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Abstract: - A major issue in time series analysis and particularly in the study of meteorological time series is to 
model and to predict their behaviour. The first step to reach this goal is the data analysis. It is what we shall do 
in this article, focusing on the long range dependence (LRD) property. Various estimators of LRD have been 
proposed. Their accuracy have been generally tested using simulated time series since sometimes only their 
asymptotic property are known, or worse, no asymptotic property have been proved. For ten annual and 
monthly data series collected in Dobrudja region, for 41 years, we did the statistical analysis and we compare 
the results. 
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1 Introduction 
Weather modification is a topic of substantial 
worldwide interest for all countries. Modeling the 
precipitation and temperature evolution have been 
done for different region of the world [1] – [3]. 
Building models and testing their validity is a step 
in understanding and predicting the weather 
evolution, which is a challenge for all scientists.  

Only a small number of studies is devoted to 
weather evolution in different regions of Romania, 
including the Black Sea coast [4–7]. Therefore, this 
article comes to complete the analyses made for a 
region of Romania, called Dobrudja. 

Dobrudja is situated in the South – East of 
Romania, between the Black Sea and the lower 
Danube River. Dobrudja’s structure (excluding the 

Danube Delta) is that of a plateau with hilly aspect, 
with an average altitude between 100 and 180 m. Its 
climate is temperate - continental. 

It has been shown showed that the frequency of 
droughty years is 89 %, the longest rainless period 
in this area being registered in the South of 
Dobrudja and the Black Sea coast [8].  
 

 

2 Methodology 
In order to study the time series, the following steps 
were done: 

� The normality study; 
� The correlation study; 
� The homoscedasticity study 
� The analysis of break presence; 
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� The analysis of long-range dependence 
property. 

 
 
2.1. Normality tests  
The null hypothesis is:  

H0: The process is normally distributed. 

The Kolmogorov – Smirnov test [9] is known, so 
we don’t present it. 

The Shapiro Wilk test [10]: 
The statistic test is defined as:  
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where: 
- n is the sample volume, 
- nxxx ,...,, 21  are the original data, 

- nxxx ′′′ ,...,, 21 are the ordered data, 

- x  is the sample mean of the data,  

- 
),...,,( 21 nwwww =′
or  

[ ] 2/1111 ))((
−−−−=′ MVMMVw , 

- M denotes the expected values of standard 
normal order statistics for a sample of size n, 

- V is the corresponding covariance matrix.  
Small values of W indicate non – normality. 

The Q-Q plot [9]. 
For a Q - Q plot of a sample versus a theoretical 

model, one can estimate goodness of fit and 
parameters of the model. 

The data are plotted against a theoretical normal 
distribution in such a way that the points should 
form an approximate straight line. Departures from 
this straight line indicate departures from normality. 
 
 
2.2. Study of correlation 
The autocorrelation [11] of a random process 
describes the correlation between values of the 
process at different points in time, as a function of 
the two times or of the time difference.  

Let ( tX ) be a time series. The autocovariance 

function of )( tX  at lag h ( *N∈h ) is defined by: 

),()( htt XXCovh +=γ  

and the autocorrelation function of )( tX  at lag h, as: 
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If nxx ,....,1  are observed data, from the 

previous formula we obtain the empirical 
autocorrelation function, denoted by ACF. 

Together with ACF we determine the confidence 
limits at the confidence level of 95%. If for the 
selected sample, the values of ACF are inside the 
corresponding confidence interval, we conclude the 
data are not correlated.  

 
 

2.3. Break points detection 
A break in a time series is a change of probability 
low at a certain moment [12]. 

Some break tests permit to detect a change in a 
time series mean.  

The methods used to detect break points were: 
the Pettitt test [13] and the segmentation procedure 
of Hubert [14, 15], since they work even if the series 
are not normally distributed.  

In the situations of contradictory results, 
Buishard test and change point analysis have also 
been performed. 

The null hypothesis is:  

H0: There is no change in the time series. 

The Buishard test works in the hypothesis that 
the series is normal, the break absence representing 
the null hypothesis, H0. 

The Pettitt test is a nonparametric test, which can 
be used even if the time series distribution is 
unknown.    

The Hubert segmentation procedure detects the 
multiple breaks in time series and the moments of 
their apparition. The principle is to cut the series in 
m segments (m>1) such that the calculated means of 
the neighbours sub-series significantly differ. 

CUSUM procedure [16]  
CUSUM charts are constructed by calculating 

and plotting a cumulative sum based on the data. 
CUSUM charts show the cumulative sum of 
differences between the values and the average 
and are used to determine changes in average. 
 
 
2.4. Tests of homoscedasticity 
The Bartlett test is used to test the hypothesis that k 
groups have equal variances. Since this test is 
sensitive to departures from normality, the Levene 
test [17] is an alternative to the Bartlett test, which 
is less sensitive to departures from normality. 
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In this case, the null hypothesis is: 

H0: ,... 22
2

2
1 kσ==σ=σ  

and its alternative: 

H1: 
22
ji σ≠σ , for at least one pair (i, j). 

The test statistic is: 
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where: 
- n is the sample volume, 
- k is the number of groups in which the sample 

is divided, 
- in  is the sample size of each group, 

- ijX is the element j in the i - th group, 

- .iX is the mean of the i-th group, 

- .iijij XXZ −= , 

- .iZ is the mean group of ijZ , 

- ..Z is the overall mean of ijZ . 

The Levene test rejects the hypothesis that the 
variances are equal at the significance level α  if 

knkFW −−α> ,1, , where knkF −−α ,1,  is the upper critical 

value of the F distribution with k - 1 and n – k 
degrees of freedom at the significance level of α . 
 

 

2.5. Measuring Hurst exponent 
The study of time series with long-range 
dependence have been extensively developed for 
applications in nature sciences, as well as in DNA 
sequences, cardiac dynamics, internet traffic [18] 
and finance [19].  

The Hurst [20] exponent provides a measure for 
long term memory and fractality [21] of a time 
series. For details on the topics, see the volumes of 
Beran [22], Embrechts and Maejima [23], and 
Palma [24] and the collections of Doukhan et al. 
[25] and Robinson [26]. 
     The values of the Hurst exponent range between 
0 and 1. Based on the Hurst exponent value H, the 
following classifications of time series can be 
realized:  
• H = 0.5 indicates a random series; 

• 5.00 << H indicates an anti - persistent series, 
which means an up value is more likely followed 
by a down value, and vice versa; 

• 15.0 << H indicates a persistent series, which 
means the direction of the next value is more 
likely the same as current value. 
Let N)( ∈ttX  be a time series, shortly denoted by 

)( tX . We say that )( tX  it is weakly stationary if it 

has a finite mean and the covariance depends only 
on the lag between two points in the series. 

A time series )( tX  has the long range 

dependence property if it has correlations that 
persist over all time scales.  

An equivalent definition is: 
The time series )( tX  has the long range 

dependence (LRD) property if ∑
∞

−∞=

ρ
h

h)(  diverges. 

     LRD can be thought of in two ways [27]:  
• In the time domain it manifests as a high degree 

of correlation between distantly separated data 
points.  

• In the frequency domain it manifests as a 
significant level of power at frequencies near 
zero. 

     The following methods are used for LRD 
analysis:  
• R/S and Lo’s modified R/S statistic; 
• Aggregated Variance; 
• Absolute Moments; 
• Detrended fluctuation analysis (variance of 

residuals); 
• Ratio of variance of residuals; 
• Periodogram; 
• Whittle's approximate MLE and Local Whittle 

estimators; 
• Wavelets. 
 
2.5.1. R/S analysis 

The Hurst exponent can be calculated by rescaled 
range analysis (R/S analysis) [20].  

To study the LRD in a time series, the following 
algorithm is used.  

A time series 
NkkX ,1

)(
∈

 is divided into d sub-

series of length m. For each sub-series n = 1, … , d : 
• Find the mean, nE and the standard deviation, 

nS ; 

• Normalize the data ( inX ) by subtracting the sub-

series mean: 

;...,,1, miEXZ ninin =−=  

• Create a cumulative time series:  
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• Rescale the range ;/ nn SR  

• Calculate the mean value of the rescaled range 
for all sub-series of length m: 
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Hurst found that (R/S) scales by power - law as 
time increases, which indicates 

H
t tcSR ⋅=)/( . 

In practice, in classical R/S analysis, H can be 
estimated as the slope of log-log plot of 

tSR )/( versus t.  

Although Mandelbrot [28] gave a formal 
justification for the use of this test, Lo [29] showed 
that this statistic was not robust to short memory 
dependence and modified this statistic. 

Lo defined modified R/S statistic by: 
• instead of considering multiple lags, only focus 

on lag N, the length of the series:  
After finding the overall mean  
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create the cumulative time series:  
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• instead of using the standard deviation to 
normalize )(NR , he uses the following sum: 
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The Lo’s modified R/S statistic is defined by: 
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1

)( NSNR
N

NV qq = . 

Lo uses the interval [0.809, 1.862] as the 95% 
asymptotic acceptance region for testing the null 
hypothesis: 

H0 : the absence of LRD, 

against the alternative: 

H1 : the presence of LRD. 

As discussed in [30], the right choice of q in Lo’s 
method is essential. For study, the following values 
are used: 
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where:  

- N is the length of the series,  

- ρ̂  is the estimated first order correlation 

coefficient, 

 - [ ] is the greatest integer function. 

 

2.5.2. Aggregated variance method [30] 
A series of length N is divided into d sub-series of 
length m. For each subseries, the aggregated series, 
formed by the means 

dkX
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is calculated, as well as, its sample variance: 
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For successive values of m, the sample variance 
is plotted against m on a log-log plot. Fitting a least 
squares line to the points of the plot, the Hurst 
coefficient is calculated, knowing that the straight 
line slope is 2H - 2. 

In order to distinguish between the 
nonstationarity and LRD, Teverovski and Taqqu 
[27] proposed to use this method, together with the 
study of successive differences of variances or 

fitting a function 22
21

−+ HmCC  to the )(mVarX . 

 
2.5.3. Absolute Moments Method [30] 
This method is analogous to 2.5.2., but instead of  
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)(mVarX , the nth absolute moments are calculated for 
the aggregated series,  
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For successive values of m, the sample absolute 
moment is plotted versus m on a log-log plot. Fitting 
a least squares line to the points of the plot, the 
Hurst coefficient is calculated, knowing that the 
straight line slope is n(H-1). 
 
2.5.4. Detrended fluctuation analysis (DFA) 

Detrended fluctuation analysis was originally 
proposed as a technique for quantifying the nature 
of long-range correlations by Peng et al. [33]. It was 
introduced in order to permit the detection and 
quantification of long-range correlations in DNA 
sequences. 

In recent years the DFA method has been applied 
in analysis of different time series that appear in 
different fields as DNA sequences [34], heart rate 
study [35], human gait, meteorology, economics, 
and physics.  

DFA method, involves the following steps [36]: 
• Starting with a time series, )( tX  with the length 

N, it is integrated, obtaining: 

∑
=

−=
k

i

kk XXY
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)( . 

• The integrated series in divided into d sub-series 
of equal length m. 

• In each sub-series, fit tX , using a polynomial 

function of order l which represents the trend of 
that sub-series. The ordinate of the fit line in 
each box is denoted by )(kym .  

• The integrated series is detrended by subtracting 
the local trend )(kym in each sub-series of length 

m.  
• For a given sub-series length, m, the root mean-

square fluctuation for the integrated and 
detrended series is calculated:  
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• The above computation is repeated for a broad 
range of scales (m) to provide a relationship 
between )(mF and the box size m.  

A power-law relation between the average root-
mean-square fluctuation function )(mF and the box 

size m indicates the presence of scaling: 

)(mF ∼ Hm2 .  

2.5.5. Ratio of Variance of Residuals 
This method estimates the parameter alpha 
characterizing the intensity of heavy tails, instead of 
estimating the long-range dependence parameter H. 
The method is based on the Variance of Residuals 
method. It calculates the Variance of Residuals in 
two ways, and takes their ratio to obtain a statistic, 
and then fits a least-squares line to the logarithm of 
that statistic. This enables one to estimate alpha.[30] 
 
2.5.6. Periodogram  

Geweke and Porter-Hudak [37] proposed a semi- 
parametric approach to test for long-memory 
memory of a fractionally integrated process. The 
fractional difference parameter d can be estimated 
by regression equations.  

Let
NkkX ,1

)(
∈

 be a time series, and 

2

12

1
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=λ
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j

ij
jeX
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where λ is a frequency. 
It was shown that a series with LRD should have 

a periodogram proportional to 
H21−

λ in the origin 

neighbourhood, so a log-log plot of a periodogram 
against the frequency should give the coefficient 

dH =− 21 . 
Modified periodogram, as well cumulative 

periodogram have also been used [30].  
 
 
3. Results and discussions 
The studied data represent mean annual (Fig.1) and 
mean monthly precipitation collected for a period of 
41 years at 10 meteorological stations, starting to 
1965. The coordinates of these stations and the 
mean annual precipitation registered are given in 
Table I and represented in Fig.1. 
 
Table I. The coordinates of meteorological stations  
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Fig.1. The mean annual precipitation of the studied 

stations in the period 1965 – 2003 
 

 

3.1. Statistical analyses 

3.1.1. The results of normality tests 
The results of normality tests for annual series are 
presented in Table II, where: 

- “Statistic” is the value of statistic associated 
respectively to Kolmogorov – Smirnov and Shapiro 
– Wilk tests, 

- df is the degree of freedom, 
- Sig is the significance level. A value of Sig less 

than 0.05 indicates a deviation from normality. 
 
Table II. Results of normality tests for annual series 

 
*This is a lower bound of the true significance 
a Lilliefors significance correction 

 

Since the Kolmogorov – Smirnov and Shapiro – 
Wilk tests gave contradictory results for Corugea 
and Constanta annual series, Jarque – Bera test has 
also been performed, as well as the Q - Q plot and 
the histogram analysis [13]. 

For Corugea series, the value of Jarque – Bera 
statistic was 825.3=JB  and the corresponding 
significance level of 0.1477 > 0.05. Thus we admit 
that this series is normally distributed. We also 
accept the null hypothesis analysing the histogram 
of ConstanŃa series (Fig.2).  

 

Fig.2. Histogram of Constanta series 
 

So, between the annual series only Harsova is 
not normally distributed. 

Performing normality tests for monthly series, 
we conclude that no series is normally distributed, 
but in nine of ten cases the normality can be reached 
by Box-Cox transformation, with the parameters 
from Table III. 
 

Table III. Parameters of Box-Cox transformation 

 
 
3.1.2. Autocorrelation results 

Analysing the autocorrelation, we remark that 
Adamclisi, Cernavoda, Medgidia, Harsova, 
Corugea, Tulcea annual series are not correlated.  

 
Table IV. ACF and Box-Ljung statistic for Corugea 

series 

 
a  The underlying process assumed is independence 
(white noise). 
b Based on the asymptotic chi-square approximation. 
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For example, for Corugea (Table IV), the value 
of Ljung – Box (5.351, for the lag 16), together with 
the corresponding Sig. value comes o confirm the 
hypothesis that the series is independent. 

The values of autocorrelation functions (ACF) of 
Sulina and Jurilovca annual series are inside 
confidence interval, excepting the first one, and 
Mangalia presents a pick at the lag of 12 (that could 
be interpreted as a periodicity sign). 

The same analysis for all monthly data, but 
Mangalia (Fig.3), reveals their periodicity. 
 

 
Fig.3. ACF of Mangalia monthly series 

 
3.1.3. The results of break points tests 

The results of Pettitt test and Hubert segmentation 
procedure for annual data were: 
- seven series don't present break points; 
- there is a break in Sulina series (1981); 
- contradictory for Corugea and Harsova series. 

Buishard test and CUSUM chart for Corugea 
series indicate a change point in 1972, in 
concordance to Hubert procedure. After CUSUM 
analysis for Harsova annual series (Fig.4), we 
accept the null hypothesis. 

 

 
Fig.4. CUSUM of Harsova annual series 

 
The results of break tests for monthly series are 

also contradictory for eight of ten series. For all the 
series, Buishard and Pettitt tests gave the same 
results, but Lee&Heghinian test and Hubert 
segmentation procedure lead to the conclusion that 
there are breaks in the time series (Table V).  

These contradictions could be the result of the 
big number of outliers (Fig.5). As consequence, for 
modeling purposes the outliers could be removed, 
the tests reiterated and the models built on sub - 
periods, if necessary. 

 
 

Table V. Break tests for monthly data 

 
yes means that the null hypothesis is accepted 
- means that the test can not be applied 
 

 
Fig.5. Box-plot of monthly series 

 
3.1.4. The results of homoscedasticity test 

The results of Levene test for annual and monthly 
data are summarized in Table VI. 

Table VI. Results of Levene test 

Station 
Annual Monthly 

F Sig F Sig 
Adamclisi 2.494 0.123 109.950 0.000 
Cernavoda 0.581 0.310 88.436 0.000 
Medgidia 0.014 0.906 146.607 0.000 
Harsova 5.777 0.021 105.202 0.000 
Corugea 3.265 0.079 100.330 0.000 
Tulcea 4.892 0.033 124.588 0.000 
Sulina 0.575 0.453 147.933 0.000 
Jurilovca 0.911 0.346 138.394 0.000 
Constanta 0.466 0.499 111.390 0.000 
Mangalia 0.392 0.532 88.339 0.000 
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Some remarks are necessary: 
• For Corugea annual series, for which the 

results of break tests were contradictory, the 
homoscedasticity hypothesis was accepted based on 
the Levene test, which was applied twice: 

a. Dividing the initial series in two sub-series, 
before and after the 1972; 

b. Dividing the series in three sub-series, with 
the same number of elements (13). 

The value of W statistics associated to it was 
respectively:  

W = 1.15 < 371050 ,,.F  = 4.105, 

W = 2.12 < 362050 ,,.F = 3.259. 

• Taking the square root of Tulcea annual 
data, the new series is homoscedastic.  

• For all monthly series the homoscedasticity 
hypothesis was rejected. 
 

3.1.5. Long –range dependence analysis 
For R/S analysis on annual data, a part of results is 
given in [7] and those obtained using KaotiXL [38], 
in Table VII. 
 

Table VII. Hurst coefficients for annual series, 
calculated by KaotiXL (rescaled method)  

 
 
The R/S charts and the evolution of V - statistics 

associated are exemplified in Figs. 6 – 11, where R2  

is the determination coefficient. 
For Lo’s modified statistic, the values used for q 

were calculated by (*) and (**). As result of formula 
(*), q was respectively: 3 – for Sulina and Jurilovca 
series and 2 – for the rest. Using formula (**), the 
coefficients were not very different.  

The results are presented in Table VIII and 
those obtained by periodogram method, in Table IX.  

 

 
Fig.6. The R/S chart of Adamclisi annual series 

 
Fig. 7. The V - statistic associated to Adamclisi 

annual series 

 
Fig.8. The R/S chart of Medgidia series 

 
Fig.9. The V- statistic associated to Medgidia series 

 
Fig.10. The R/S chart of Sulina annual series 

 
Fig. 11. The V - statistic associated to Sulina annual 

series 
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Table VIII. Hurst coefficients for annual series, 
calculated by Lo’s method  

 
 
Table IX. Hurst coefficients for annual series, 

calculated by periodogram method  

 
 

It can be remarked that the results for each 
series are very different and a correct conclusion on 
the long range dependence property of these time 
series could not be extract applying only one 
method.  

Discussing, for example, about Adamclisi, 
Cernavodă or Medgidia series, after the application 
of normality, homoscedasticity and correlation tests, 
it was concluded that they are Gaussian white noises 
[7]. But not all the values from the previous tables 
are in concordance with these conclusions. In [7] a 
FARIMA model was found for Sulina series. But 
the values of H, in Tables 2 and 3 are in discordance 
with the LRD property of Sulina series.  

The reasons for which these results are so 
different could be: q is too small in the case of Lo’s 
statistic (and it does not account for the 
autocorrelation of the process) and the small number 
of data. 

The results of DFA are closer to those of Lo’s 
method (for example, for Adamclisi series), other 
being closer to those of periodogram method. 

The results are different also in the case of 
monthly series, as we exemplify in Tables IX and X. 

 
Table IX. Hurst coefficients for monthly series, 

calculated by R/S method 

 
 

Table X. Hurst coefficients for monthly series, 
calculated by Lo’s method  

 
 
 

4. Conclusion 
In this article we presented the statistical analysis 
and the results of LRD analysis for some 
precipitation time series, collected in Dobrudja 
region, for 41 years. We remark that the LRD 
results depends on the method used and they are not 
always concordant with the results of statistical 
tests. Therefore, it is indicated to use with 
circumspection different LRD analysis methods, 
since sometimes the statistics attached to them have 
properties that have been proved only for some well 
established time series or their properties are not 
known.  
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