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Abstract 

 

The type 2 modified augmented design (MAD) was used to phenotype seed yield, oil content and fatty acid compositions in a 

collection of 120 flax genotypes at two locations during three years. All six experiments had the same design, in which whole plots 

were arranged in 10 rows and 10 columns and each whole plot was split into five paralleled rectangular subplots with a control 

subplot in the centre of each whole plot. Two additional subplot controls were allocated at random in each of five randomly selected 

whole plots. Relative efficiency (RE) of adjusted versus unadjusted observations was evaluated for all six experiments. The RE was 

redefined as a ratio of pooled variance within both plot and subplot controls of the unadjusted values to that of the adjusted values. 

Two adjustment methods based on the row and column effect of plot controls (M1) and the regression of the test plots on the plot 

control (M3), were assessed to adjust for soil heterogeneity. The analysis of variance (ANOVA) results revealed that either M1 or 

M3 alone failed to sufficiently eliminate effects due to both additive and non-additive soil variation across the field. A combined 

method (M1+M3) appeared to be the most effective in most cases. The redefined RE can be used as an indicator of adjustment 

efficiency. A joint analysis of 120 flax genotypes over four environments showed that seed yield was significantly affected by 

environments and had significant interaction of genotype × environment. High yield mean and low coefficients of variation over 

multiple environments compared with a control cultivar are indicators of a stable and high yielding genotype, whereas oil and 

linolenic acid content were relatively stable traits. The automated statistical analysis of MAD with the corrected ANOVA and 

improved observation adjustment was implemented with SAS software and Perl scripts, which are freely available at 

http://probes.pw.usda.gov/bioinformatics_tools/MADPipeline/index.html.       

 
Keywords: modified augmented design; analysis of variance (ANOVA); phenotyping; seed yield; oil content; linolenic acid; flax. 

Abbreviations: ANOVA- analysis of variance; MAD- modified augmented design; RCBD- randomized complete block design; CV- 

coefficient of variation; AOAC- Association of Official Analytical Chemists; OIL- seed oil content; LIN- linolenic acid content; DF- 

degree of freedom; MS- mean square; EMS- expected mean square; SK- Saskatoon in Saskatchewan, Canada; MD- Morden in 

Manitoba, Canada. 

 

Introduction 

 

Randomization, replication, and local control (or blocking) 

are three basic principles in field experimental design for 

being able to estimate experimental errors and treatment 

means without bias, which have resulted in the extensive 

usage of complete experimental designs in agricultural 

research such as the randomized complete block design 

(RCBD) and the Latin square design (Fisher, 1971). However, 

in the early stages of breeding selection, a large number of 

test lines and a small amount of seed supply limit the use of 

experimental designs with replications. Augmented designs 

are nonreplicated experimental designs that circumvent this 

problem (Federer, 1956; Federer et al., 1975; Federer and 

Raghavarao, 1975). To further improve the efficiency of this 

type of experimental designs, Lin and Poushinsky (1985) 

proposed a modified augmented design (MAD) for 

rectangular plots (type 2). The design is structured as a split-

plot with whole plots arranged in rows and columns. Each 

whole plot is split into five parallel rectangular subplots with 

a centre subplot for a control cultivar, called the plot control. 

In addition, two additional cultivars serve as subplot controls 

in some randomly selected whole plots. Test lines are 

randomly allocated to the remaining subplots which are 

called test plots (Fig 1). The control plots are used to estimate 

the row (R) and column (C) effects as well as plot error (the 

R × C interaction effect) to test for additive soil variation in 

the row and/or column directions of the test plots. The 

subplot controls are used to estimate the subplot error and to 

test for an R × C interaction effect, i.e., non-additive soil 

variation in multiple directions of the field. Three methods 

were proposed to adjust the test lines to mitigate the effects 

due to soil heterogeneity (Lin and Poushinsky, 1983, 1985; 

Lin and Voldeng, 1989), among which, Method 1 based on 

the row and column effects of control plots, and Method 3 

based on the regression of the test plots on the control plots, 

were suggested for the type 2 MAD (Lin et al., 1983; Lin and 

Poushinsky, 1985; Lin and Voldeng, 1989). The MAD has 

been applied to and evaluated in crops, such as wheat 

(Snijders, 2002; Golparvar and Ghasemi-Pirbalouti, 2008), 

potato (Schaalje et al., 1987), soybean (Lin and Voldeng, 

1989), barley (May et al., 1989; May and Kozub, 1995), 

sugarcane (Milligan and McDonal, 1990; Bhagyalakshmi and 

Somarajan, 1999) and maize (Afolabi et al., 2007). However, 

some issues arose from these studies. First of all, the 

statistical procedure of the MAD is not straightforward and 
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no detailed description of statistical analysis for the type 2 

MAD is available. Though two SAS programs for the 

analysis of augmented design were reported (Scott and 

Milliken, 1993; Wolfinger et al., 1997), an automated 

computer program for the MAD is necessary. Second, all of 

these applications were based on analyses of individual yield 

trials for screening of superior breeding lines. When the same 

set of test lines and control cultivars are evaluated across 

locations and years, a joint analysis over multi-environments 

will help to obtain information about yield stability of test 

lines. Furthermore, the efficiency of a MAD was measured 

by relative efficiency (RE), which was calculated as a ratio of 

variances between the unadjusted and adjusted values of the 

subplot controls (Lin and Poushinsky, 1985). Since the 

number of subplot controls is limited, the RE estimates lack 

in precision, thus impacting the consistency of the best 

adjustment method suggested by ANOVA and by RE (Lin 

and Voldeng, 1989; May et al., 1989). The objectives of the 

present study were to develop an automated computer 

program package for the statistical analysis of the type 2 

MAD combining SAS software and Perl scripts, and to 

evaluate the use and efficiency of the type 2 MAD in 

identifying phenotypes of flax germplasm based on the 

datasets of multiple traits generated over multiple 

environments.  

 
Results 

 

ANOVA of individual experiments 

 

The ANOVA (Table 1) for flax seed yield showed that soil 

heterogeneity existed in 3 out of the 4 experiments in two 

years and two locations except in the 2011/MD experiment. 

Soil heterogeneity in these experiments were additive and 

only in one direction (row) except for the 2010/SK 

experiment which showed soil variation in both row and 

column directions.  No significant R × C interaction effects 

were observed in 3 out of the 4 experiments, indicating no 

non-additive soil variation for seed yield in most of the 

experiments. The only exception was found in the 2010/MD 

experiment. A similar response was observed for oil (OIL) 

and linolenic acid (LIN) content in six experiments carried 

out over three years and at two locations (Table 1).  

 

Adjustment of observations 

 

Since there was significant soil variation in the test plots, an 

adjustment method must be applied to properly adjust the 

observed values of the test genotypes. Two methods, Method 

1 (M1) based on design structure of plot control, and Method 

3 (M3) based on covariance adjustment (Lin and Poushinsky, 

1985; Lin and Voldeng, 1989), were previously used to 

adjust for soil heterogeneity. To compare the adjustment 

efficiency of the two methods, we first used them separately 

to adjust the observed values of all the genotypes, including 

the test genotypes and the control cultivars. Then the same 

ANOVA was performed for the data adjusted by M1 and by 

M3, respectively. Finally, we compared the mean squares 

(MS) and their statistical significance for all sources of 

variation: row, column and R × C (plot error). The results 

indicated that, regardless of the significance of row and/or 

column effects, adjustment by M1 reduced the MS values of 

row and column to nearly zero for all traits, but failed to 

eliminate the variation due to the R × C interaction (Table 1). 

Similarly, adjustment by M3 significantly eliminated the 

variation due to the R × C interaction, and reduced the MS 

values from row and column to some extent, but row and/or 

column effects were still significant. Either M1 or M3 alone 

failed to sufficiently eliminate the effects of the additive and 

non-additive soil variations when both row and column 

variations and the R × C interaction were significantly large. 

Subsequently, we propose a method that combines M1 and 

M3 (M1+M3) where adjustment by M1 first is followed by 

M3, where the latter adjustment is based on the adjusted 

values from M1. The results revealed that M1+M3 was able 

to better eliminate soil variation from the row and column 

directions and the R × C interaction in 13 out of the 16 

experiments even though their effects in the row and column 

and the R × C interaction were not significant (Table 1).  

 In previous studies, the efficiency of the MAD was indicated 

by the RE which was defined based on the subplot controls 

(Lin and Poushinsky, 1983, 1985; Lin and Voldeng, 1989). In 

this study, five whole plots were selected for subplot controls 

to estimate subplot error and the degree of freedom (DF) for 

subplot error was only 8 (Table 1 and 2). As an example, 

Table 2 showed unadjusted (observed) and adjusted values of 

seed yield (g m-2) of subplot controls (the plot control was 

also treated as subplot control) and their ANOVA results in 

the 2010/SK experiment. The results indicated that 

adjustment by M1, M3 or M1+M3 obviously reduced 

differences among plots (soil heterogeneity) represented by 

differences between means of plots and MS between plots in 

each adjustment method, but did not change MS between 

controls  and MS of subplot error (retaining the same values 

for all adjustment methods). Consistent results were also 

shown in Table 1. Although adjustments using different 

methods were obviously efficient (because of reduced MS 

between plots in Table 2 or reduced MS between rows and/or 

between columns in Table 1), the MS of subplot controls 

(error)  remained unchanged, suggesting that there is no 

obvious correlation between adjustment efficiency and 

subplot error, and subplot controls cannot be used alone for 

RE estimation. Therefore we redefined the RE as a ratio of 

pooled variance within both plot and subplot controls of the 

unadjusted values to that of adjusted values. Since plot 

controls are systematically allocated in the entire field and 

the purpose of adjustment is to remove the effects due to soil 

variation among whole plots (the basic assumption is that soil 

variation within a whole plot is homogeneous), the change of 

variance within plot and subplot controls after adjustment 

should be able to measure the efficiency of an adjustment 

method. The results showed that the redefined RE was able to 

verify most of the results determined manually by ANOVA 

(Table 3). 

  An appropriate adjustment should result in a decrease in 

coefficients of variation (CV) within plot and subplot 

controls. The RE estimates in the experiments were 

completely consistent with the change of CV in the plot 

controls, but not in the subplot controls (Table 3), which 

confirmed that subplot controls alone were insufficient for 

the RE estimation in this study. Therefore, the redefined RE 

can be used as a criterion to select the best adjustment 

method in the automated data analysis computer program.   

 

Joint ANOVA of multiple experiments 

 

In the present study, six experiments in three consecutive 

years at two locations were conducted to evaluate a set of 

flax germplasm. A fixed model for all factors, year, location 

and genotype was used to conduct a joint ANOVA (see 

Materials and Methods).  The joint ANOVA results for yield,  
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Table 1. ANOVA of unadjusted (Unadj.) and adjusted values by Method 1 (M1), Method 3 (M3) and a combined method (M1+M3) . 

Experiment Source Yield (g m-2) OIL (%) LIN (%) 

  DF MS DF MS DF MS 

   Unadj. M1 M3 M1+M3  Unadj. M1 M3 M1+M3  Unadj. M1 M3 M1+M3 

2009/MD Row      9 1.40** 0.00 0.03** 0.00 9 6.16** 0.00 1.66** 0.00 

 Column      9 0.34 0.00 0.01 0.00 9 1.19 0.00 0.32 0.00 

 R × C      80 0.31* 0.31* 0.01 0.04 80 0.72 0.72 0.19 0.66 

 Error      7 0.08 0.08 0.08 0.08 7 0.32 0.32 0.32 0.32 

2009/SK Row      9 0.22* 0.00 0.13* 0.00 9 0.55 0.00 0.26 0.00 

 Column      9 0.12 0.00 0.07 0.00 9 0.43 0.00 0.20 0.00 

 R × C      81 0.10 0.10 0.06 0.00 81 0.55 0.55 0.26 0.29 

 Error      8 0.05 0.05 0.05 0.05 8 0.33 0.33 0.33 0.33 

2010/MD Row 9 27.02** 0.00 2.24** 0.00 9 6.99** 0.00 5.26** 0.00 9 24.99** 0.00 2.36** 0.00 

 Column 9 5.68 0.00 0.47 0.00 9 1.12 0.00 0.84 0.00 9 0.74 0.00 0.07 0.00 

 R × C 81 4.67* 4.67* 0.39 1.07 81 0.84 0.84 0.63 0.96 81 0.71 0.71 0.07 1.42 

 Error 6 1.11 1.11 1.11 1.11 6 0.26 0.26 0.26 0.26 6 0.45 0.45 0.45 0.45 

2010/SK Row 9 11.35** 0.00 9.86** 0.00 9 2.86** 0.00 0.08** 0.00 9 0.46 0.00 0.02 0.00 

 Column 9 27.77** 0.00 24.13** 0.00 9 0.37 0.00 0.01 0.00 9 0.18 0.00 0.01 0.00 

 R × C 80 4.06 4.06 3.53 2.83 79 0.61* 0.61* 0.02 0.00 79 0.38 0.38 0.02 0.19 

 Error 6 2.62 2.62 2.62 2.62 5 0.08 0.08 0.08 0.08 5 0.12 0.12 0.12 0.12 

2011/MD Row 9 4.12 0.00 2.62 0.00 9 0.30 0.00 0.11 0.00 9 1.04* 0.00 2.11* 0.00 

 Column 9 4.00 0.00 2.54 0.00 9 0.22 0.00 0.08 0.00 9 0.57 0.00 1.16 0.00 

 R × C 81 5.55 5.55 3.53 3.78 81 0.35 0.35 0.13 0.12 81 0.51 0.51 1.04 0.54 

 Error 8 2.85 2.85 2.85 2.85 8 0.25 0.25 0.25 0.25 8 0.34 0.34 0.34 0.34 

2011/SK Row 9 20.71** 0.00 1.28** 0.00 9 0.11 0.00 0.01 0.00 9 0.48 0.00 0.95 0.00 

 Column 9 2.88 0.00 0.18 0.00 9 0.41** 0.00 0.05** 0.00 9 0.83** 0.00 1.65** 0.00 

 R × C 81 3.17 3.17 0.20 0.06 81 0.12 0.12 0.01 0.00 81 0.28 0.28 0.56 0.38 

 Error 8 1.12 1.12 1.12 1.12 8 0.07 0.07 0.07 0.07 8 0.31 0.31 0.31 0.31 
* and ** represent significance at the 5% and 1% probability level. MS: mean square; DF: degree of freedom. The DF of error in some experiments is less than 8 because of missing values. 
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Fig 1. A diagram of field layout of the type 2 MAD for flax experiments. Plots were arranged in 10 × 10 grids. Each plot was split 

into five subplots with a plot control cultivar ‘CDC Bethune’ in the centre subplot. Two additional subplot controls, ‘Macbeth’ and 

‘Hanley’ were randomly assigned to two subplots of five randomly selected whole plots. A total of 390 test genotypes (including 120 

flax accessions used for analysis in this paper and 270 breeding lines which varied in different years) were randomly allocated to the 

remaining subplots (test plots). Usually each test genotype appeared only once.  The same design layout was applied to field 

experiments in three years and at two locations. 

 

OIL and LIN revealed considerable differences among years 

(Y), locations (L) and their interaction (Y × L) (Table 4), 

showing substantial environmental differences during flax 

growing seasons between Saskatoon and Morden in 2009-

2011. Significant genetic variation among the 120 flax 

genotypes was observed, although significant interactions 

also existed between genotypes (G) and years (G × Y), 

between genotypes and locations (G × L) and among all three 

factors (G × Y × L). When we summed up all the MS of 

genotype related terms, G, G × Y, G × L and G × Y × L 

(Table 4) and calculated the percentage of variation due to 

genotypes and interactions, we noticed that the variation due 

to genotypes accounted for 65% for yield, 85% for OIL and 

94% for LIN. Interactions between genotype and 

environment constitute therefore only a small part of the 

genetic variation and yield is more readily affected by the 

environment than LIN and OIL. The Spearman rank-order 

and Pearson correlation coefficients between different 

experiments (Table 5) further confirmed this finding. 

Significant correlations were observed between any two 

experiments during three years at two locations for all three 

traits with the highest correlations in LIN and OIL.  

 

Evaluation of test genotypes 

 

Joint analysis over multiple environments permits the 

performance evaluation of test genotypes and their stability. 

We calculated the seed yield mean and CV of all test 

genotypes over 2 years and 2 locations for yield and drew a 

plot of means vs. CVs (Fig 2). The plot control ‘CDC 

Bethune’ was used as a check to draw a vertical line of CV 

and a horizontal line of mean yield. The genotypes with 

higher yield and smaller CV than the check were deemed 

stable and high yielding. A total of 24 of the 120 genotypes 

fell into this category, many of which are current cultivars, 

such as PrairieGrande, Hanley, Lirina, PrairieThunder and 

CDCMons. When the criteria of means and CV were slightly 

relaxed (in the dashed oval in Fig 2), most cultivars of 

Western Canada were included. As such, mean and CV over 

multiple environments are two indicators of yield selection 

and germplasm evaluation.  

 Compared with OIL and LIN, seed yield varied substantially 

more in different environments (Table 6). The average CV of 

the 120 genotypes for yield was approximately ten times 

larger than that of OIL and LIN, indicating that seed yield is 

largely affected by the environment. As such, seed yield 

phenotyping necessitates comprehensive evaluation in 

different environments, but for LIN and OIL, one or few 

environments may be sufficient for early selection and 

genetic study. 

 

Discussion 

 

Because of limited seed supply of test lines in the early stage 

of breeding scheme, insufficient seeds are available for a 

replicated experiment. In addition, for large numbers of test 

lines, it is difficult to arrange them in one block because of 

environmental heterogeneity in the field. Thus the augmented 

design with only one replication for test lines was proposed 

(Federer, 1956; Federer et al., 1975; Federer and Raghavarao, 

1975). The basic idea of the augmented design is that (1) 

control lines are arranged in a standard design; (2) each 

replication of the control lines is placed in a soil-

homogeneous block, and (3) the block is augmented to 

contain more non-replicated test lines. Based on control lines 

in a standard design, the block effects can be estimated to 

adjust the observed values of the test lines, and the error to 

test the significance of performance differences among lines. 

However, two problems arise in implementation of such an  
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Table 2. Unadjusted and adjusted values of seed yield (g m-2) of subplot controls and their ANOVA results in the 2010/SK 

experiment. Adjustment by M1, M3 or M1+M3 obviously reduced soil heterogeneity represented by differences between means of 

plots and MS between plots in each adjustment method, but did not change MS between controls  and MS of subplot error (retaining 

the same values for all adjustment methods), showing no relationship between adjustment efficiency and subplot error. 

Plot (Row, column) Control Unadj. M1 M3 M1+M3 

3,1 Control A 23.80 25.53 24.15 24.44 

4,3 Control A 26.67 25.36 24.86 24.42 

4,4 Control A 26.23 26.40 24.75 24.56 

4,10 Control A 25.71 24.69 24.62 24.32 

7,8 Control A 24.84 24.56 24.41 24.31 

3,1 Control B 20.90 22.63 21.25 21.54 

4,3 Control B 26.63 25.32 24.82 24.38 

4,4 Control B 25.67 25.84 24.19 24.00 

4,10 Control B 25.11 24.09 24.02 23.72 

7,8 Control B 24.24 23.96 23.81 23.71 

3,1 Control C 22.73 24.46 23.08 23.37 

4,3 Control C 25.35 24.04 23.54 23.10 

4,4 Control C 24.24 24.41 22.76 22.57 

4,10 Control C 22.89 21.87 21.80 21.50 

7,8 Control C 25.79 25.51 25.36 25.26 

Mean of Control A  25.45 25.31 24.56 24.41 

Mean of Control B 24.51 24.37 23.62 23.47 

Mean of Control C  24.20 24.06 23.31 23.16  

Mean of Plot 3,1 22.48 24.21 22.83 23.12 

Mean of Plot 4,3 26.22 24.91 24.41 23.97 

Mean of Plot 4,4 25.38 25.55 23.90 23.71 

Mean of Plot 4,10 24.57 23.55 23.48 23.18 

Mean of Plot 7,8 24.96 24.68 24.53 24.43 

MS between plots (DF=4) 5.84 1.69 1.46 0.91 

MS between controls (DF=2) 2.12 2.12 2.12 2.12 

MS of subplot error (DF=8) 1.12 1.12 1.12 1.12 
    DF: degrees of freedom; MS: mean square. 
 

 
Fig 2. Plot of means vs. CVs over four environments for seed yield. The vertical and horizontal lines represent the CV and mean of 

the plot control cultivar, ‘CDC Bethune’ (Control A), respectively. Genotypes on the top-left quadrant are those with higher yield and 

lower CV than the plot control. The genotypes in the dashed oval include almost all current cultivars.  

 

augmented design (Lin and Poushinsky, 1983).  First of all, 

the control lines are assigned randomly to the plots in a block, 

resulting in their irregular distribution pattern over the 

experiment field. Though this placement gives unbiased error 

estimates, it is a disadvantage compared to systematic 

placement when adjusting for soil heterogeneity, particularly 

when control plots are used as soil fertility indicators. This is 

because the major purpose of the early stage selection 

experiments is to estimate the genotypic values of test lines, 

rather than to test the line difference critically. Second, the 

arrangement of test plots and control plots within a block is 

random, and the shape of a block is undefined (Lin and 

Poushinsky, 1983). For the large number of test lines in a 

block, arranging test plots and control plots within the block  
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Table 3. Coefficients of variation (CV) of unadjusted (Unadj.) and adjusted values by Method 1 (M1) and Method 3 (M3) for plot and subplot controls and relative efficiencies (RE) measured 

by error variance of all controls 

Experiment Trait CV (%) for plot controls CV (%) for subplot controls RE  Best adjustment by 

  Unadj. M1 M3 M1+M3 Unadj. M1 M3 M1+M3 M1 M3 M1+M3  RE ANOVA 

2010/MD Yield 21.1 15.8 6.1 11.1 8.1 11.2 9.2 10.7 172 1,042 337  M3 M1+M3 

2010/SK Yield 27.8 19.3 26.0 16.4 31.2 26.9 31.1 27.6 203 114 272  M1+M3 M1+M3 

2011/MD Yield 22.4 20.7 17.8 16.5 16.8 20.8 17.6 21.3 110 153 164  M1+M3 Un. 

2011/SK Yield 9.0 6.6 2.2 1.4 7.1 5.1 5.4 5.1 184 1,138 2,109  M1+M3 M1+M3 

2009/MD OIL 1.4 1.1 0.2 0.4 3.8 3.6 3.8 3.8 165 1,473 753  M3 M1+M3 

2009/SK OIL 0.7 0.6 0.6 0.1 3.3 3.3 3.3 3.3 137 160 1,093  M1+M3 M1+M3 

2010/MD OIL 2.7 1.9 2.4 2.0 4.4 3.9 4.3 3.9 212 132 185  M1 M1 

2010/SK OIL 2.1 1.6 0.3 0.0 2.9 2.7 2.4 2.3 162 2,917 14,567  M1+M3 M1+M3 

2011/MD OIL 1.4 1.3 0.8 0.8 4.3 4.3 4.4 4.4 116 239 278  M1+M3 Un. 

2011/SK OIL 0.8 0.7 0.3 0.1 3.7 3.6 3.7 3.7 152 605 1,064  M1+M3 M1+M3 

2009/MD LIN 2.1 1.4 1.1 1.4 1.2 1.4 1.1 1.4 206 364 224  M3 M1+M3 

2009/SK LIN 1.4 1.2 0.9 0.9 1.1 1.1 1.0 1.0 118 204 219  M1+M3 Un. 

2010/MD LIN 3.3 1.5 1.0 2.1 2.3 1.6 1.5 1.5 481 932 250  M3 M1 

2010/SK LIN 1.0 0.9 0.2 0.6 1.2 1.3 0.9 1.1 115 1,298 221  M3 Un. 

2011/MD LIN 1.5 1.3 2.1 1.3 1.1 1.7 1.4 1.7 122 50 115  M1 M1 

2011/SK LIN 1.1 0.9 1.5 1.0 1.5 1.6 2.9 2.5 143 40 82  M1 M1 
Un.: unnecessary. The best adjustment by ANOVA was based on significance of mean squares (MS) and comparison of MS for M1, M3 and M1+M3. Here if both the row and column effects and the R × C interaction 

are not significant statistically, no adjustment is considered necessary. 

 

           Table 4. Joint ANOVA of seed yield, OIL, IOD and LIN with the type 2 MAD over two or three years and two locations. 

Source Yield (g m-2) † OIL (%) LIN (%) 

 DF MS F DF MS F DF MS F 

Year (Y) 1 1,526.23 423.90** 2 252.29 827.77** 2 540.84 1,239.05** 

Location (L) 1 1,504.57 417.94** 1 403.30 1,300.97** 1 5,488.60 12,474.09** 

Y × L 1 5,509.23 1,530.15** 2 152.69 500.97** 2 987.67  2,246.30** 

Genotype (G) 119 91.48 25.41** 119 33.89 103.32** 119 344.47 782.89** 

G  × Y 119 20.75 5.76** 220 1.96 6.43** 220 8.96 20.38** 

G  × L 118 12.29 3.41** 119 2.17 7.00** 119 7.27 16.52** 

G  × Y × L 116 15.43 4.29** 200 1.65 5.42** 212 6.25 14.21** 

Error 430 3.60  646 0.31  646 0.44  
 ** represents significance at the 1% probability level. †Data of two years and two locations were used for yield. MS: mean square; DF: degrees of freedom. The DF of error (430) is greater than yl((rc -1) + 2(m-1))=428  

(see Table 9) because two subplot controls were also assigned to test plots. 
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is critical for enhancing the efficiency of adjustment for soil 

heterogeneity. These problems were taken into account in the 

MAD. The MAD has a similar design structure to the 

augmented design but the control and test lines are 

systematically allocated within a block to enhance adjustment 

for soil heterogeneity. Two sub-types of MAD have been 

proposed (Lin and Poushinsky, 1983, 1985). The type 1 

MAD is used for square plots (Lin and Poushinsky, 1983) 

while the type 2 MAD for rectangular plots (Lin and 

Poushinsky, 1985).   

 All previous studies of the type 2 MAD aimed to adjust for 

soil heterogeneity using two methods (M1 and M3) proposed 

by Lin and Poushinsky (1983, 1985) and Lin and Voldeng 

(1989) and then to verify the selected method using RE 

which was estimated based on subplot controls. The limited 

number of subplot controls reduces the precision of the RE 

estimates.  Our results showed that when the number of 

whole plots harboring two subplot controls is small (only 5 in 

this study), the RE estimates based on subplot controls alone 

were not able to account for the change of soil variation after 

adjustment (Table 2). Subsequently, we proposed a different 

approach to assess the efficiency of the MAD, involving a 

comparison of the ANOVA results of unadjusted and 

adjusted data. We found that either of M1 or M3 alone failed 

to sufficiently eliminate soil variation in both the row and 

column directions and the R × C interaction. A combined 

method of M1+M3 has been proposed to adjust for soil 

variation from different directions, especially when both the 

row and column and the R × C interaction effects are 

significant. Furthermore, we redefined RE based on a 

variance ratio of unadjusted and adjusted values within both 

plot and subplot controls. This redefined RE can be used as 

an indicator of adjustment efficiency. In most cases, the 

combined method of M1+M3 was found to be superior.   

  In the type 2 MAD, subplot controls have two roles, 

estimating subplot error to test if the R × C interaction effect 

is statistically significant, and, estimating RE to verify the 

adjustment method suggested by the ANOVA. Both roles 

necessitate a sufficient sample size, i.e., the number of 

randomly selected whole plots for subplot controls, to have 

an adequate degree of freedom and power for the statistical 

test of the R × C interaction as well as to correctly estimate 

random error. Nevertheless, because the RE was redefined in 

this study based on both plot and subplot controls, it was able 

to sensitively indicate a suitable adjustment method, 

specifically M1+M3, to eliminate both row and column 

effects and the R × C interaction effects even through some 

significant R × C interaction effects were possibly not 

detected due to less test power. Thus, the redefined RE can 

compensate to some extent for the deficiencies associated 

with a reduced number of subplot controls.  

 To date the MAD is mostly used for early selection of 

breeding lines. In genomics study, QTL identification, 

association mapping and genomic selection necessitate 

phenotyping of yield and other traits of agronomic and 

economic importance of a large number of individuals in a 

mapping population. Though these individuals may have 

adequate amount of seeds for replicated experiments, 

homogeneous blocks in a field to accommodate large 

numbers of genotypes are still required. If soil homogeneity 

in blocks cannot be met, the MAD would be a good choice. 

The results in this study indicated that soil heterogeneity can 

be sufficiently adjusted for all traits in all experiments, 

suggesting that the MAD can be used for phenotypic analysis 

of any crop germplasm to obtain genetic value estimates of 

traits. In addition, yield is readily affected by environment 

and phenotyping of low heritability traits like yield needs 

multiple environments to assess stability or response of traits 

to environmental changes. For traits of high heritability like 

oil content or fatty acid compositions which have a relatively 

simple genetic control (Banik et al., 2011), one or few 

environments may be sufficient for their phenotyping.   

  A computer program package “MADPipeline” has been 

developed in this study for automated statistical analysis of 

MAD data with SAS software and Perl scripts available at 

http://probes.pw.usda.gov/bioinformatics_tools/ MADPipelin 

e/index.html. The program facilitates data analysis of an 

unlimited number of experiments with any number of traits 

without customization of the program and human 

interference. A suitable adjustment of the observed values is 

automatically performed based on the following two rules: (1) 

if the MS of a row and a column is not greater than that of the 

R × C interaction, and the MS of the R × C interaction is not 

greater than that of the subplot error, the soil variation is 

considered homogeneous and no adjustment is necessary; (2)  

if the MS of either a row or a column is greater than that of 

the R × C interaction, or the MS of the R × C interaction is 

greater than that of the subplot error, the best adjustment 

method will be chosen based on the RE of three adjustment 

methods: M1, M3 and M1+M3.      

 

Materials and methods 

 

Plant materials 

 

A collection of 120 accessions randomly selected from the 

flax core collection (Soto-Cerda et al., 2013) was used for 

evaluation. 

 

Experimental design 

 

A type 2 MAD with a 10 rows by 10 columns Latin Square 

was used to accommodate the 120 flax accessions, and other 

breeding lines used in mainstream flax breeding programs 

(Fig 1). Each whole plot was 2 m long and 2 m wide and was 

split into 5 subplots. The plot control cultivar ‘CDC Bethune’ 

(Control A) was placed in the center subplot of each whole 

plot. Two additional subplot control cultivars, ‘Macbeth’ 

(Control B) and ‘Hanley’ (Control C), were randomly 

assigned to subplots of each of 5 randomly selected whole 

plots. Thus, this design contained 100 whole plots with a 

total of 500 subplots, accommodating one plot control 

(Control A) in 100 central subplots, two subplot controls 

(Control B and C) in 10 subplots of 5 whole plots, and 390 

test lines in the remaining subplots, accounting for 78% of all 

subplots. The design and assignment of test lines were carried 

out using the Agrobase software V.34.2.1 (Agronomix 

Software Inc, Winnipeg, Canada).   

 The same design with the same control cultivars was applied 

to individual experiments in three years (2009, 2010 and 

2012) and two locations, Morden in Manitoba (MD) and 

Saskatoon in Saskatchewan (SK). The same collection of 120 

flax genotypes was randomly allocated to subplots for each 

environment (year or location) except that 17 genotypes were 

missing at SK in 2009 and 16 at MD, also in 2009.   

 The seed yield was recorded in each experiment by 

harvesting two representative half meter (50 cm) sections 

within each subplot. Oil content was measured by NMR as 

outlined in FOSFA (Federation of Oils, Seeds and Fats 

Associations Limited) extraction method (Diederichsen et al., 

2006). Fatty acid profiles of all test genotypes were obtained 

by gas chromatography (Varian 3800, Varian Analytical 

Instruments, Mississauga, Ontario, Canada) based on fatty 

acids methyl esters (FAMEs) extracted from seeds according  

http://probes.pw.usda.gov/bioinformatics_tools/%20MADPipelin%20e/index.html
http://probes.pw.usda.gov/bioinformatics_tools/%20MADPipelin%20e/index.html
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Table 5. Spearman rank-order (upper-right) and Pearson (lower-left) correlation coefficients between different experiments for yield, OIL and LIN. The diagonals are means and standard 

deviations of three traits over all test genotypes. 

Experiment Trait 2009/MD 2009/SK 2010/MD 2010/SK 2011/MD 2011/SK 

2009/MD OIL (%) 43.2±2.5 0.77** 0.72** 0.47** 0.64** 0.77** 

 LIN (%) 54.2±4.0 0.79** 0.77** 0.80** 0.69** 0.79** 

2009/SK OIL (%) 0.80** 44.6±2.5 0.63** 0.63** 0.62** 0.82** 

 LIN (%) 0.86** 56.5±3.4 0.71** 0.69** 0.76** 0.83** 

2010/MD Yield (g m-2) - - 10.4±4.9 0.47** 0.79** 0.66** 

 OIL (%) 0.72** 0.68** 42.2±2.4 0.57** 0.72** 0.67** 

 LIN (%) 0.83** 0.80** 50.5±10.0 0.74** 0.78** 0.82** 

2010/SK Yield (g m-2)  - - 0.47** 7.2±3.8 0.39** 0.33** 

 OIL (%) 0.53** 0.68** 0.69** 42.4±2.6 0.53** 0.60** 

 LIN (%)  0.82** 0.78** 0.94** 61.0±10.3 0.67** 0.79** 

2011/MD Yield (g m-2) - - 0.76** 0.39** 6.8±4.2 0.63** 

 OIL (%) 0.72** 0.69** 0.79** 0.66** 40.8±2.3 0.66** 

 LIN (%) 0.76** 0.80** 0.94** 0.92** 50.5±8.7 0.82** 

2011/SK Yield (g m-2) - - 0.65** 0.29** 0.59** 17.2±5.9 

 OIL (%) 0.80** 0.83** 0.72** 0.65** 0.70** 44.2±2.6 

 LIN (%) 0.84** 0.87** 0.87** 0.84** 0.87** 55.0±8.6 

                         ** represents significance at the 1% probability level. 

 

                      Table 6. Basic statistics of mean ( X ) and coefficient of variation (CV) of test genotypes. 

Trait 
X ± SD CV ± SD 

Yield (g m-2)† 9.33 ± 3.78 65.45 ± 21.71 

OIL (%) 42.94 ± 2.22 4.41 ± 1.67 

LIN (%) 55.76 ± 4.01 7.77 ± 2.09 

SD: standard deviation. † Data from only four environments. X  is the mean of each genotype across 

four or six environments. X is the mean of all test genotypes. CV is the coefficient of variation of 

each genotype across four or six environments. CV is the mean of all test genotypes. 
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to AOAC method 996.06 (Daun et al., 1983; Association of 

Official Analytical Chemists, 2001).  In this paper, only oil 

content (OIL), linolenic acid (LIN) and seed yield were used 

as an example for the proof-of-principle analysis. 

 

ANOVA of plot and subplot controls in individual 

experiments  

 

The purposes of the ANOVA of individual type 2 MAD 

experiments are to determine whether there is soil 

heterogeneity and to characterize its property, i.e., additive 

soil variation in a row or column direction, or non-additive 

variation in multiple directions, and to subsequently adjust 

observations of test genotypes to eliminate error effects due 

to soil heterogeneity. The basic idea is to use plot controls in 

the row and column design for estimating the plot error as 

well as the row and column effects, and subplot controls for 

estimating subplot errors. The plot error tests the null 

hypothesis of no significant differences of the plot controls in 

the rows and columns, i.e., there is no soil heterogeneity in 

the row or column direction. The subplot error tests whether 

the R × C interaction (plot error) is statistically significant. If 

a significant R × C interaction is detected, the soil variation 

then is considered non-additive, i.e., due to multiple 

directions.  The test results determine if the observations of 

test genotypes necessitate adjustment and what method 

should be adopted (Lin and Poushinsky 1983; Lin and 

Poushinsky 1985).  

 A linear model of effects of the plot control can be written as 

follows: 

xij = µ + αi + βj + εij                             (1) 

where xij is the observed value of the plot control at the ijth 

whole plot (i = 1, 2, …, r; j = 1,2,…, c); µ is the overall 

population mean of the plot control cultivar; αi is the row 

effect at the ith row;  βj is the column effect at the jth column; 

and εij is the plot error.  

 Similarly, a linear model of effects of the subplot controls 

can be described as follows: 

xij = µ + φi + νj + εij                                (2) 

where xij is the observed value of the subplot control at the ith 

plot (i = 1, 2, …, m) and the jth subplot (j = 1, 2, …, n); µ is 

the overall mean of subplot controls; φi is the plot effect at 

the ith plot; νj is the control effect of the jth subplot control 

within the ith plot; and εij is the subplot error. The ANOVA of 

the subplot controls is equivalent to that of a RCBD with m 

blocks/replications (plots here) and n subplot controls in each 

block/plot. In order to increase the test power of the ANOVA, 

the plot control cultivar is also included as a subplot control, 

and therefore there are three subplot controls for analysis 

(n=3) (Lin and Voldeng, 1989). The expected mean squares 

and F tests are listed in Table 7. It is notable that the DF of 

subplot error should be (m-1)(n-1) not m(n-1) as per the paper 

of Lin and Voldeng (1989). If the DF of subplot error is m(n-

1), then the subplot error will confound the variance among 

m plots (DF=m-1), resulting in overestimating the error, and 

subsequently decreasing the power to detect R × C effects. 

The correct ANOVA of subplot controls should consist of 

three variance sources: between plots, between controls and 

subplot error as shown in Table 7. 
 

Adjustment of observed values for test genotypes 

 

Three adjustment methods were proposed for the MAD (Lin 

and Poushinsky, 1983, 1985), in which Method 1 and 

Method 3 were evaluated to be suitable methods for the type 

2 MAD (Lin and Voldeng, 1989; Casler et al., 2000). If the 

row or column effect is significantly larger than the plot error, 

the means of the plot controls of rows and columns are used 

to adjust the observed values of the test genotypes (Method 

1). Let ijx be an observed value of the plot control at the ith 

row and the jth column, the adjusted value (
'

ijky  ) is  

'

ijky  = ijky – αi – βj = ijky   – .iX   – jX .  + 2 ..X          (3) 

where ijky  is the observed value at the kth subplot (test 

genotype) of the ijth whole plot; .iX   is the mean of the plot 

controls in the ith row with .iX  =  .ix /c; jX .  is the 

mean of the plot controls in the jth column with jX .   = 

 jx. /r; ..X  is the overall mean of the plot controls with 

..X  =  ijx /(rc); αi is the row effect in the ith row with αi 

= .iX – ..X ;  βj is the column effect in the jth column with 

βj = 
jX .

– ..X . 

If the R × C interaction (plot error) is significantly larger than 

the subplot error, a regression method can be used for 

adjustment (Method 3): 
'

ijky = ijky  – b( ijx  – ..X )                   (4) 

where b is the regression coefficient of the mean of four test 

genotypes or test genotypes plus  subplot controls on the 

values of plot controls in all whole plots (Lin and Voldeng, 

1989). 

  When both the row and column effects and the R × C 

interaction are statistically significant, a combined method of 

Method 1 and Method 3 is proposed here to adjust for this 

complicated soil variation by applying eq. (3) followed by eq. 

(4). The b, ijx  and ..X  in eq. (4) are calculated based on the 

values adjusted by Method 1.  

 To verify the efficiency of an adjustment method, the 

relative efficiency (RE) was defined as the ratio of the 

variance (pooled mean squares within controls) based on the 

unadjusted and adjusted data of subplot controls (Lin and 

Poushinsky, 1985; Lin and Voldeng, 1989). Here we 

redefined RE as a ratio of pooled variance within both plot 

and subplot controls of the unadjusted values to that of 

adjusted values: 

RE = 

.

.

adj

unadj

MS

MS
× 100                                                       (5) 

Where, MS = 


 





kn

Yny

i

iiij )(
22

, ijy is the 

adjusted or unadjusted values of  the jth replicated value in the 

ith control, iY is the mean of the ith control, k is the number 

of controls (here k=3) and 
in is the number of replicated 

values of the ith  control. 

 

Joint statistical analysis of multi-environmental 

experiments  

 

For field experiments with the same design over multiple 

environments (years and locations), joint statistical analysis 

of adjusted values can be carried out to test the stability of  
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                             Table 7. ANOVA of the type 2 MAD design at a single location. 

Source of variation DF MS F test EMS 

Analysis of plot control 

Rows (R) r-1 MSR MSR/MSE2 2

1  + 2

2
 
 + c 2

R  

Columns (C) c-1 MSC MSC/MSE2 2

1  + 2

2  + r 2

C
 

Plot error (R × C) (r-1)(c-1) MSE2 MSE2/MSE1 2

1  + 2

2
 

Analysis of subplot controls 

Plots m -1 MSP MSP/MSE1 2

1  + n 2
P

 

Controls n -1 MSCo MSCo/MSE1 2

1  + m 2

CO  

Subplot error (n-1)(m-1) MSE1  2

1  

DF: degree of freedom; MS: mean square; EMS: expected mean square; n: two subplot controls plus one plot control, thus n=3; m: the number of whole plots randomly selected for subplot controls, here 

m=5; 
2

CO = 
1

2




n

i
. 

 

                                              Table 8. Joint ANOVA of the type 2 MAD at multiple locations. 

Source of variation DF MS F test EMS (fixed model) 

Location (L) l-1 MSL MSL/MSE 2

E  + g
2

L
 

Genotype (G) 
g-1 MSG MSG/MSE 2

E  + l
2

G
 

G × L 
(g-1)(l-1) MSGL MSGL/MSE 2

E  +
2

GL  

Error lnc MSE  2

E  

nc = (rc -1) + 2(m-1), where rc is the number of adjusted values of the plot control, m is the number of whole plots selected for subplot controls (see Table 7). 
2

G =
1

2




g

i , 
2

L  =

1

2




l

j
, and 

2

GL  = 
)1)(1(

)( 2




lg

ij
.



1799 

 

 

 

Table 9. ANOVA of the modified augmented design over multiple years and locations. 

Source of variation DF  MS        Model 1 (fixed model) Model 2 (mixed model, L and G fixed, Y random) 

   F test  EMS  F test EMS 

Year (Y) y-1 MSY MSY/MSE 
2

E  + gl
2

Y
 MSY/MSE 

2

E  + gl
2

Y
 

Location (L) l-1 MSL MSL/MSE 
2

E  + gy
2

L
 MSL/MSYL 

2

E  + g
2

YL  + gy
2

L
 

Y × L (y-1)(l-1) MSYL MSYL/MSE 
2

E  + g
2

YL  MSYL/MSE 
2

E  + g
2

YL  

Genotypes (G) g-1 MSG MSG/MSE 
2

E  + yl
2

G
 MSG/MSGY 

2

E  + l
2

GY  + yl
2

G
 

G × Y (g-1)(y-1) MSGY MSGY/MSE 
2

E  + l
2

GY  MSGY/MSE 
2

E  + l
2

GY  

G × L (g-1)(l-1) MSGL MSGL/MSE 
2

E  + y
2

GL  MSGL/MSGYL 
2

E  + 
2
GYL  + y

2

GL  

G × Y × L (g-1)(y-1)(l-1) MSGYL MSGYL/MSE 
2

E  + 
2

GYL  MSGYL/MSE 
2

E  + 
2
GYL  

Error ylnc MSE  
2

E   
2

E  

MSE is estimated based on all replicated data of 3 control cultivars. See Table 8 for nc, 
2

G , 
2

L  and 
2

GL . 
2

Y  =
1

2




y

i
, 

2

GY  = 

)1)(1(

)( 2




yg

ik
, 

2

YL  =
)1)(1(

)( 2




yl

jk
 and 

2

GYL  =
)1)(1)(1(

)( 2




ylg

ijk
. 

 

yield and other traits of the test genotypes across different 

environments. Since there is no replication for test genotypes, 

the joint experimental error can be estimated based on the 

adjusted values of one plot control and two subplot controls.  

 Because soil heterogeneity of control plots has been 

eliminated by data adjustment, the rc adjusted values of the 

plot control can be considered replicated values. Similarly, 

two subplot controls also have m replicated values. Therefore, 

a joint one-way ANOVA with three cultivars and different 

replications of each cultivar can be used to estimate the 

experimental error in multiple environments.   

 For the ANOVA at multiple locations in a year, the linear 

model is  

yij = µ + τi + νj + (τν)ij  + εij                               (6) 

where yij is the adjusted value of the ith genotype (i = 1, 2, …, 

g) at the jth location (j = 1, 2, …, l); µ is the overall mean; τi 

is the genotype effect of the ith genotype; νj is the location 

effect of the jth location; (τν)ij  is the interaction effect 

between the ith genotype and the jth location, and  εij is the 

joint experimental error estimated based on the joint ANOVA 

of three control cultivars. The ANOVA is shown in Table 8.  

The joint ANOVA of multiple years at one location has a 

similar linear model and expected mean squares as the 

ANOVA at multiple locations where  locations  are replaced 

by years.  

    For the joint ANOVA in multiple locations and years, the 

linear model is 

yijk = µ + τi + νj + (τν)ij + ωk + (τω)ik +(νω)jk +(τνω)ijk + εijk                                               

 

                  (7) 

where yijkl is the observation of the ith genotype (i = 1, 2, …, g) 

at the jth location (j = 1, 2, …, l) in the kth year (k = 1, 2, …, 

y); µ is the overall mean; τi is the genotype effect; νj is the 

location effect; ωk  is the year effect; (τν)ij, (τω)ik, (νω)jk, and 

(τνω)ijk are the interaction effects between genotypes and 

locations, between genotypes and years, between locations 

and years and between all three factors, respectively; and εijk 

is the experimental error estimated using the same method as 

in the ANOVA at multiple locations (Table 9). The 

composition of the expected mean squares for sources of  

 

variation depends on an effect model, which in turn 

determines the denominator of the F tests. Two effect models 

(fixed model and mixed model) are listed in Table 9.   

 

Pipeline package “MADPipeline” using SAS and Perl 

 

The ANOVA in Tables 7, 8 and 9 were implemented using 

SAS software. The generalized linear model (PROC GLM) in 

SAS was used to calculate DF and MS. A pipeline program 

package was developed for data preparation, ANOVA and 

generating result summary. A SAS program (MADPipeline_ 

Step1a.sas) was written to perform ANOVA of individual 

MAD experiments, in which two separate ANOVA for plot 

and subplot controls are performed. The outputs from this 

SAS program are used as input of a downstream Perl 

program (MADPipeline_Step1b.pl) to summarize the 

ANOVA results, adjust the observations of the test genotypes 

and controls, and estimate the RE of the different adjustment 

methods. Ultimately, a data file with adjusted values of the 

best adjustment method is exported for further analysis. The 

adjusted values of the test genotypes and controls are further 

used as input of the second SAS program, 

MADPipeline_Step2a.sas, to perform the joint ANOVA over 

multiple environments, if any. It is worth noting that in the 

PROC GLM, all effects are considered fixed even when the 

“RAMDOM” statement is used. The PROC GLM is not able 

to choose suitable MS terms for the F tests in the mixed 

model (Model 2 in Table 9). Thus, an additional Perl program 

(MADPipeline_Step2b.pl) was provided to calculate the 

correct F values and perform the test of significance. A 

complete analysis procedure was described in the user’s 

guide of this pipeline program package. The program 

package, named “MADPipeline”, and its user’s guide is 

freely downloadable at: http://probes.pw.usda.gov/ 

bioinformatics_tools/MADPipeline/index.html. In order to 

take advantage of open source statistic software R 

(http://www.r-project.org/), the R version of MADPipeline 

will be developed as the next step.      

 

 

Conclusion 

 

http://probes.pw.usda.gov/%20bioinformatics_tools/MADPipeline/index.html
http://probes.pw.usda.gov/%20bioinformatics_tools/MADPipeline/index.html
http://www.r-project.org/
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The results of the present study indicated that the soil 

heterogeneity of the experimental field can be assessed 

through an MAD and effects due to soil heterogeneity can be 

sufficiently eliminated by a suitable adjustment method, 

especially the combined M1 and M3 method. The MAD is 

applicable to screen breeding lines in the early stages of 

selection and to phenotype traits in any crop for genetic 

studies, such as QTL identification using association 

mapping strategy. The reported computer pipeline package 

provides an easy and automated way to analyze data from 

MAD experiments.    
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