothesis
becomes that studies do not replicate—the null hypothesis is given
by Equation 16. We compare the test statistic, Q � 51.61, with a
critical value obtained from the noncentral chi-squared distribution
with k – 1 � 35 degrees of freedom and noncentrality parameter �0

as described in Equation 17. Using the same values of �0 that
reflect a tolerable amount of between-study variation—�0 � 8.75,
11.67, and 23.33—the 
 � .05 level critical values from Equation
17 are c
 � 28.32, 30.37, and 38.87, respectively.

In contrast to the tests in the previous section we reject the null
hypothesis if the test statistic is less than the critical value. Because
the obtained value of Q (51.61) exceeds the critical values for all
three choices of �0, we fail to reject the null hypothesis for any of
them (the exact p values are 0.79, 0.70, and 0.32, respectively).
Unlike the results in the previous section when we shift the burden
of proof on to replication, we maintain the hypothesis that the
studies do not even approximately replicate.

Finally, under this configuration, the power increases when
either the true heterogeneity � decreases or when the definition of
negligible heterogeneity �0 increases. Thus, the maximum power
of the tests presented here corresponds to the case where �0 �
23.33 and � � 0. That is, when we use the loosest definition of
negligible heterogeneity but the studies replicate exactly, the
power of this test is 0.71. However, if we use stricter definitions of
approximate replication, namely, �0 � 8.75 or 11.67, the power is
below 0.31.

To gain further insight, consider the power to detect heteroge-
neity characterized by some fraction of �0. The power to detect
�0 � �0/4 ranges from 0.45 when �0 � 23.33, to 0.16 when �0 �
8.75. This illustrates two key points. First, the power of this test
can be sensitive to our choice �0. Second, it is only reasonably
powered to detect exact replication given that we consider �0 �
23.33 to be a negligible amount of heterogeneity.

Conclusions About This Example

The computations in this example demonstrate that, regardless
of whether ones chooses exact or approximate replication as the
definition of replication and how one frames the hypothesis testing
problem, the analysis of the effect chosen from the Many Labs
Project for the example is underpowered. We also computed
the power for each of the other replicated effects in the Many Labs
Project and found them to be similarly underpowered. This is
particularly important because these studies are serving as a prom-
inent example (a de facto “gold standard”) for evaluating replica-
tion. The results of this article suggest that efforts to study repli-
cation may need a larger number of studies (at least 50) to be
adequately powered. Moreover, although we have suggested ade-
quate sample sizes to obtain power of 80% (a somewhat conven-

tional value), some might argue that the question of whether
psychological studies can withstand attempts to replicate them is
important enough to warrant a standard of even higher power (90%
or even 95%). Achieving these higher levels of power would
require even more studies.

Comparing a Single Study With a
Series of Replications

This article defined replication in terms of heterogeneity of
effects among a series of k studies in which no particular study is
privileged as different from all the others. A different framing of
the replication problem is one in which some study (e.g., the first
study of its type) is privileged and the question is whether a series
of k 
 1 additional studies have effect sizes that are consistent with
the privileged study. If that privileged study was not subject to
publication bias (e.g., if it had a registered protocol or was the first
of a designed ensemble of replications conducted cooperatively),
then the methods in this article could be extended to deal with that
framing of the replication problem.

The analysis would involve defining two groups of studies, the
first group consisting of only the privileged study and the second
group consisting of the k replications of the original study. The
“analysis of variance” for effect sizes could be used to test whether
the effect in the first group (the privileged study) was the same as
the average effect in the second group (the replications; see
Hedges & Olkin, 1985, Chapter 7). Because the test statistic QB for
testing whether there are differences between mean effect sizes in
the two groups has a sampling distribution similar to that of the
Q-statistic discussed in this article (see Hedges & Pigott, 2004),
the analyses discussed in this article could be naturally extended to
this situation. In addition, if there were k  1 replications, it would
be possible to analyze the heterogeneity of those replications
(alone) using the methods suggested in this article.

Recommendations

The purpose of this article is to describe alternative methods for
the statistical analysis of replication so that a scientific consensus
could be formed about them. Our example demonstrated that
conclusions about replication can change depending on the meth-
odological choices that are made. However, one of our reviewers
pointed out that there is a danger in presenting too many alterna-
tives. In the absence of a well-established consensus, the alterna-
tives presented permit a researcher (knowingly or inadvertently) to
make a choice of burden of proof, definition of replication (�0

value), and power criterion that will increase the chance of reach-
ing whatever conclusion they desire.

Consequently, we reluctantly offer suggestions for conventions
until a broader consensus can be achieved. First, we argue that the
most reasonable structure for the test is to put the burden of proof
on nonreplication. The reason for this choice is that, in many
situations, the test that puts the burden of proof on replication is so
insensitive (has so little statistical power) as to be ambiguous
unless the number of studies is unrealistically large. Second, we
argue that because exact replication is too strict a definition to be
useful in strong sciences like physics, it is too strict a definition to
be useful in psychology (or other social or behavioral sciences).
This leaves the question of what value of �0 should be used.
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We believe that the value of �0 defining approximate replication
should be determined as a matter of consensus in each field.
However, in absence of that consensus, we propose the convention
�0 � (k � 1)/4 used in particle physics is a reasonable suggestion
for defining approximate replication. It seems highly unlikely that
any future consensus in psychology or the behavioral sciences
would arrive at a value smaller than this one. For studies with a
sample size of n � 65 per treatment group, Equation 5 implies that
this choice corresponds roughly to an average absolute pairwise
difference among standardized effects |�i – �j |/	 of 0.1 or half the
size of what Cohen calls a “small effect.” Note that n � 65 is a
little smaller than the average sample size of the Many Labs
experiments, and it is approximately the sample size required to
detect what Cohen calls a medium-sized effect (d � 0.5) with 80%
power.

In the absence of a current convention in the social and behav-
ioral sciences, we also propose that any ensemble of studies
designed to test for replication should have an MDH of � � (k �
1). This means that it should have power of at least 80% to detect
heterogeneity of a value of heterogeneity that corresponds roughly
to an average absolute pairwise difference among standardized
effects |�i – �j| /	 of 0.2 or the size of what Cohen calls a “small
effect.” Such a test could, of course, detect smaller amounts of
heterogeneity but would have somewhat lesser power to do so.

These conventions suggested are arbitrary but were not chosen
capriciously. In many situations, it should be feasible to design
ensembles of replications that can achieve the criterion of 80%
power to detect heterogeneity of magnitude � � k � 1 with �0 �
(k � 1)/4. For example, although the example we used to illustrate the
computations did not have high enough power to meet the require-
ment we specified here (the power to detect approximate heteroge-
neity was just under 70%), a slightly larger ensemble (e.g., 48 instead
of 36 studies) would have had over 80% power.

Conclusions

The tests given here illustrate different statistical analyses that
might be conducted to test for replication. All of them are valid
statistical approaches that assess replication within the meta-
analytic framework. Because they use different conceptual defini-
tions of “replication” and place the burden of proof differently,
these tests vary in their sensitivity. The example illustrates that the
same data might reject replication (if exact replication is required),
fail to confirm approximate replication (if the burden of proof is
place on nonreplication), or fail to reject approximate nonreplica-
tion (if the burden of proof is on replication). This suggests that
studies of replication cannot be unambiguous unless they are clear
about how they frame their statistical analyses and clearly define
the hypotheses they actually test. Researchers should also recog-
nize that different frameworks for evaluating replication could lead
to different conclusions from the same data.

The power computations offered in this article illustrate that it is
likely to be difficult to obtain strong empirical tests for replication,
a finding that is not unique to this approach (see, e.g., Maxwell,
Lau, & Howard, 2015, p. 495). We have shown that large numbers
of studies are likely necessary to obtain adequate statistical power
to detect modest amounts of heterogeneity. Regardless of whether
the conceptual framework places the burden of proof on replica-
tion or nonreplication, low-power tests cannot lead to strong con-

clusions. Conclusive analyses require carefully designed ensem-
bles of replication studies and substantial investment of resources.
More work needs to be done on the theory for designing programs
of research on replication and developing feasible multistudy
designs that may have greater sensitivity. In the interim, it seems
important to scrutinize empirical tests of replication to determine if
they are sensitive enough to warrant strong conclusions.

The low power we found in our example might be interpreted as
a deficiency of hypothesis testing as an analytic strategy for
evaluating replication. Indeed, we found low power even when
using the theoretically most powerful unbiased test possible, which
implies that no other unbiased test could have higher power. In
such a situation, Bayesian methods can provide an alternative
analysis, providing a posterior distribution that summarizes the
information in the data (combined with a prior distribution). How-
ever, the low power of the uniformly most powerful unbiased test
implies that the data have inadequate information to make sharp
distinctions about heterogeneity. In this situation, Bayesian meth-
ods using uninformative priors are likely to provide an alternative
summary of the situation in which the data cannot support sharp
conclusions about heterogeneity.

This article has been concerned with testing replication across
studies intended to be similar enough to obtain the same effects. If
studies differ in important ways, then it would be possible to
incorporate study-level covariates into a so-called metaregression
model to evaluate the effects of these covariates of study effects
(see, e.g., chapter 8 of Hedges & Olkin, 1985). One might then
evaluate replication conditional on having the same covariate
values. In this analysis, the test for replication would involve a
statistic that is the weighted residual sum of squares (often called
QE, e.g., in Hedges & Olkin, 1985). The framework for tests of
residual heterogeneity is analogous to that for Q (in fact, QE

reduces to Q when there are no covariates), so the ideas in this
article generalize directly to that situation. Methods for conducting
power analyses of the test based on QE were given in Hedges and
Pigott (2004).

This article examined statistical analyses for replication within a
framework that assumes study outcomes were measured via con-
ventional effect size measures used in meta-analysis (e.g., the
standardized mean difference). In some domains of research, out-
comes may be measured on the same scale of measurement in all
studies (e.g., earnings or systolic blood pressure) so that standard-
ization of effect sizes is unnecessary. A similar conceptual frame-
work for replication in studies of this type could be used in that
context, but the statistical methods for analyses of heterogeneity
are not exactly the same and the properties of those methods are
somewhat different. Although it seems likely that the same general
conclusions would hold for those kinds of analyses, research on the
on the sensitivity of analyses based on those methods would be
useful.

Finally, more work is needed to establish standards for levels of
heterogeneity that might be considered scientifically negligible.
We have argued that exact replication may be too strict a standard
in psychology and the social sciences because it is considered too
strict in strong sciences like particle physics and because there is
evidence that it is not met in other areas of physical science (see
Hedges, 1987). If this is true, it is important to develop standards
for the amount of heterogeneity that are appropriate for judging
replication in psychology and the social sciences. Although we
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have offered tentative standards for approximate replication, we
believe that such standards should be a matter of social consensus
among scientists. They may be resolved differently in different
areas of science (as our three examples seem to indicate) and
cannot be determined entirely by the technical framework of
mathematical statistics. Mathematics can help facilitate judgments,
for example, by relating heterogeneity parameters to other quan-
tities (such as the largest difference among pairs of effects from
different studies), but the function of the mathematics is only to
characterize heterogeneity in ways that are easier to make judg-
ments about, not to determine the correct judgments themselves.
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