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ABSTRACT
Motivation: Recently, the temporal response of genes
to changes in their environment has been investigated
using cDNA microarray technology by measuring the
gene expression levels at a small number of time points.
Conventional techniques for time series analysis are not
suitable for such a short series of time-ordered data. The
analysis of gene expression data has therefore usually
been limited to a fold-change analysis, instead of a
systematic statistical approach.
Methods: We use the maximum likelihood method
together with Akaike’s Information Criterion to fit linear
splines to a small set of time-ordered gene expression
data in order to infer statistically meaningful information
from the measurements. The significance of measured
gene expression data is assessed using Student’s t-test.
Results: Previous gene expression measurements of
the cyanobacterium Synechocystis sp. PCC6803 were
reanalyzed using linear splines. The temporal response
was identified of many genes that had been missed by a
fold-change analysis. Based on our statistical analysis, we
found that about four gene expression measurements or
more are needed at each time point.
Availability: An extension module for Python to calculate
linear spline functions is available at http://bonsai.ims.
u-tokyo.ac.jp/∼mdehoon. This software package (with
patent pending) is free of charge for academic use only.
Contact: mdehoon@ims.u-tokyo.ac.jp

INTRODUCTION
In recent years, many cDNA microarray experiments have
been performed measuring gene expression levels under
different conditions. Measured gene expression data have
become widely available in publicly accessible databases,
such as the KEGG database (Nakao et al., 1999).

In some of these experiments, the steady-state gene ex-
pression levels are measured under several environmen-
tal conditions. For instance, the expression levels of the
cyanobacterium Synechocystis sp. PCC6803 and a mutant
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have been measured at different temperatures, leading to
the identification of the gene Hik33 as a potential cold sen-
sor in this cyanobacterium (Suzuki et al., 2001).

In other experiments, the temporal pattern of gene
expression is considered by measuring expression levels
at a limited number of points in time. Gene expression
levels that vary periodically have, for instance, been
measured during the cell cycle of the yeast Saccharomyces
cerevisiae (Spellman et al., 1998). The expression levels
of the same yeast species were measured during the
metabolic shift from fermentation to respiration (DeRisi
et al., 1997). In this experiment, the environmental
conditions were changing slowly over time. Conversely,
the gene response to an abruptly changing environment
can be measured. As an example, the gene expression
levels of the cyanobacterium Synechocystis sp. PCC 6803
were measured at several points in time after a sudden shift
from low light to high light (Hihara et al., 2001).

In these experiments, gene expression levels are typi-
cally measured at a small number of time points. Conven-
tional techniques for time series analysis, such as Fourier
analysis or autoregressive or moving-average modeling,
are not suitable for such a small number of data points. In-
stead, the gene expression data are often analyzed by clus-
tering techniques or by considering the relative change in
the gene expression level only. Such a fold-change analy-
sis may miss significant changes in gene expression levels,
while it may inadvertently attribute significance to mea-
surements dominated by noise. In addition, a simple fold-
change analysis may not be able to identify important fea-
tures in the temporal gene expression response.

Several techniques to analyze gene expression data, such
as deriving Boolean or Bayesian networks, have been
proposed in the past (Liang et al., 1998; Akutsu et al.,
2000; Friedman et al., 2000; Imoto et al., 2002). Whereas
describing gene interactions in terms of a regulatory
network is very important, deriving a network model
requires gene expression data at a large number of time
points, which is currently often not yet available. It should
be noted that the number of genes is on the order of several
thousands, while the gene expression levels are usually
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measured at only five or ten points in time.
So far, a systematic method has been lacking to statisti-

cally analyze gene expression measurements from a small
number of time-ordered data. In this paper, we will out-
line a strategy based on fitting linear spline functions to
time-ordered data using the maximum likelihood method
and Akaike’s Information Criterion (Akaike, 1973, 1974).
The significance of the gene expression measurements is
assessed by applying Student’s t-test. This allows us to in-
fer information from gene expression measurements while
taking the statistical significance of the data into consider-
ation. This kind of analysis should be viewed as a first step
towards building gene regulatory networks.

As an example, we reanalyzed the gene expression mea-
surements of the cyanobacterium Synechocystis sp. PCC
6803 (Hihara et al., 2001). It is shown that information can
be inferred from the measured data that is missed when
considering the fold-change only. By repeating our analy-
sis with a subset of the available data, we were able to de-
termine how many measurements are needed at each time
point in order to estimate the linear spline function reli-
ably.

METHODS
Student’s t-test
Gene expression data are usually given in terms of
the base-2 logarithm of the expression ratio, defined as
the expression level of a gene relative to its level in
some control condition. We would first like to assess if
these log-ratios are significantly different from zero. The
significance of the measured data can be established by
applying Student’s t-test for each time point separately.
Since multiple comparisons are being made for each gene,
the value of the significance level α should be chosen
carefully.

We define H(i)
0 as the hypothesis that for a given gene

the log-ratio is equal to zero at a given time point ti , and
H0 as the hypothesis that for a given gene the log-ratios
at all time points are equal to zero. If we denote α as the
significance level for rejection of hypothesis H0, and α′ as
the significance level for rejection of hypothesis H(i)

0 , then
α′ and α are related via

1 − α = (
1 − α′)a

, (1)

in which a is the number of time points at which
the gene expression ratio was measured. Note that by
linearizing the right-hand side in α′, this equation reduces
to Bonferroni’s method for adjusting significance levels
(see also Anderson and Finn, 1996).

By performing Student’s t-test at every time point for
each gene, using α′ as the significance level, we will
find whether H(i)

0 and therefore H0 should be rejected. If
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Fig. 1. A conceptual example of a linear spline function fitted to
measured data.

H0 is not rejected, we can conclude that the gene is not
significantly affected by the experimental manipulations,
and should therefore not be included in further analyses.
If, for a given gene, the null hypothesis H0 is rejected, we
conclude that the gene was significantly affected by the
experimental manipulations.

Analyzing time-ordered data using linear splines
Next, we analyze the temporal gene expression response
for genes that were found to be significantly affected.
The measured log-ratios form a small set of time-ordered
data, to which we can fit a linear spline function. A
linear spline function is a continuous function consisting
of piecewise linear functions, which are connected to each
other at knots (Friedman and Silverman, 1989; Higuchi,
1999; Higuchi and Ohtani, 2000). Whereas cubic splines
are used more commonly, for the small number of data
points we are dealing with linear spline functions are more
suitable. A conceptual example of a linear spline function
with knots is shown in Figure 1.

Consider a set of data points
(
t j , x j

)
, j ∈ {1, . . . , n},

in which t j is the time of measurement and x j is the log-
ratio of the measured gene expression level. We wish to fit
a nonparametric regression model of the form

x j = g
(
t j

) + ε j (2)

to these data, in which g is a linear spline function
with knots (t∗0 , t∗1 , . . ., t∗q ) and ε j , j ∈ {1, . . . , n}, are
independent random variables with a normal distribution
with zero mean and variance σ 2. In experiments, the log-
ratio of the gene expression level is typically observed to
follow a normal distribution.

We estimate the linear spline function g using the
maximum likelihood method. The probability distribution
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of one data point x j , given t j , is

f
(

x j |t j ; g, σ 2
)

= 1√
2πσ 2

exp

{
−

(
x j − g

(
t j

))2

2σ 2

}
.

(3)
The log-likelihood function for the n data points is then

given by

L
(

g, σ 2
)

= −n

2
ln

[
2πσ 2

]
− 1

2σ 2

n∑
j=1

(
x j − g

(
t j

))2
.

(4)
The maximum likelihood estimate of the variance σ 2

can be found by maximizing the log-likelihood function
with respect to σ 2. This yields

σ̂ 2 = 1

n

n∑
j=1

(
x j − g

(
t j

))2
. (5)

The log-likelihood function can then be written in the
form

L
(

g, σ 2 = σ̂ 2
)

= −n

2
ln

[
2πσ̂ 2

]
− n

2
. (6)

The maximum likelihood estimate ĝ of the linear spline
function g can now be found by minimizing σ̂ 2. It can be
shown that the minimum value of σ̂ 2 will be achieved if
the linear spline function is chosen such that

A · ĝ = b, (7)

in which ĝ = (
ĝ0, ĝ1, . . . , ĝq

)T is a vector containing
the estimated values ĝi of the linear spline function at the
knots t∗i , A is a tridiagonal symmetric matrix given by

A00 =
∑

j : t∗0 ≤t j <t∗1

(
t∗1 − t j

t∗1 − t∗0

)2

; (8)

Ai,i =
∑

j : t∗i−1<t j ≤t∗i

(
t j − t∗i−1

t∗i − t∗i−1

)2

+
∑

j : t∗i <t j <t∗i+1

(
t∗i+1 − t j

t∗i+1 − t∗i

)2

for 0 < i < q; (9)

Aq,q =
∑

j : t∗q−1<t j ≤t∗q

(
t j − t∗q−1

t∗q − t∗q−1

)2

; (10)

Ai+1,i = Ai,i+1

=
∑

j : t∗i <t j <t∗i+1

(
t∗i+1 − t j

) (
t j − t∗i

)
(
t∗i+1 − t∗i

)2

for 0 ≤ i < q; (11)

and b is a vector given by

b0 =
∑

j : t∗0 ≤t j <t∗1

t∗1 − t j

t∗1 − t∗0
x j ; (12)

bi =
∑

j : t∗i−1<t j ≤t∗i

t j − t∗i−1

t∗i − t∗i−1
x j +

∑
j : t∗i <t j <t∗i+1

t∗i+1 − t j

t∗i+1 − t∗i
x j

for 0 < i < q; (13)

bq =
∑

j : t∗q−1<t j ≤t∗q

t j − t∗q−1

t∗q − t∗q−1
x j . (14)

In the case of time-ordered gene expression data, the
gene expression ratio is typically calculated with respect
to the gene expression level at time zero. By definition,
at time zero, the log-ratio will then have a fixed point
equal to zero. In general, a fixed point at time zero with
a value g0 can be incorporated in our methodology by
modifying Equation (7). It can be shown that in this case
the minimum value of σ̂ 2 will be achieved by choosing the
linear spline function such that ĝ0 = g0, while (ĝ1, ĝ2, . . .,
ĝq ) are determined from



A11 A12 0 · · · 0 0
A21 A22 A23 · · · 0 0
0 A32 A33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Aq−1,q−1 Aq−1,q
0 0 0 · · · Aq,q−1 Aq,q




·




ĝ1
ĝ2
ĝ3
...

ĝq−1
ĝq




=




b′
1

b2
b3
...

bq−1
bq




, (15)

in which b′
1 ≡ b1 − A10g0. For time-ordered gene

expression levels given as log-ratios, we will have a fixed
point g0 = 0 and therefore b′

1 = b1.
The maximum number of knots qmax is equal to the

number of time points at which the gene expression levels
were measured. The number of possible knot placements
increases exponentially with the maximum number of
knots as 1 + 2qmax−1. As an example, Figure 2 shows
the possible knot positions for the experiment described
below, in which measurements were made at 15 minutes,
1 hour, 6 hours, and 15 hours. The number of knots, q ,
will be between zero and four, in addition to a fixed knot
equal to zero at time zero. For q = 2 and q = 3, three
possibilities exist for the placement of the knots between
the linear segments of the linear spline function. These
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Fig. 2. Possible placement of knots for a time-ordered set of
measurements at four time points, in addition to a fixed point at time
zero.

are indicated in Figure 2, together with the cases q = 0,
q = 1, and q = 4.

The fitted model depends on the number of knots, which
can be chosen using Akaike’s Information Criterion,
known as the AIC (Akaike, 1973, 1974)

AIC = −2·
[

log-likelihood
of the estimated

model

]
+2·

[ number of
estimated

parameters

]
, (16)

in which the estimated parameters are σ̂ 2 and (ĝ1, ĝ2, . . .,
ĝq ). The AIC is based on information theoretic concepts
and is nowadays regarded as one of the most reliable
methods for statistical model identification, particularly
for time series model fitting (Priestley, 1994). Substituting
the estimated log-likelihood function from Equation (6),
we find

AIC = n ln
[
2πσ̂ 2

]
+ n + 2q + 2, (17)

in which σ̂ 2 is given by Equation (5) after substitution of
the maximum likelihood estimate ĝ for the linear spline
function g.

For each value of q, we calculate the value of the AIC
after fitting the linear spline function as described above,
and select the value of q that yields the minimum value of
the AIC. The case q = 1 corresponds to linear regression.
For the special case q = 0, we are effectively fitting a flat
line to the data. If we find that for a particular gene, the
minimum AIC is achieved for the constant function (q =
0), then we can conclude that the expression level of that
gene was unaffected by the experimental manipulations.

Table 1. The gene expression measurements as a time-ordered set of data

Time point Number of measurements

t = 15 minutes 6
t = 1 hour 6
t = 6 hours 4
t = 15 hours 4

This information can then be used to check the results of
Student’s t-test.

RESULTS
Student’s t-test
We will illustrate the usage of Student’s t-test and
linear spline functions by reanalyzing the measured gene
expression profile of the cyanobacterium sp. PCC 6803
after a sudden exposure to high light (HL); (Hihara et
al., 2001). The expression levels of 3079 ORFs were
measured at 15 minutes, 1 hour, 6 hours, and 15 hours both
for cyanobacteria exposed to HL and cyanobacteria that
remained in the low light (LL) condition. Table 1 shows
the number of measurements at each time point. Data
from the cDNA expression measurements were obtained
from the KEGG database (Nakao et al., 1999). It should
be mentioned that the data used for the original analysis
(Hihara et al., 2001) may not be identical to the raw data
submitted to KEGG.

First, the background signal intensities were subtracted
from the HL and LL raw data. Consistent with the original
fold-change analysis (Hihara et al., 2001), in order to
reduce the effects of noise, genes with the 2000 lowest
expression levels in either the LL or the HL condition
were removed from the data set. The measured expression
levels of these genes, being comparable to the background
fluorescence levels, were dominated by noise (Hihara
et al., 2001). Global normalization was applied to the
expression levels of the 912 remaining genes and the ratio
of the HL to the LL signal intensities was calculated to find
the gene expression ratio with respect to the control (LL)
condition. Using global normalization directly without
removing genes with low signal levels first may result in
noisier gene expression ratios. The log-ratios of the gene
expression levels were then found by taking the base-2
logarithm of the gene expression ratios.

In the fold-change analysis, a gene was regarded as
being affected by HL if its expression level changed by a
factor of two or more, which corresponds to the log-ratio
changing by at least unity. The statistical significance of
such changes was assessed heuristically by considering
the size of the standard deviation of the measurements
(Hihara et al., 2001).
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Table 2. Student’s t-test of gene expression measurements

Significance level Number of ORFs

p < 0.0003 58
p < 0.001 90
p < 0.005 171
p < 0.01 208
p < 0.05 362

The results of Student’s t-test on the log-ratios of
each gene separately are shown in Table 2. At a sig-
nificance level of α = 0.005, 171 genes were found
to be significantly affected by the HL condition.
Note that we would expect about five type-I errors
among these 171 genes. In comparison, 164 ORFs
were found to be affected by the HL condition in the
fold-change analysis (Hihara et al., 2001). An explicit
example of the t-test is shown on our webpage at
http://bonsai.ims.u-tokyo.ac.jp/∼mdehoon/publications/.

Table 3 lists the genes that were identified by the t-
test at a significance level α = 0.001. As indicated in
the table, 36 genes of those genes had not been found by
the fold-change analysis (Hihara et al., 2001). Conversely,
of the 164 ORFs that were identified in the fold-change
analysis, six are not significantly affected by HL according
to Student’s t-test, even at a significance level α = 0.01.
Note that at this significance level, the t-test analysis
yielded 208 ORFs whose expression levels had been
significantly affected by HL (Table 2). At a significance
level α = 0.001, an additional fifteen genes are found not
to be affected by HL. These ORFs are listed in Table 4.

Analysis using linear spline functions
In the fold-change analysis, the temporal gene expression
patterns were classified into six categories (Hihara et al.,
2001), listed in Table 5. This classification was based on
the average of the measured gene expression ratios at each
time point. Instead, we will fit linear spline functions to
the measured gene expression data.

Table 6 shows the knot positions of the linear spline
function fitted to the measured log-ratios of each gene.
Genes were included only if Student’s t-test showed
that they were significantly affected by HL, using a
significance level α = 0.001. None of the gene expression
levels was described by a flat line, which is consistent with
the results from Student’s t-test.

As an example, we again consider the measured expres-
sion levels of the gene cpcG (sll1471). Table 7 shows the
calculated AIC for the different sets of knot positions. The
minimum AIC is achieved for knots at 0, 15 minutes, 1
hour, and 15 hours. Figure 3 shows the measured log-ratio
for this gene as well as the fitted linear spline function.
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Fig. 3. The measured log-ratio for the gene cpcG (sll1471), together
with the fitted linear spline. This gene was considered to be
unaffected by HL in the fold-change analysis (Hihara et al., 2001).
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Fig. 4. The log-ratio of each cluster, as determined from the linear
spline function fitted to the gene expression data. The error bars are
a measure for the within-cluster deviation.

To assess the biological significance of our method,
we applied k-means clustering (MacQueen, 1967) to the
linear spline functions fitted to the measured log-ratios
for the 90 genes considered to be significantly affected.
Figure 4 shows the log-ratio of the gene expression level
as a function of time for each cluster. The error bars shown
at each time point are equal to the standard deviation over
all genes in one cluster. The number of clusters was chosen
to be six, which was the largest number of clusters without
a significant overlap between the clusters.

The clusters that were found are shown in Table 3
above, together with the knot positions of the linear
spline function that was fitted to the expression data of
each gene. As a measure of the goodness of fit of the
linear spline function, the percentage variance explained
is shown for each gene. Most clusters contain functionally
related genes, as well as some ORFs of unknown function.
The functional annotations of the ORFs, as shown in the
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Table 3. ORFs identified by Student’s t-test at a significance level α = 0.001, together with their gene name and biological function, if known. The ORFs
were grouped using k-means clustering applied to the linear spline functions fitted to the measured log-ratio for each gene. For an explanation of the notation
used in fourth and sixth column, see Table 6 and Table 5, respectively

ORF Gene Biological function Knot Percentage Result of the fold-
positions variance explained change analysis

Cluster 1
sll0322 hypF Transcriptional regulatory protein HypF (c) 75 Type 2
sll0927 metX S-adenosylmethlonine synthetase (f) 86 Type 2
sll1028 ccmK Carbon dioxide concentrating mechanism protein CcmK (f) 85 Type 2
sll1029 ccmK Carbon dioxide concentrating mechanism protein CcmK (f) 90 Type 2
sll1031 ccmM Carbon dioxide concentrating mechanism protein CcmM (f) 96 Type 2
slr1963 Unknown (i) 98 Type 1
slr2075 groES 10 kD chaperonin (g) 96 Type 2
sll0416 groEL-2 60 kD chaperonin 2 (i) 99 Type 2

Cluster 2
sll0170 dnaK DnaK protein (i) 89 Type 1
sll0430 htpG Heat shock protein (i) 97 Type 1
sll0521 ndhG NADH dehydrogenase subunit 6 (i) 69 Not identified
slr1280 ndhK NADH dehydrogenase subunit NdhK (f) 89 Type 1
slr0011 rbcX Unknown function (f) 75 Type 2
slr1350 desA Fatty acid desaturase (f) 86 Type 1
slr1604 ftsH Cell division protein FtsH (f) 95 Type 1
slr1641 clpB ClpB protein (i) 94 Type 1
sll0814 Unknown (f) 92 Type 1
slr0476 Unknown (f) 87 Type 1
slr1687 Unknown (f) 91 Not identified

Cluster 3
sll1096 rps12 30S ribosomal protein S12 (f) 93 Type 2 (see text)
sll1097 rps7 30S ribosomal protein S7 (f) 92 Type 3
sll1260 rps2 30S ribosomal protein S2 (f) 89 Not identified
sll1743 rpl11 50S ribosomal protein L11 (i) 95 Type 3
sll1745 rpl10 50S ribosomal protein L10 (i) 93 Type 3
sll1799 rpl3 50S ribosomal protein L3 (f) 95 Type 3
sll1801 rpl23 50S ribosomal protein L23 (h) 91 Type 3
sll1802 rpl2 50S ribosomal protein L2 (i) 97 Type 3
sll1804 rps3 30S ribosomal protein S3 (f) 82 Type 3
sll1807 rpl24 50S ribosomal protein L24 (i) 95 Type 3
sll1809 rps8 30S ribosomal protein S8 (i) 91 Type 3
sll1810 rpl6 50S ribosomal protein L6 (f) 75 Type 3
sll1816 rps13 30S ribosomal protein S13 (i) 93 Type 3

Cluster 4
sll0020 clpC ATP-dependent Clp protease regulatory subunit (f) 67 Not identified
sll0144 pyrH or smbA Uridine monophosphate kinase (d) 84 Not identified
sll0185 Unknown (i) 88 Not identified
sll0262 desD (des6) Delta-6 desaturate (g) 67 Not identified
sll0414 Hypothetical protein (f) 74 Not identified
sll0519 ndhA NADH dehydrogenase subunit 1 (i) 59 Not identified
sll0587 pykF Pyruvate kinase (d) 57 Not identified
sll0680 pstS or phoS Phosphate-binding periplasmic protein precursor (PBP) (c) 74 Not identified
sll0854 Unknown (g) 68 Not identified
sll1002 ycf22 Hypothetical protein (f) 69 Not identified
sll1327 atpC ATP synthase g subunit (f) 76 Not identified
sll1614 pma1 Cation-transporting ATPase (E1-E2 ATPase) (f) 51 Not identified
slr0208 Unknown (f) 78 Not identified
slr0452 ilvD Dihydroxyacid dehydratase (h) 50 Not identified
slr0642 Integral membrane protein (f) 54 Not identified
slr0839 hemH Ferrochelatase (c) 54 Not identified
slr1237 codA Cytosine deaminase (h) 88 Not identified
slr1469 rnpA Protein subunit of ribonuclease P (RNase P) (d) 63 Not identified
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Table 3. Continued.

ORF Gene Biological function Knot Percentage Result of the fold-
positions variance explained change analysis

slr1513 Unknown (f) 92 Not identified
slr1557 Unknown (f) 58 Not identified
slr1718 Unknown (c) 35 Not identified
ssr2554 Unknown (d) 57 Not identified

Cluster 5
sll0258 psbV Cytochrome c550 (i) 94 Type 4
sll0617 im30 Chloroplast membrane-associated 30 kD protein (h) 78 Not identified
sll0851 psbC Photosystem II CP43 protein (d) 80 Not identified
sll0901 pure or ade6 Phosphoribosylaminoimidazole carboxylase (c) 85 Not identified
sll1091 391 aa (43 kD) bacteriochlorophyll synthase subunit (c) 92 Type 4
sll1214 PNIL34 or AT103 Phytochrome-regulated gene (c) 89 Type 4
sll1306 Unknown (c) 89 Type 4
sll1471 cpcG Phycobilisome rod-core linker polypeptide CpcG (f) 95 Not identified
sll1626 lexA SOS function regulatory protein (i) 93 Type 4
sll1694 hofG or hopG General secretion pathway protein G (i) 95 Type 6
sll1712 DNA binding protein HU (i) 92 Not identified
slr0151 Unknown (c) 63 Not identified
slr0329 xylR Xylose repressor (c) 90 Not identified
slr0374 Cell division cycle protein (f) 91 Type 5
slr1128 Erthyrocyte band 7 integral membrane protein, protein 7.2B, stomatin (i) 74 Not identified
slr1348 cysE Serine acetyltransferase (h) 91 Type 6
slr1459 apcF Phycobilisome core component (c) 94 Type 4
slr1545 rpoE RNA polymerase sigma-E factor (g) 90 Not identified
slr1793 talB Transaldolase (h) 90 Not identified
slr1853 Unknown (c) 74 Not identified
slr1856 Anti-sigma B factor antagonist (f) 92 Type 4
ssl1533 Unknown (f) 96 Type 4
ssl3093 cpcD Phycocyanin associated linker protein (c) 96 Type 4

Cluster 6
sll1577 cpcB Phycocyanin b subunit (i) 96 Type 5
sll1578 cpcA Phycocyanin a subunit (f) 92 Type 5
sll1579 cpcC Phycocyanin associated linker protein (i) 97 Type 5
sll1580 cpcC Phycocyanin associated linker protein (i) 97 Type 5
slr2051 cpcG Phycobilisome rod-core linker polypeptide CpcG (f) 95 Type 4
sll0819 psaF Photosystem I subunit III (i) 93 Type 5
slr0737 psaD Photosystem I subunit II (i) 97 Type 5
slr1655 psaL Photosystem I subunit XI (f) 94 Type 5
slr1834 psaA P700 apoprotein subunit Ia (h) 97 Type 5
slr1835 psaB P700 apoprotein subunit Ib (h) 95 Type 5
slr1855 Unknown (g) 92 Type 4
slr1986 apcB Allophycocyanin b chain (i) 93 Type 4
slr2067 apcA Allophycocyanin a chain (i) 95 Type 4

table, were obtained from CyanoBase (Nakamura et al.,
1998).

Table 3 also shows the results of the fold-change
analysis. Using a factor of two change in the expression
level as a criterion to decide whether a gene is significantly
affected leads to missing genes in several clusters. For
instance, in the second cluster the gene ndhK (NADH
dehydrogenase subunit NdhK) is present while the related
gene ndhG (NADH dehydrogenase subunit 6) is missing
in the fold-change analysis. Similarly, the gene rps2 (30S

ribosomal protein S2) is missing from the third cluster,
containing ribosomal proteins only. None of the genes in
cluster 4 were identified in the fold-change analysis.

For the fold-change analysis, better results can be
obtained by using the t-test to select significantly affected
genes. Even then, the gene rps12 (30S ribosomal protein
S12) is misclassified to the first cluster instead of the
ribosomal protein cluster 3. This is due to the log-ratios
being described by their averages at each time point
instead of by their linear spline estimates.
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Table 4. ORFs identified in the fold-change analysis (Hihara et al., 2001),
although they were not significantly affected by HL according to Student’s
t-test at a significance level α = 0.01 or α = 0.001

α = 0.01 α = 0.001

Type 1 slr1311, sll1867 slr0228, slr0394, slr1516
Type 2 slr2076 slr0009, slr0012
Type 3 ssl3437, sll1818 sll0533, sll1261, sll1742,

sll1800
Type 4 – sll0427, sll1713, slr0335,

slr1295, slr1854
Type 5 – –
Type 6 sll1688 slr0272

Table 5. Six categories were used in the fold-change analysis to classify the
temporal pattern of gene expression (Hihara et al., 2001)

Type 1 Induced within 15 minutes, then decreased
Type 2 Induced continuously at high levels
Type 3 Induced at approximately one hour
Type 4 Repressed within 15 minutes, then increased
Type 5 Repressed continuously at low levels
Type 6 Repressed at approximately one hour

Table 6. Classification of the temporal gene expression response based on
the knot positions of the fitted linear spline function

Knot positions Number of genes

(a) Flat line 0
(b) 0, 15 hours 0
(c) 0, 15 minutes, 15 hours 13
(d) 0, 1 hour, 15 hours 5
(e) 0, 6 hours, 15 hours 0
(f) 0, 15 minutes, 1 hour, 15 hours 33
(g) 0, 15 minutes, 6 hours, 15 hours 5
(h) 0, 1 hour, 6 hours, 15 hours 8
(i) 0, 15 minutes, 1 hour, 6 hours, 15 hours 26

Finally, we would like to establish whether the number
of measurements at each time point was sufficient to
reliably determine the knot positions of the linear spline
function. To do so, we repeated the estimation of the
linear spline function using subsets of the measured data.
We then counted for how many genes the estimated knot
positions change if a subset of the data was used instead
of the complete set of data. The average and standard
deviation of this number for different numbers of data
points used is shown in Table 8.

Even if only two data points are removed both at the
15 minutes and the 1 hour time point, and four data points
are used at each time point, in 29% of the cases the

Table 7. The calculated AIC for the different sets of knot positions for the
gene cpcG (sll1471)

Knot positions AIC

Flat line 57.3
0, 15 hours 50.8
0, 15 minutes, 15 hours 7.5
0, 1 hour, 15 hours 19.4
0, 6 hours, 15 hours 48.3
0, 15 minutes, 1 hour, 15 hours 2.4
0, 15 minutes, 6 hours, 15 hours 9.5
0, 1 hour, 6 hours, 15 hours 19.9
0, 15 minutes, 1 hour, 6 hours, 15 hours 2.7

Table 8. Reliability of the linear spline fitting procedure as a function
of number of data used. Only those genes were considered which were
significantly affected by HL according to Student’s t-test at a significance
level α = 0.01

Using six data points at 15 minutes and
1 hour, and four data points at 6 hours
and 15 hours

linear spline functions are
estimated for 208 genes

Using five data points at 15 minutes and
1 hour, and four data points at 6 hours
and 15 hours

41 ± 11 estimated differently

Using four data points at each time point 60 ± 15 estimated differently

Using three data points at each time point 90 ± 16 estimated differently

Using two data points at each time point 120 ± 13 estimated differently

estimated knot positions change. This suggests that in this
experiment, four or more data points are needed at each
time point to reliably deduce information from the gene
expression measurements.

DISCUSSION
We have described a strategy based on the maximum like-
lihood method to analyze a set of time-ordered measure-
ments. By applying Student’s t-test to the measured gene
expression data, we first establish which of the measured
genes are significantly affected by the experimental ma-
nipulation. The expression responses of those genes are
then described by fitting a linear spline function. The num-
ber of knots to be used for the linear spline function is
determined using Akaike’s Information Criterion (AIC).

There are several advantages to using linear spline func-
tions. First, it allows us more flexibility in describing the
measured gene expression compared to using a nominal
classification. Also, in order to set up a gene regulatory
network, it is important that the gene response as deter-
mined from gene expression measurements is available
in a numerical form. Finally, the positions of the knots
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specify those time points at which the expression of a gene
changes markedly, which is important in identifying its bi-
ological function.

In the model described above, the knots of the linear
spline function are placed at measurement time points
only. A more general model can be considered in which
knots can be placed at any time (Higuchi, 1999). For
instance, in Figure 3 the two knots at 15 minutes and
1 hour can be replaced by one knot suitably placed
between those two time points. Notice, however, that by
allowing knots to be placed at any time, effectively two
free parameters are assigned to each knot, which would
complicate the model.

As a next step, the classification of gene expression
responses based on the position of the knots can be refined.
As an example, subcategories can be created that consider
the change in slope of the linear spline function at the
knots.

Applying the technique of linear spline functions to
measured gene expression data, we identified the temporal
expression response pattern of genes that were signifi-
cantly affected by the experimental manipulations. The
response of 36 of those genes was not noticed in earlier
fold-change analyses of expression data. Furthermore, it
was shown that for six genes the expression level response
found in a fold-change analysis were not significant even
to the 1% level according to Student’s t-test.

Gene expression data tend to be noisy and are often
plagued by outliers. Whereas Student’s t-test and maxi-
mum likelihood methods described here take the statistical
significance of noisy data into account, the issue of outliers
needs to be addressed separately. As a simple procedure to
remove outliers, we can calculate the mean and standard
deviation of the data at each time point, and remove data
that deviate more than two standard deviations from the
mean.

The number of expression measurements needed at each
time point to reliably fit a linear spline function was
determined by removing some data points and fitting a
linear spline function anew. It was found that if four data
points per time point are used, in about 29% of the cases
the knot positions will not be estimated reliably. For this
experiment, it would therefore have been advisable to
make more than four measurements per time point. In
general, the number of measurements will depend on the
pattern of the gene expression response as well as the
magnitude of measurement errors.
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