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Abstract

This paper discusses the problems of image processing algorithm design
and comparison and suggests that a suitable approach may be to model
algorithms. We introduce the corner matching algorithm which we have
used to provide reliable data for 3D computation modules [5][6]. The
development of a simple model of the matching process permits the un-
derstanding of the influence of various parameters in the matching algo-
rithm. This model also allows optimisation of the algorithm using data
distributions obtained from representative scenes.

1 Introduction

The vision literature contains many algorithms for image processing involv-
ing feature extraction and matching. Often these algorithms take the form of
heuristic solutions which attempt to exploit natural properties of generic im-
ages. Such algorithms are rarely perfect and peformance on real images is often
degraded compared to simulated images due to the presence of noise. Clearly
some algorithms must be better than others at doing a particular task, but
how can we determine which? The conventional method for algorithm evalua-
tion, demonstration and comparison seems to be to show the results on a set
of ”standard” images. This is useful to show that the algorithm has been suc-
cessfully implemented and will work on real data [10]. However, the validity of
the assumptions and heuristics underlying the algorithm can rarely be seriously
tested in this way. There are several reasons for this: algorithm performance
is often determined by the specific images for which it has been developed.
Secondly, it is nearly always impossible to obtain an absolute measure of per-
formance (often one needs to be defined and this can be a matter of subjective
choice). Finally, correct implementation and use of other people’s algorithms
is often difficult [1], due to a lack of information about control parameters.

It has been suggested [8] that many implementations of vision algorithms
lack a stability analysis (see for example [9]). Fundamentally, the only way to
evaluate the quality of output data from an algorithm is on the basis of how
well the data is suited to a particular application [3]. However, we need to
get away from the dependence of the evaluation of the algorithm on a specific
source of input data. One alternative involves developing a model of the effects
of an algorithm on input data distributions. This achieves two things, firstly
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the statistical properties of the input data are specified and secondly the valid-
ity of any heuristics are made explicit so that any data independent behaviour
can be identified. Also, by developing such a model the effects of algorithm
modification may be directly assessed. Different algorithms can then be com-
pared, either directly on the basis of their models, or on results predicted by
their models for specific data distributions. Thus algorithm modeling can be
fundamentally useful in understanding, optimising and comparing image pro-
cessing algorithms. This paper has thus adopted this approach to describe the
performance of a corner matching algorithm. Although this algorithm is rela-
tively simple, we believe that the same basic analysis strategy could be applied
to any other algorithm.

2 Feature Matching

The robust matching of any image features obtained from a pair of grey level
images involves the use of a limited set of heuristics.

(a) local image similarity (eg image correlation).

(b) restricted search strategies (eg epi-polars in the case of stereo).

(¢) disparity gradient ( or smoothness ) constraints.

(d) one to one matching.

(e) reliability.

The relative merits of any matching algorithm will be determined by the
extent to which these heuristics are utilised.
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Fig 1(a): Cross correlation distribution for known Fig 1(b): Cross correlation distribution for

We use the corner detection algorithm of Harris and Stephens [2]. Our
corner matching algorithm makes use of all but (c) as corners are generally too
sparse to formulate a sensible constraint (but see [7]). Such information may
be available from edge based matching algorithms but is not considered further

here.
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The basic matching algorithm we use for corners is as follows: (a) Construct
a list of possible matches on the basis of limited search. This involves choosing a
valid search area A. (b) Order the list according to a cross correlation measure
c. (c) Select good matches on the basis of: (i) a threshold p on the minimum
acceptable cross correlation ¢ < p. (ii) a threshold w on the ratio of absolute

corner strengths M«; < w. (iii) reliability of the best candidate match ¢,,

compared to the next best match e, on the basis of a uniqueness parameter §
i eg: ¢m — cn < . (iv) the same best candidate match must be obtained when
matching from image 1 to image 2 and image 2 to image 1 (this enforces one to
one matching). We have previously given reports on the performance of this al-
gorithm for stereo/temporal matching for use in ego-motion determination and
camera calibration [5],[6], but what we are aiming for here is a more systematic
model of the effects of the parameters which control the matching process. We
can consider these rules and control parameters as a prune to select a valid
set of candidate matches followed by selection on the basis of image cross cor-
relation. If the prune results in completely unambiguous assignment then the
result of the matching process is already determined. If however, there are still
several candidates for matching then the success or failure of the algorithm
is determined by the extent to which the image correlation measure separates
correct from incorrect matches. We start by justifying our image correlation
measure as the best measure of its sort for choosing appropriate matches. By
modeling the distribution of this measure for correct and incorrect matches we
are able to assess the effects of the algorithms matching parameters.

2.1 What should we use as our match strength measure?

Given that corners are defined as the peak of an auto-correlation function it
makes sense to use cross-correlation. There are many ways to construct the
correlation function but we will assume that the function should be radially
symmetric so we choose a function of a similar form to the corner detection
definition.

00
c= / A" 2wy Iy, I!, Oudv
—00
where I, is the image, w,v is a gaussian weighting function and with

A= / wyy I2 3u6‘v/ Wy I'2, Oudv

We have hand selected a set of correct matches from several images of differ-
ent objects including simple widget like objects, complicated machine castings,
plastic childrens toys and cassette and lightbulb boxes. For this the cameras
were configured at a typical verge angle of 0.1 radians and data at a distance
of 5-10 inter-occular separations from the camera. The distribution of the
correlation measure for these correct matches is shown in figure 1 (a). This
distribution is generated by the differences in local image formation between
the two images due to lighting, sensor differences and surface orientation. By
computing the cross-correlation for incorrect matches we can get an idea of
the shape of the background underneath the correlation signal when using this
measure for matching (figure 1 (b)).
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We have control over two aspects of the nature of this correlation measure
the first is the range of the correlation. This clearly should be large compared
to the localisation accuracy (0.3 pixels) but not so large that the correlation
computation is costly or that we demand image similarity on a scale which is
unrealistic. We use a range of 3 pixels.

Secondly we are free to choose the form for our cross-correlation measure
by any non-linear rescaling of the image values:

Lhoe= L Lo=Tu®

We find that the best signal to noise ratio is given when n = 1 (figure 2).
This is presumably because the corner detection auto correlation is also defined
on the original image (n = 1) and this is therefore the correlation measure that
we us in the matching algorithm.
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Figure 2: Incorrect cross correlations above 90% and 95% signal cut.
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3 Getting an Incorrect Match

The possible forms of mismatch and signal rejection are determined by the reli-
ability of corner detection process. An inefficient corner detector and occlusion
will generate cases where some corners do not have a detected partner and
can only be matched incorrectly. We can analyse the conditions under which
we will get a mismatch and reject a correct match by considering each corner
feature and its available match candidates in turn. We will thus show how the
probabilities of accepting noise and rejecting signal can be controlled by the
parameters p, w, A and § in the matching algorithm. In the following analy-
sis we assume that the cross correlation distributions for correct and incorrect
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matches are independant of the detection process.

Configuration Probability
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Figure 3: Basic Detection Configurations.

Case (a): The first matching case we consider is that of finding that the
cross-correlation for the best candidate match z,, to the corner under consid-
eration (”current”) is incorrect in the case where neither candidate has their
pair detected in the other image (Figure 3 (i)). The probability Py, for the best
candidate match to the current corner being one of n, unpaired random corners
can be computed as a product of several factors. These are: the probability of
getting the configuration shown in figure 3 (i) and the probability Py(,) that a
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random match drawn from the cross correlation for incorrect matches Py will
have a value greater than p:

Py, = 2n,Pi(1 - Ps)*Pi(p)

where Py is the probability of finding a corner again given that it has already
been detected in one image and

Bl = fl Brlida

Notice that this source of matching error is very sensitive to the reliability
of corner detection Py, and the only way to remove such matches is to increase
the minimum accepted cross-correlation p.

Case (b): The next case we consider is that of obtaining an incorrect
match with one of n, unpaired random corners when the correct match to one
of the corners was also present (Figure 3 (iii) & (iv)). This is slightly more
complicated than the previous case because the existence of the correct match
in the matching list may still prevent this getting accepted as a match due to
the uniqueness parameter §. The probability of this happening P, is given by:

P = 4n,P3(1 — P3)Pu(4,p)

where P, (8, p) is the probability that an incorrect match can be chosen even
when the correct match is present in the match list above a value of p. Given
that Py and Ps (the cross correlation distribution for correct matches) are
uncorrelated this is given by:

1-6 1-6
P.(4,p) =/ Ps(x)/ Py(a — 8)dadz

We can see from this that as the uniqueness factor increases the probability
of keeping a noisy match of this type is reduced.

Case (c): Finally we consider the case where the current corner is paired
but has been matched incorrectly with one of 2n, paired random corners (
figure 3 iii ). We may wish to write the probability for the acceptance rate for
mismatches Pf, as:

PS, = 20, P} Pa(6, p)?

This equation assumes that the two probabilities for mismatch P, (4, p) are
uncorrelated which is unrealistic, as the two corners must be figurally similar
if they are to have mismatched in one matching direction. Thus it is better to
write this as:

P5, = 20, P3Pa(8, p)Pe(6, )

where Py(6,p) is the probability that the cross correlation value for the
complementary pair of the original random match will also be bigger than the
correlation value for the correct match.
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4 Rejected Signal

We now consider ways in which corner pairs are rejected by the matching
process.

Case (a): The first case we consider is when the current corner has been
detected in both images (ie paired) and a random matching feature has not
been detected in either image (Figure 3 (ii). The probability of rejecting this
match is given by:

P? = Pi(1~ Pa)*Ps(p)

where
P
Py(p) = / Ps(x)dz

Case (b): When the current match is paired and there is a random un-
paired match present in either image (Figure 3 (iii)). The probability of reject-
ing a correct match due to the presence of n, unpaired random corners P, is
given by:

P! = 2P}(1 — P)%(Ps(p) + nuPi(6, p))

where Pj(4, p) is the probability of rejecting a correct match due to the
proximity of a random corner.

1 146
Pi(8,p) = f Ps(z) Py(a + 8)dadz
o

T

Case (c): The final case for consideration is when the current match is
paired and there is a random paired match (Figure 3 (v)). The rejection rate
for good corner matches PF is given by

Pf = Pi(Ps(p) + 20y Pi(6,p) — ny (8, 0)*)

5 Algorithm Analysis and Conclusions

Although the above probabilities can be computed directly from examples of the
cross correlation histograms for signal and background there are advantages to
modelling the data as a functional form. With an analytic model of the match-
ing process we can compute directly the effects of varying parameters in the
matching algorithm and can thus minimise the number of background matches
obtained, for various amounts of signal, using standard numerical minimisation
methods.

The cross-correlation distributions Py(2), Ps(z) and Pi(é,p) can be ap-
proximated by triangular distributions. The remaining unknown parameters
are the detection efficiency Py and the numbers of paired and unpaired random
corners n, and ny. In some ways these values are closely related as the ratio
np : ny has a maximum value of Py : 1 — Py . In an application where the full
image contains several hundred corners and the search regions are of the order
of a few percent of the image we estimate these values as;

Py =0.85,n, = 0.75,n, = 4.25
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With these values we can now compute typical signal rejection and noise
acceptance curves for the matching algorithm as a function of the matching

parameters p and § (Figures 4 and 5).
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We can thus approximate the total number of incorrect matches (Figure 4

ho -8

and the total rejection rate for paired corners (Figure 5 (d)) as

PP =PI+ PP+ P

In specific applications where the detected corners have correlated proper-
ties the probability distributions for cross correlations of signal and background
may be significantly different. In these cases the probabilities for mismatch and
signal rejection would also be different. However, we can still draw some qual-
itative conclusions about the generic case of corner matching which must be
true regardless of the signal and background distributions. These are:
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1) All terms in PZ are proportional to the mean number of candidate
matches, thus we would expect the total number of mismatches to vary pro-
portionately with the search area A.

2) We expect type (a) mismatches to be a very small fraction of the to-
tal number of mismatches. The only way to remove these is to increase the
minimum required cross correlation value p.

3) We expect type (b) and (c) mismatches to be of roughly equal importance
and both are reduced considerably by use of the uniqueness parameter § at the
cost of only marginal reduction in the overal number of matches.

4) There is no improvement obtained by increasing § beyond a value of 1—p
as at this point all mismatches of type (b) have already been rejected.

5) There is no set of parameters which give an optimal signal to noise
ratio, this value keeps on rising with increasing p. There are however optimal
values of p and 6 corresponding to the minimum noise obtainable for a required
proportion of signal. For example using the above model for the data the

minimum noise obtainable at a signal level of 60% is 0.2% at parameter values
of p=0.985 and 6 = 0.0032 .

Signal rejection case a:
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6) Even in very severe cases we expect this matching algorithm to have a
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signal to noise ratio in excess of 100:1.

Figure 6 (a) Left Image. Figure 6 (b) Right Image.

Figure 6 (c) Reprojected 3D data from stereo.

The algorithm is demonstrated here with stereo images of a highly textured
head ( figure 6(a) and (b)). In this case there were in excess of 1000 corners
detected with an average of 36 candidate matches for each corner. For param-
eter values of p = 0.99 and é = 0.002 the predicted number of correct and
incorrect matches of 600 and 7. As can be seem from the reprojection of the
reconstructed 3D data (figure 6(c)), this is close to what is observed.

The discussion of the matching algorithm has centred on selecting a set
of candidate matches and then choosing between them. Given that the cross
correlation distributions can be replaced with any relevant similarity measure
this work can be considered as a general model of constrained feature matching.
This model puts us on a sound footing for considering potential modifications
to the corner detection and matching processes.
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