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Statistical Analysis in Genetic Studies of
Mental Illnesses
Heping Zhang

Abstract. Identifying the risk factors for mental illnesses is of significant
public health importance. Diagnosis, stigma associated with mental illnesses,
comorbidity, and complex etiologies, among others, make it very challenging
to study mental disorders. Genetic studies of mental illnesses date back at
least a century ago, beginning with descriptive studies based on Mendelian
laws of inheritance. A variety of study designs including twin studies, family
studies, linkage analysis, and more recently, genomewide association studies
have been employed to study the genetics of mental illnesses, or complex
diseases in general. In this paper, I will present the challenges and methods
from a statistical perspective and focus on genetic association studies.
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1. INTRODUCTION

Mental illnesses affect the health and well-being of
all populations and all ages. Schizophrenia—a chronic,
severe, and disabling brain disorder—is one of these
mental illnesses, affecting about 1.1 percent of the
U.S. population age 18 and older in a given year. Peo-
ple with schizophrenia sometimes hear voices others
do not hear, believe that others are broadcasting their
thoughts to the world, or become convinced that oth-
ers are plotting to harm them. These experiences can
make them fearful and withdrawn and cause difficulties
when these people try to have relationships with oth-
ers (http://www.nimh.nih.gov). Emil Kraepelin (1856–
1926) described “Dementia Praecox” as an inherited
disorder in his influential “Textbook of Psychiatry”
(1899). Dementia Praecox, coined “schizophrenia,”
was first used by Arnold Pick (1851–1924)—a pro-
fessor of psychiatry at the German branch of Charles
University in Prague—to describe a patient with a psy-
chotic disorder resembling hebephrenia in 1891.

Nearly a century ago, Cannon and Rosanoff (1911)
made an attempt to understand whether there are any
forms of nervous and mental diseases that are trans-
mitted from generation to generation in concordance
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with Mendelian laws. They examined the families of
11 neuropathetic patients, which are now referred to as
probands in pedigrees. Using Mendelian laws as their
theoretical expectation, they concluded that the neu-
ropathetic make-up is recessive to normal. Although
the report was indeed “preliminary,” a few things are
noteworthy. First, they noted that “any form of insan-
ity or even all the forms of hereditary insanity do not
constitute an independent hereditary character.” This
raised an early sign of the complexity associated with
studying mental disorders compared to the characteri-
zation of the disorders and their comorbidity. Here, co-
morbidity refers to more than one disease condition in
the same patient. Second, they remarked “should larger
accumulations of such data in the future give similar re-
sults, we shall be able” to confirm their result. The re-
quirement for more samples and replication is another
challenge in studies of complex diseases. Last, but not
the least, while they said “let us test, . . . , the hypoth-
esis . . .” they did not mean a statistical test. However,
the idea of the χ2-test is evident.

Despite this early work, it was not until the 1960s
that the researchers began to use scientifically rigor-
ous designs and methods to study the inheritance of
mental illnesses. For example, the key idea in adop-
tion studies lies in the belief that any links between an
adopted child and the biological parents are attributable
to genetics, and any links between that child and adop-
tive parents can be attributed to environment (Plomin
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et al., 1997). This enables us to separate the confound-
ing environment (i.e., a family) from genetic contribu-
tion. Consequently, there are two strategies in adoption
studies. One approach compares the risk of developing
schizophrenia in the adopted children of schizophrenic
parents to the risk of adopted children whose parents
do not have schizophrenia. Several studies including
Heston (1966), Rosenthal (1972) and Tienari (1991)
used this approach to study schizophrenia. Each study
found an elevated risk in adopted-away children of
schizophrenic parents, supporting the role of genet-
ics in the transmission of schizophrenia. The origin
of this approach is the schizophrenic parents. Another
approach backtracks from adopted children who have
developed schizophrenia and compares the risks of
schizophrenia in their adoptive and biological families.
Kety, Rosenthal and Wender (1978) and others found
that the risk was significantly higher in the biological
relatives than in the adoptive families, again underscor-
ing the role of genetics as a risk factor.

While these schizophrenia adoption studies are in-
fluential in understanding the role of genetics in men-
tal disorders, the majority of the genetic factors as-
sociated with mental disorders are based on family
and twin studies. By comparing the concordance in
the risk between identical (monozygotic) and frater-
nal (dizygotic) twins, twin studies arguably provide
the most compelling results about genetic and envi-
ronmental effects. For example, the concordance in
monozygotic twins for Tourette’s syndrome, a complex
disorder characterized by repetitive, sudden and invol-
untary movements or noises called tics, was reported to
be about 50% whereas it is less than 10% in dizygotic
twins.

Twin studies are most helpful in demonstrating the
magnitude of genetic effect, but they do not provide in-
sight into the inheritance pattern of a condition. Thus,
family studies can offer information that twin studies
cannot. Thus, Cannon and Rosanoff (1911) employed a
small-scale, simple family study. Using the Mendelian
laws, not only might we find evidence of genetics, but
also infer the mode of transmission, as Cannon and
Rosanoff (1911) concluded for the heredity of insan-
ity.

Although twin and family studies continue to be use-
ful for understanding the genetics of complex diseases,
different studies are needed to locate a specific gene
on a chromosome that may underlie the disease. Gene
mapping in humans through linkage analysis emerged
in the 1930s, but it was Morton (1955) who laid the
foundation for the methodology. It was only during the

1970s and 1980s, when the Elston–Steward (1971) al-
gorithm was developed and implemented (Ott, 1974),
that the method thrived as a common tool of genetic
studies. These initial and subsequent developments al-
lowed for linkage analyses of multiple markers simul-
taneously. In light of the sheer number of genes and
that we do not know which specific gene we are look-
ing for, we typically genotype 300 to 400 “landmarks”
that cover the 22 pairs of autosomes and the X chromo-
some. By inferring the transmission patterns of these
markers, then linking them to the disease status, we
can obtain information about the most probable region
where the gene of interest resides.

While linkage studies have had some successes (e.g.,
BRCA1), they have generated many more premature
excitements. In the late 1980s, two particular stud-
ies attracted significant public attention after they re-
ported that bipolar affective disorders were linked to
DNA markers on chromosome 11, and that a suscep-
tibility locus for schizophrenia was located on chro-
mosome 5. Unfortunately, these findings were not
replicated. Replications in genetic studies of men-
tal disorders do not come easily. For example, Abel-
son et al. (2005) identified mutations involving the
SLITRK1 gene (13q31.1) in a small number of peo-
ple with Tourette’s syndrome. However, most people
with Tourette’s syndrome do not have a mutation in
the SLITRK1 gene. Because the mutations were re-
ported in so few people with this condition, the asso-
ciation of the SLITRK1 gene with this disorder could
not be confirmed. In fact, Scharf et al. (2008) reported
a lack of the association between SLITRK1var321 and
Tourette’s syndrome in a large family-based sample.

Various reasons have been suggested to explain the
difficulties detouring progress in genetic studies us-
ing linkage analysis. A key concept underlying link-
age analysis is the recombination fraction, which re-
flects the distance between any two markers, such as a
DNA marker and the disease locus. There may be lim-
ited information in the data, however, diminishing the
power of the linkage study. Furthermore, complex dis-
eases are polygenic, involving multiple genes (Carter
and Chung, 1980). Linkage analyses, however, are gen-
erally under the assumption of one major gene. Addi-
tionally, heterogeneity in the diagnosis and comorbid-
ity of mental illnesses make linkage analysis consider-
ably more difficult, if even possible at all.

Many investigators have adopted association analy-
ses to take advantage of the advent of high-throughput
genotyping technologies. Recent efforts have identi-
fied genes that contribute to a number of complex hu-
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man traits using the ultra-dense genetic markers (Ark-
ing et al., 2006; Klein et al., 2005; Duerr et al., 2006;
Chen et al., 2007). Trios (one affected offspring and
two parents) have been an effective design for associ-
ation studies, particularly with the development of the
elegant transmission/disequilibrium test (TDT) (Spiel-
man, McGinnis and Ewens, 1993). The central idea
of this test is that each affected child serves as his or
her own matched case and control. This acts to con-
trol for all potential confounding issues and examines
alleles that both are and are not transmitted from the
parents. In the absence of association between the af-
fective status and the gene, the distributions of the
transmitted and non-transmitted alleles are expected
to be the same. Deviations in distribution as evalu-
ated by a χ2-test indicate the existence of association.
Trios are the simplest example of nuclear family, but
when other siblings are available, the trio design is
not cost-effective. As a result, family-based association
tests (FBAT) including sibships (Spielman and Ewens,
1998; Horvath and Laird, 1998; Knapp, 1999), nuclear
families (Weinberg, 1999; Lunetta et al., 2000; Rabi-
nowitz and Laird, 2000) and general pedigrees (Mar-
tin, Monks, Warren and Kaplan, 2000) have been de-
veloped.

Another restriction in the use of trios is the require-
ment of defining the affective status of a disease. Con-
sequently, association tests have been proposed for
quantitative traits (Allison, 1997; Rabinowitz, 1997),
traits with distribution belonging to an exponential
family (Liu, Tritchler and Bull, 2002), ordinal traits
(Zhang, Wang and Ye, 2006; Wang, Ye and Zhang,
2006) and multiple traits (Lange et al., 2003; Zhang,
Liu and Wang, 2010).

Since the early success in identifying the comple-
ment factor H polymorphism in age-related macular
degeneration (Klein et al., 2005), case-control associ-
ation studies have intensified, and many genetic vari-
ants have been identified and catalogued (Hindorff et
al., 2009). Despite the enormous investment, the in-
tense attention to the genetics of diseases, the rapid
improvement in technology, and the increasingly large
sample sizes in many studies, it remains challenging
to identify disease genes, especially those underlying
mental illnesses. Some of the common genetic variants
that have been identified for complex diseases only ac-
count for a small portion of the genetic risk, which may
vary across populations (Goldstein, 2009). For exam-
ple, Kopp et al. (2008) and Kao et al. (2008) identified
several variations in the MYH9 gene as major contrib-
utors to excess risk of kidney disease among African-

Americans. They found that 60 percent of African-
Americans carry the risk variants as opposed to 4 per-
cent of white Americans.

Technology will continue to improve and the amount
of genetic data will increase. The purpose of this article
is to review some of the progress from a statistical per-
spective and discuss some of the potential challenges.
Obviously, it would take volumes or series to do jus-
tice to all of the work in statistical genetics. Instead of
taking on that impossible task, this article is oriented
toward the publications directly related to my own re-
cent work.

2. METHODS

Since 1952, the American Psychiatric Association
has published four editions of the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM) and plans
to release its fifth edition in 2013. While widely used,
the use and development of the DSM has not gone
without controversy and criticism. Unlike diseases for
which the diagnoses are well accepted by physicians
and patients, such as cancer, the diagnosis of mental
disorders must reflect biological factors (e.g., gender
and racial disparities), non-biological factors such as
culture that are not specific to one person, and it also
must reflect the natural variation within the same per-
son.

2.1 Ordinal Traits

It is clear from the above discussion that a simple
dichotomous diagnosis (e.g., yes or no), or a well-
distributed continuous trait, is unlikely to characterize
the state of mental disorders. In fact, the questions used
in the diagnosis of mental disorders, such as DSM-IV,
are usually posed in terms of severity or frequency, and
hence in an ordinal scale.

Statistical methods for genetic analysis are well es-
tablished for both quantitative (continuous) and bi-
nary traits (see, e.g., Blackwelder and Elston, 1985;
Goldgar, 1990; Schork, 1993; Amos, 1994; Risch and
Zhang, 1995; Kruglyak et al., 1996; Blangero and Al-
masy, 1997; Ott, 1999). While there has been some
progress in the analysis of ordinal traits (e.g., Heath
et al., 2002; Steinke, Borish and Rosenwasser, 2003;
Vergne et al., 2003; Zhang, Feng and Zhu, 2003; Feng,
Leckman and Zhang, 2004; Zhang, Liu and Wang,
2010), especially in plant science (Rao and Xu, 1998;
Xu and Xu, 2006), insufficient attention has been paid
to addressing the unique challenges of analyzing or-
dinal traits. Some researchers have recognized that it
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is difficult to conduct genetic analyses of ordinal traits
because such traits cannot be directly characterized by
a linear function of genetic and environmental effects
(Rao and Xu, 1998). To fill in this methodological gap,
we have made a systematic effort to develop statis-
tical methods for segregation analysis (Zhang, Feng
and Zhu, 2003), linkage analysis (Feng, Leckman and
Zhang, 2004) and association analysis (Zhang, Wang
and Ye, 2006) of ordinal traits (for family studies and
case-control studies).

2.1.1 Analysis of family data. Long before the era
of genomics, researchers collected data in families,
also called pedigrees as illustrated in Figure 1. Al-
though the ascertainment process for families varies,
Figure 1 depicts a representative three-generation pedi-
gree. The proband is the first person who enters into the
study according to defined inclusion and exclusion cri-
teria: such criteria are related to the disease of interest.
Other members of the proband’s family are included
and directly or indirectly assessed, depending on the
circumstance. The key idea in analyzing family data is
that if a gene is a major driving force behind a disease,
a trace in the concordance of diseases in family mem-
bers would reflect the transmission pattern of a gene
under the Mendelian laws. This is the fundamental con-
cept that Cannon and Rosanoff (1911) employed. This
type of analysis is referred to as segregation analysis.

The Elston–Stewart (1971) algorithm set up the
quintessential framework to analyze data from gen-
eral pedigrees through a technique called peeling. The
main complication in analyzing pedigree data is the
complex relationship among family members, making
it difficult to express the likelihood function in an eas-
ily computed form. The peeling algorithm makes use
of the conditional independence embedded in the pedi-
gree resulting from the Mendelian laws, and so peels
off the complete likelihood function into smaller pieces
before putting them back together.

FIG. 1. A three-generation pedigree.

Other methods have been relatively recently devel-
oped using the concept of latent random variables
(Hopper, 1989; Babiker and Cuzick, 1994; Li and
Thompson, 1997; Siegmund and McKnight, 1998;
Zhang and Merikangas, 2000), which are closely re-
lated to the classic ousiotype models of Cannings,
Thompson and Skolnick (1978) in pedigree analysis.
The basic idea is to use latent variables to represent
the contribution of unobserved factors including a ma-
jor gene, residual genetic factors and common environ-
mental factors. As discussed by Zhang and Merikangas
(2000), the computation involving pedigrees is similar
to the peeling algorithm. Advantages of using latent
variable based models are that the interactions between
underlying genetic effects and the observed covariates
(e.g., demographic variables) can be considered. Ad-
ditionally, more relevant to this article, we can accom-
modate ordinal traits in the latent variable framework.

2.1.2 A latent variable model. We follow the nota-
tion of Zhang and Merikangas (2000) and Zhang, Feng
and Zhu (2003). Consider a trait, Y, that takes an or-
dinal value of 0,1, . . . ,K . Let x be a p-vector of co-
variates that is also available for each study subject.
Three types of latent random variables Ui

1,U
i
2 and Ui

3
are introduced within family i to represent, respec-
tively, (a) common, unmeasured environmental fac-
tors; (b) genetic susceptibility of the family founders
(a founder refers to a subject whose parents are not a
part of the observed pedigree, e.g., father, mother and
spouse in Figure 1); and (c) the transmission of suscep-
tibility genes from a parent to an offspring.

The concept of latent variables is straightforward,
but the interesting and difficult part lies in the specifica-
tion of their distributions. They need to be interpretable
and convenient. The following are the assumptions that
we found useful:

• Ui
1 follows Bernoulli distributions P {Ui

1 = 1} = 1 −
P {Ui

1 = 0} = θ1, where θ1 is an unknown parameter.
• Ui

2 = (Ui
2,1,U

i
2,2, . . . ,U

i
2,2ni−1,U

i
2,2ni

)′, where ni is

the size of pedigree i. Here, P {Ui
2,2j−1 = 1} = 1 −

P {Ui
2,2j = 0} = θ2 when Ui

2,2j−1 and Ui
2,2j are the

Ui
2-variables of a founder.

• Ui
3 = (Ui

3,1, . . . ,U
i
3,si

)′. According to the Mendelian

laws, P {Ui
3,j = 1} = P {Ui

3,j = 0} = 1
2 , j = 1, . . . ,

si, and si is the number of parent-offspring pairs
in family i. Ui

3 facilitates the transmission of Ui
2-

variables from the founders to the offspring. For ex-
ample, if a parent of subject j has Ui

2-variables,
Ui

2,2k−1 and Ui
2,2k, and the Ui

3-variable for this
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parent-offspring pair is Ui
3,l , then one of subject j ’s

Ui
2-variables is Ui

2,2j−1 = Ui
2,2k−1U

i
3,l + Ui

2,2k(1 −
Ui

3,l).• All latent variables are independent.

Ui
1 is a simple “switch” indicating the presence or

absence of a shared environment factor within family i.

Ui
2 is assigned independently to each of founders who

are the source for any gene to enter into a family, and
thus mimics the transmission of a single major suscep-
tibility locus with alleles A and a of frequencies θ2 and
1 − θ2, respectively.

Conditional on all of the latent variables, denoted
by Ui , within family i, the probability distribution for
member j is assumed to be

P {Y i
j ≤ k|Ui} = exp(xi

j β + αk + ai
j γ )

1 + exp(xi
j β + αk + ai

j γ )
,(2.1)

k = 0, . . . ,K − 1,

where ai
j = (Ui

1,U
i
2,2j−1 +Ui

2,2j ,U
i
2,2j−1U

i
2,2j )

T , and
β and γ are p- and 3-vectors of parameters. The αk is
the trait level dependent intercept, k = 0, . . . ,K − 1.

As Zhang, Feng and Zhu (2003) pointed out, the
β parameters measure the strength of association be-
tween the trait and the covariates, conditional on the
latent variables. The γ parameters indicate the familial
and genetic contributions to the trait. The mode of in-
heritance can be inferred from γ. For example, γ2 = 0
and γ3 �= 0 suggests a recessive effect.

The likelihood function can be derived from (2.1).
Due to the presence of latent variables, the EM al-
gorithm (Dempster, Laird and Rubin, 1977) is the
most convenient choice for parameter estimation (Guo
and Thompson, 1992; Zhang and Merikangas, 2000;
Zhang, Feng and Zhu, 2003). Although Zhang and
Merikangas (2000) and Zhang, Feng and Zhu (2003)
presented an effective solution (e.g., a modified like-
lihood), we should note that the lack of concavity in
the likelihood function makes it a challenging task to
find the maximum likelihood estimates of the model
parameters. In addition, the θ ’s and γ ’s are not fully
identifiable. The identifiability issue not only causes
computational problems, but also presents theoretical
challenges in statistical inference. Another important,
yet understudied, issue is the validation of the assump-
tions on the distributions of the latent variables.

But, how useful is the latent variable model (2.1)?
First, it provides a regression framework to assess fa-
milial aggregation and genetic contribution, and pos-
sibly interactions between measured covariates and

latent factors. Using data from a family study of
substance use (Merikangas et al., 1998), Zhang and
Merikangas (2000) were able to present extremely sig-
nificant evidence of familial aggregation p-value <

10−9 for alcohol dependence. This study additionally
demonstrated that transmission does not follow a major
locus pattern. In retrospect, their findings predicted the
difficulty of identifying major genes associated with
alcoholism. In addition, Zhang and Merikangas (2000)
presented simulation examples to delineate when the
absence of latent variables in (2.1) affects the estimates
of the effects by the measured covariates. For example,
hypothetically, if the greater presence of females in a
family has an impact on the well-being of the family,
ignoring the familial latent variables is likely to result
in a biased estimate of the sex difference.

Not only is it important to include the latent fac-
tors, but also it is important to adjust for covariates.
To further illustrate this point, Zhang, Feng and Zhu
(2003) reported the following simulation. Ten thou-
sand data sets were generated from model (2.1) with
θ1 = 0.3, β chosen from 0, 1, 5 or 10, γ1 from 0,
1 or 2, α0 = −1 and α1 = 1. To focus on the dif-
ference of having or not having covariates, they set
γ2 = γ3 = 0. Each data set consists of 200 families with
7 family members (similar to Figure 1). One covari-
ate x was generated as follows. For family i, Ui

1 were
generated according to whether a random number ri1
from the uniform(0,1) was greater than 0.3 or not. For
member j in family i, an independent random num-
ber rij2 from the uniform(0,1) was generated. Then,
xij = 0.9rij2 + 0.2ri1.

To evaluate the performance of the test statistic, the
covariate was deliberately ignored in the test. When
β = 0, the covariate played no role in the data gen-
erating process. The row corresponding to β = 0 in Ta-
ble 1 displays the p-value (the column corresponding
to γ1 = 0) and the power for two values of γ1 (1 or 2).

TABLE 1
The probability estimates of rejecting γ1 = 0 at the significance

level of 0.05. The covariate is omitted from the testing despite the
fact that its coefficient β may not be zero

γ1 = 0 γ1 = 1 γ1 = 2

β = 0 0.0494 0.9503 1.0
β = 1 0.0534 0.9843 1.0
β = 5 0.1667 0.9971 1.0
β = 10 0.3828 0.9890 1.0
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When β �= 0, the covariate plays a role in the data
generating model. The data in Table 1 reveal the conse-
quence of ignoring the covariate, which is more severe
when the effect of the covariate is greater.

2.1.3 Linkage analysis. While linkage analysis has
a long history, it only became a common practice after
the availability of several convenient computing pro-
grams (Ott, 1974; Kruglyak et al., 1996; Almasy and
Blangero, 1998). For statisticians, some of the common
terminologies in linkage analysis are puzzling, includ-
ing the so-called LOD-score method and nonparamet-
ric method.

Morton (1955) first introduced the term “LOD-
score.” LOD stands for “the logarithm (base 10) of
odds.” The “odds” is a probability ratio, or likelihood
ratio, of the probability under an alternative hypothesis
to the probability under the null hypothesis. The LOD-
score method is essentially a log-likelihood ratio test
with two fundamental differences: (a) the use of the
base 10 logarithm versus the natural logarithm; (b) the
log-likelihood ratio statistic has a multiplier of 2 con-
forming to a χ2 distribution under certain regularity
conditions.

Specifically, the LOD-score is the log(base 10)-ratio
of the likelihood when the recombination fraction is
less than 1/2 (i.e., two loci are not on the same chro-
mosome, or called unlinked), to the likelihood when
the recombination fraction is 1/2 (no linkage). The re-
combination fraction is the frequency that a chromoso-
mal crossover occurs between two loci (or genes) dur-
ing meiosis; 1% of combination frequency is termed
the distance of one centimorgan (cM) in a genetic link-
age map. Because the LOD-score is in base 10, a score
of 3 indicates 1000 to 1 odds in favor of the linkage,
which is the conventional threshold for declaring the
evidence for linkage. If we convert a LOD-score of 3
into the standard log-likelihood ratio statistic, it yields
a p-value of 2×10−4 under χ2

1 . By Bonnferoni correc-
tion, it corresponds to a genomewide p-value of 0.05
for 250 markers. This number is in the range for the
number of microsatellites used in typical linkage stud-
ies.

In order to compute the LOD-score, we first need
a number of parameters that determine the likelihood
for a given recombination fraction. Then use the maxi-
mum likelihood over the recombination fraction for the
likelihood under the alternative hypothesis. The param-
eters that are required include the mode of inheritance,
penetrance, and disease allele frequency. These param-
eters are generally unknown and difficult to estimate

for complex diseases including mental illnesses. For
example, using segregation analysis (see Section 2.1.1)
Pauls and Leckman (1986) examined specific genetic
hypotheses about the mode of transmission of Gilles
de la Tourette’s syndrome, by performing segregation
analyses in 30 nuclear families (two-generation pedi-
grees). They concluded that Tourette’s syndrome is
inherited as an autosomal dominant trait (one copy
of the abnormal allele is sufficient to cause the dis-
ease). The penetrance (the probability of having the
disease for a given genotype) was reported at 0.71
in males and 1.0 in females with at least one abnor-
mal allele. After several decades of research, no major
genetic variant has been identified for Tourette’s syn-
drome, and most likely this syndrome involves multi-
ple genes, interacting with environmental factors. This
reality makes it difficult to infer the mode of inher-
itance, penetrance, and disease allele frequency, and
conceptually, this may not make sense for complex dis-
eases (non-Mendelian inheritance).

This difficulty is somewhat alleviated since the
LOD-score method has been found to work reasonably
well (e.g., Abreu, Greenberg and Hodge, 1999) under
various parameter settings. There have been some ef-
forts to improve the robustness of the method (Gast-
wirth, 1966, 1985; Whittemore, 1996). See Zheng et al.
(2009) for a thorough review. Existing methods do not
extend to the case of ordinal traits. The effectiveness
of the robust methods remains to be studied. Naturally,
nonparametric linkage methods have been developed
to avoid specification of the genetic model parameters.
In statistics, “nonparametric” methods typically refers
to distribution-free methods such as rank-based tests
and methods based on the empirical distribution. In
linkage analysis, however, “nonparametric” does not
mean “distribution-free,” but instead refers to the re-
placement of true genetic model parameters with the
parameters of inheritance of markers, hypothesized to
be close to the disease locus. Thus, with nonparametric
linkage methods, we still need to compute the likeli-
hood. Two core algorithms are used to compute the
likelihood: the Elston–Steward algorithm (1971) and
the Lander–Green (1987) algorithm. As previously dis-
cussed, the Elston–Steward algorithm (1971) is a peel-
ing algorithm that makes the computation in a large
pedigree feasible by splitting it into small pieces. This
algorithm was implemented in early versions of link-
age analysis programs (e.g., LIPED and LINKAGE);
computational time increased linearly in family size,
but exponentially with the number of loci. More re-
cent programs (e.g., GENEHUNTER) use the Lander–
Green (1987) algorithm that has first-order complexity



122 H. ZHANG

in the number of loci, but unfortunately exponential in
the family size. Although Markov chain Monte Carlo
methods have been used to accommodate linkage anal-
ysis of large families and a large number of markers
(Guo and Thompson, 1992), in practice, one may have
to break large pedigrees apart in order to run programs
such as GENEHUNTER.

We should note that there had not been a linkage
analysis program to handle ordinal traits until the re-
lease of LOT (Zhang et al., 2008). Typically, the meth-
ods for linkage analysis can be divided into two main
steps; only the second step involves the trait (Kruglyak
et al., 1996). The first step infers how genetic informa-
tion travels in a family as represented by the so-called
“inheritance vector.”

We will use the pedigree in Figure 1 to illustrate this
concept. The two parents and spouse are the founders
of the family, meaning that their parents are not in the
current pedigree. The four siblings and the child are
nonfounders. The inheritance pattern at marker locus t

is completely described by an inheritance vector v(t) =
(v1, v2, v3, v4, . . . , v9, v10)

′. In other words, we devote
two elements for every nonfounder. The founders are
not included because they are the sources of the genes
in the family and the inheritance vector is conditional
on their genes. The paired elements describe the out-
comes of the paternal and maternal meioses transmit-
ted to the nonfounders. Specifically, v2j−1 = 1 or 2 ac-
cording to whether the grand paternal or grand mater-
nal allele is transmitted in the paternal meiosis to the
j th nonfounder. v2j carries the similar information for
the corresponding maternal meiosis, namely, v2j = 3
or 4 according to whether the grand paternal or grand
maternal allele was transmitted in the maternal meiosis
to the j th nonfounder.

In practice, the genetic markers do not always allow
us to determine the true inheritance vector. In this case,
the inheritance distribution is the conditional proba-
bility distribution over the possible inheritance vec-
tors that conform with the alleles observed at t, which
we denote by p{v(t) = w} for all inheritance vectors
w ∈ V ; here V is the set of all possible inheritance
vectors. In the absence of any genotypic information,
all inheritance vectors are equally likely according to
Mendel’s first law; the probability distribution is uni-
form.

For segregation analysis, we employed latent vari-
ables to reflect the “imaginative” genetic effects in
(2.1). In linkage analysis, we have genetic markers that
flow through the inheritance vector. Thus, we can still
use (2.1) for linkage analysis except that ai

j should be

(Ui
1,U

i
2,v2j−1

+ Ui
2,v2j

). On one hand, we have a re-
duced number of latent variables. On the other hand,
many of the latent variables depend on each other
through the inheritance vectors. The computation of
the likelihood would be summed over all inheritance
vectors w in V, in addition to the probability space of
the remaining independent latent variables. Because of
this connection and distinction, the challenges in the
linkage analysis of ordinal traits are, to a great ex-
tent, similar to those in segregation analysis of ordi-
nal traits, for example, the asymptotic mixture of χ2-
distributions and the need to introduce the penalized
likelihood (Liang and Rathouz, 1999; Zhang, Feng and
Zhu, 2003).

2.1.4 Association test. As discussed above, linkage
analysis focuses on testing the position of a marker,
although it has been difficult to replicate findings in
linkage studies of mental disorders. An association
analysis, however, tests whether a genetic variant, in-
cluding particular allele or genotype of a marker and
a haplotype in several markers, is associated with a
trait. Some study cohorts recruited for linkage stud-
ies have been re-genotyped for genomewide associa-
tion analyses. For binary or quantitative traits, many
methods have been developed and implemented. Two
commonly used programs are PLINK (Purcell et al.,
2007) and FBAT (Rabinowitz and Laird, 2000). To an-
alyze an ordinal trait, Zhang, Wang and Ye (2006) in-
troduced the following proportional odds model:

logit{P(yij ≤ k|Gij )} = αk + βcij ,(2.2)

where α0, . . . , αK−1 are non-descending level param-
eters, β is the genetic effect. The genetic factor cij

can be chosen to reflect the underlying mode of in-
heritance such as the number of the risk allele. Un-
der model (2.2), the null hypothesis is H0 :β = 0. The
score statistic is

S = ∑
i,j

[R+(yij ) − R−(yij )]Aij ,(2.3)

where R+(yij ) and R−(yij ) are the counts of offspring
in the entire sample whose trait values are greater or
less than yij , respectively, and Aij is the number of
copies of transmitted alleles at the marker locus. Thus,
Zhang, Wang and Ye (2006) proposed the following O-
TDT test based on the score statistic:

[S − E(S|Y)]2

Var(S|Y)
,
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which follows a χ2
1 -distribution asymptotically. For a

case-control study, R+(yij ) and R−(yij ) are the num-
bers of subjects whose trait values are greater or less
than yij , respectively.

If we rewrite the statistic in (2.3) in a general form as∑
i,j wijAij , this yields the classic TDT when wij = 1

and the QTDT (Rabinowitz, 1997) when wij = yij − ȳ,

where ȳ is the average of all yij ’s. In other words,
all of these tests are a weighted function of the num-
ber of transmitted alleles at the marker locus, and the
choice of the weights depends on the property of the
trait. With this observation, after the proper weights are
computed, the existing FBAT software can be used to
test the association between any trait and alleles at a
marker locus.

In the following, we describe a unified method to
choose weights for any kind of trait. It is straightfor-
ward to categorize a quantitative trait into any reason-
able number of categories (such as deciles) and induce
an ordinal scaled trait. This would allow the use of the
O-TDT for a quantitative trait. In their simulation stud-
ies, Zhang, Wang and Ye (2006) demonstrated that this
strategy has comparable power to the QTDT for quan-
titative traits. This is due to the fact that the number of
categories is enough to capture most of the information
in the data (e.g., following Cochran’s rule; Cochran,
1977). The advantage is that the ordinal scaled test is
not affected by the nonnormal distribution of a quanti-
tative trait, and so, the unified approach is robust.

One limitation of the test proposed by Zhang, Wang
and Ye (2006) is that it does not adjust for covariates.
Environmental factors or covariates, such as gender
and age, may confound the association of interest. In
a subsequent work, Wang, Ye and Zhang (2006) gener-
alized model (2.2) to include covariates as follows:

logit{P(yij ≤ k|Gij ), zij } = αk + βcij + δ′zij ,(2.4)

where zij denotes the covariates and δ is the vector of
the corresponding coefficients. Consequently, the score
statistic becomes

S = ∑
i,j

[γ̂ (yij , zij ) − γ̂ (yij − 1, zij )]Aij ,(2.5)

where

γ̂ (k, z) = exp(α̂k + δ̂′zij )

1 + exp(α̂k + δ̂′zij )
,

which is the estimated probability of having a trait
value no greater than k. Thus, the weight function in
(2.5) is the difference between the probability of hav-
ing a trait value greater than yij and the probability of

having a trait value less than yij . Not surprisingly, this
is in essence the same as the weight function in (2.3)
where we used counts instead of frequency (or proba-
bility).

It is important to note that association analysis does
not directly equate to a causal relationship. In well-
designed genetic association studies, an observed as-
sociation is expected to result from either a causal
functional variant of a gene, or the linkage disequilib-
rium between the marker and a susceptibility gene. In
population-based case-control studies, there are typi-
cally attempts to match cases and controls by impor-
tant demographic and/or baseline information. It is not
wise to over-match subjects. Alternatively, we can col-
lect potentially important environmental variables and
consider them in the association analysis. We can also
use principal component analysis on the genotypes to
explore whether there are “clusters” in the study co-
horts that are not appropriately reflected in the envi-
ronmental variables. In family-based studies, the asso-
ciation tends to be conditional on parental genotypes
and all phenotypes.

2.1.5 Unique challenges in analyzing ordinal
traits. Understanding the genetic mechanisms for com-
plex diseases is challenging regardless of whether we
analyze binary, ordinal or continuous traits. Any chal-
lenges that exist for analyzing binary and continuous
traits remain for ordinal traits. What are the unique
challenges in analyzing ordinal traits? The key differ-
ence is that there is not a simple distribution function
for ordinal traits. For continuous traits, the assumption
is that the traits can somehow be treated under nor-
mality, by transformation if needed. For binary traits,
through a link function (e.g., logit) we only need to
deal with a Bernoulli distribution. However, for ordi-
nal traits, the two typical approaches are (a) to assume
a reliability variable or a continuous latent variable or
(b) to assume a proportional odds model as we pre-
sented above. The first challenge is in the estimation.
The likelihood function is complicated, and based on
the numerical results, it has multiple local maxima. In
addition, due to identifiability (or near-identifiability),
the likelihood function may be relatively flat. Combi-
nations of the EM and other algorithms can provide
practical solutions, but finding a more efficient algo-
rithm is an open problem.

The second challenge is in the inference. When la-
tent variables or mixture distributions are used, some
of the commonly assumed regularity conditions do not
hold. One solution is to use a penalized likelihood
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function (Zhang, Feng and Zhu, 2003) that prevents the
parameters from being near the singularity points.

Finally, model diagnostics are difficult. For exam-
ple, how do we know the latent variable-based model
or the proportional odds model provides an adequate
fit to the data? Although the models and methods pre-
sented above do not address this and other questions,
they provide a foundation for further research and im-
provement.

2.2 Comorbidity

The methods described above only deal with a sin-
gle trait. However, comorbidity is the rule rather than
the exception in studies of mental and behavioral dis-
orders. For example, a patient may suffer from both
anxiety and depression (Li and Burmeister, 2009), and
the same patient may also be addicted to nicotine, alco-
hol, or other substances (Merikangas et al., 1998; True
et al., 1999). From a data analysis perspective, we need
to consider how important it is to accommodate multi-
ple diseases/traits. In a real-data example, Chen et al.
(2011) analyzed a data set from the Study of Addic-
tion: Genetics and Environment (SAGE). By simply
considering addiction to at least two of the six sub-
stances (addiction to nicotine, alcohol, marijuana, co-
caine, opiates or other drugs), we were able to identify
the PKNOX2 gene that reached genomewide signifi-
cance level among European-origin females. Interest-
ingly, the PKNOX2 gene has been previously identi-
fied as one of the cis-regulated genes for alcohol ad-
diction in mice (Mulligan et al., 2006). To further de-
lineate the benefit of considering multivariate traits,
Zhu and Zhang (2009) conducted comprehensive sim-
ulation studies, considered the correlations of 0.2 and
−0.2 among three quantitative traits, and demonstrated
that testing correlated traits jointly is more powerful
than testing a single trait at a time. Using generalized
estimation equation, Lange et al. (2003) developed a
family-based association test for multivariate quanti-
tative traits (FBAT-GEE). Recently, Zhang, Liu and
Wang (2010) constructed a nonparametric test based
on the generalized Kendall’s tau to accommodate any
combination of dichotomous, ordinal, and quantitative
traits.

2.2.1 Kendall’s tau. Kendall’s τ is a rank-based
correlation between two variables. It contracts the
probability of observing the two variables in the
same order in two observations with the probabil-
ity of observing the two variables in the opposite
order. Specifically, for a sample of n observations

(X1, Y1), . . . , (Xn,Yn), two observations (Xi, Yi) and
(Xj ,Yj ) are called concordant if (Xi −Xj)(Yi −Yj ) >

0 and discordant if (Xi − Xj)(Yi − Yj ) < 0. Then
Kendall’s τ is based on the difference between the
numbers of concordant pairs and discordant pairs.

We introduce a kernel function,

φ((Xi, Yi), (Xj ,Yj ))

= sign{(Xi − Xj)(Yi − Yj )}

=
⎧⎨
⎩

1, if (Xi − Xj)(Yi − Yj ) > 0,
−1, if (Xi − Xj)(Yi − Yj ) < 0,
0, if (Xi − Xj)(Yi − Yj ) = 0,

and define a U -statistic

U =
(

n

2

)−1 ∑
i<j

φ((Xi, Yi), (Xj ,Yj )).(2.6)

Then, Kendall’s τ is

τ = U√
Var0(U)

,(2.7)

where Var0(U) is the variance of U under the null hy-
pothesis of no correlation between X and Y, and equal
to n(n−1)(2n+5)/18 if X and Y are continuous vari-
ables (Hollander and Wolfe, 1999).

2.2.2 Generalized Kendall’s tau. To test the as-
sociation between genetic markers and comorbidity,
Zhang, Liu and Wang (2010) generalized Kendall’s tau
as follows. For individuals i and j , let Ti and Tj be
their vectors of traits, respectively. Then, a trait kernel
is defined as

Fij = (
f1

(
T

(1)
i − T

(1)
j

)
, . . . , fp

(
T

(p)
i − T

(p)
j

))′
,

where function fk(·) is the identity function for a quan-
titative or binary trait (Rabinowitz, 1997), or the sign
function for an ordinal trait (Zhang, Wang and Ye,
2006).

Also, recall that, as in Section 2.1.4, c is the number
of any chosen allele for marker genotype and let Ci

refer to the C for the ith subject. Then, Zhang, Liu and
Wang (2010) defined a marker kernel as

Dij = ci − cj .

Their U -statistic is defined as

U =
(

n

2

)−1 ∑
i<j

DijFij .(2.8)

The association test statistic, or generalized Kendall’s
tau, is U ′ Var−1

0 (U)U , where Var0(U) is the variance
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of U under the null hypothesis that there is no asso-
ciation between marker alleles and any linked locus
that influences the trait T . The test statistic follows an
asymptotic χ2-distribution under the null hypothesis.

Obviously, the statistic in (2.8) does not incorporate
covariate effects. This is relatively straightforward for
a single trait as was done in (2.4). Here, the traits can
be a hybrid of different traits. An alternative is to im-
pose different weights for each pair of samples in the
statistic (2.8) according to the information of their co-
variates. The weight, denoted by w(zi, zj ) for the pair
(i, j), reflects the relative importance attributed by the
covariates when we derive the statistic. Zhu, Jiang and
Zhang (2010) examined the following weight function.
Write z = (zco, zca)′ with zco = (z(1), . . . , z(l1))′ for
the continuous covariates and zca = (z(l1+1), . . . , z(l))′
for the categorical covariates. They defined the weight
function w(zi, zj ) as

w(zi, zj ) = W(‖zco
i − zco

j ‖)I (zca
i = zca

j ),(2.9)

where W(·) is a positive and decreasing function, for
example, W(u) = exp(−u2/2h2), and I (·) is the indi-
cator function. Then a weighted test statistic is given
by

S =
(

n

2

)−1 ∑
i<j

DijFijw(zi, zj ).(2.10)

Zhang, Liu and Wang (2010) and Zhu, Jiang and
Zhang (2010) showed that under the null hypothesis,
the test statistic S (weighted or not) has the following
asymptotic distribution conditional on all phenotypes
and parental genotypes:

Var−1/2
0 (S)[S − E0(S)] d−→ N(0, Ip),

where

E0(S) = 2

n − 1

n∑
i=1

ūiE0(Ci |Mpa
i ),

Var0(S) = 4

(n − 1)2

·
n∑

i=1

n∑
j=1

ūi ū
′
j Cov0(Ci,Cj |Mpa

i ,M
pa
j ).

Consequently, the following test statistic

χ2
tau = [S − E0(S)]′ Var−1

0 (S)[S − E0(S)]
converges to χ2

p in distribution under the null hypothe-
sis provided that Var0(S) is full rank. In a case-control
study, we do not have the markers from parents and

hence the conditional expectations are replaced with
the unconditional ones. Thus, the key difference in the
test statistics between family studies and population
studies lies in the conditioning on the parental mark-
ers. The conditioning on the parental markers gives the
family studies a major advantage in removing the ef-
fect of population admixture, but family studies tend to
be more difficult and expensive to carry out.

Under the alternative hypothesis, the test statis-
tic χ2

tau can be written as a weighted sum of non-
central χ2

1 = ∑p
i=1 eiχ

2
1 (φi), where e1 ≥ · · · ≥ ep

are the nonnegative eigenvalues of �
1/2
1 �−1

0 �
1/2
1 .

φi = μ2
Ri

and μRi
is the ith component of μR =

Q�
−1/2
1 μ, where Q is an orthonormal matrix such that

Q�
1/2
1 �−1

0 �
1/2
1 Q′ = diag(e1, . . . , ep). μ is the differ-

ence in the means of S under the alternative and null
hypotheses. Using the approximation theory of Pear-
son (1959), Solomon and Stephens (1977) and Liu,
Tang and Zhang (2009), we can find a certain degree
of freedom l and noncentral parametric υ such that
the distribution of χ2

tau can be closely approximated
by χ2

l (υ). Through simulation studies, Zhu et al. con-
firmed that this approximation is accurate enough for
power calculation.

It is noteworthy that the weight function in (2.9) is
restrictive with respect to categorical covariates, espe-
cially so for ordinal covariates. The use of genomic
propensity score can give rise to an alternative weight
function. Specifically, for a di-allelic marker G (e.g.,
SNP), the genomic propensity score is the conditional
probability pg(z) = P(G = g|Z = z). This probabil-
ity can be fitted by a logistic regression model or pro-
portional odds model depending on whether G is cho-
sen as an allele type or genotype. In the latter choice,
the model also depends on the mode of inheritance. In
the current genomewide association studies, we usually
only have genotypes and cannot distinguish the phases
of individual alleles. Thus, we have to construct ge-
nomic propensity scores by considering various modes
of inheritance. Once the genomic propensity score is
estimated, it can be treated as a numerical covariate and
then we can use (2.9) again.

2.2.3 Examples. Zhang, Liu and Wang (2010) re-
analyzed a data set from the Collaborative Study on
the Genetics of Alcoholism (COGA) (Begleiter, 1995;
Edenberg et al., 2005). The data came from a multi-
center (9 sites) consortium that recruited study partic-
ipants by requiring every proband to meet two alco-
hol dependence diagnostic criteria based on DSM-IV-
R (American Psychiatric Association, 1994). The first-
degree relatives of the probands were invited into the



126 H. ZHANG

study. Zhang, Liu and Wang (2010) included a total of
1614 individuals from 143 families. They considered
three phenotypes: (1) alcohol DX-DSM3R +Feighner;
(2) maximum number of drinks in a 24-hour period;
and (3) the response to “spent so much time drinking,
had little time for anything else.” Using the first phe-
notype alone, the p-value of the association between
a peak marker D7S679 on chromosome 7 and the trait
was 0.0019. However, when the three traits are ana-
lyzed together, D7S679 remains the peak marker, and
the p-value is reduced to 0.00055, demonstrating the
possibility that the other two phenotypes enhanced the
association signal. If the other two phenotypes are ana-
lyzed alone, the analysis did not lead to anything wor-
thy of further attention.

In the analysis cited above, the association was as-
sessed without considering covariates. In a follow-up
analysis, Zhu, Jiang and Zhang (2010) considered two
important covariates: age at interview and sex. When
these two covariates were controlled for, the p-value of
the association between the peak marker D7S679 and
the three phenotypes went down further to 0.000313.

3. DISCUSSION

Studying comorbidity is a significant issue in men-
tal and behavioral research, dating back to a century
ago (Cannon and Rosanoff, 1911). This is challenging
due to a lack of statistical methods that accommodate
the complexity of comorbidity. While dealing with co-
morbidity in genetic studies is the focus of this review,
it is achieved through gradual development, and accu-
mulation of methods. Various challenges are dealt with
along the way.

Although I focused on the analysis of ordinal traits
and applications in mental health, the presented meth-
ods are closely related to robust and rank-based meth-
ods for binary and quantitative traits. Furthermore, or-
dinal traits arise in studies of diseases besides mental
illnesses, such as cancer (specifically, different stages).

From the statistical perspective, the methods that
are presented here have broad applications beyond ge-
netic association studies. From college admissions, to
job searches, to scientific investigations, we make in-
ferences based on multidimensional data. It is impor-
tant and imperative to consider and develop inferen-
tial tools for multivariate outcomes, particularly when
the outcomes are discrete. There is extensive litera-
ture on the statistical analysis of multivariate normal
variables as well as on nonparametric tests for a sin-
gle variable of nonnormal distribution. However, few

options are available for the inference when we have
multiple nonnormally distributed variables and poten-
tial hybrids of continuous and discrete variables. To
overcome this challenge, I presented several useful sta-
tistical techniques such as the rank-based U -statistics
and the kernel-based weighted statistics to accommo-
date the mix of continuous and discrete outcomes and
the presence of important covariates.
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