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Abstract In this paper, we present a formal quantification

of uncertainty induced by numerical solutions of ordinary

and partial differential equation models. Numerical solu-

tions of differential equations contain inherent uncertainties

due to the finite-dimensional approximation of an unknown

and implicitly defined function. When statistically analysing

models based on differential equations describing physical,

or other naturally occurring, phenomena, it can be impor-

tant to explicitly account for the uncertainty introduced by

the numerical method. Doing so enables objective deter-

mination of this source of uncertainty, relative to other

uncertainties, such as those caused by data contaminated

with noise or model error induced by missing physical or

inadequate descriptors. As ever larger scale mathematical

models are being used in the sciences, often sacrificing com-

plete resolution of the differential equation on the grids

used, formally accounting for the uncertainty in the numer-

ical method is becoming increasingly more important. This

paper provides the formal means to incorporate this uncer-
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tainty in a statistical model and its subsequent analysis.

We show that a wide variety of existing solvers can be

randomised, inducing a probability measure over the solu-

tions of such differential equations. These measures exhibit

contraction to a Dirac measure around the true unknown solu-

tion, where the rates of convergence are consistent with the

underlying deterministic numerical method. Furthermore,

we employ the method of modified equations to demonstrate

enhanced rates of convergence to stochastic perturbations

of the original deterministic problem. Ordinary differen-

tial equations and elliptic partial differential equations are

used to illustrate the approach to quantify uncertainty in

both the statistical analysis of the forward and inverse

problems.

Keywords Numerical analysis · Probabilistic numerics ·
Inverse problems · Uncertainty quantification

Mathematics Subject Classification 62F15 · 65N75 ·
65L20

1 Introduction

1.1 Motivation

The numerical analysis literature has developed a large range

of efficient algorithms for solving ordinary and partial dif-

ferential equations, which are typically designed to solve

a single problem as efficiently as possible (Hairer et al.

1993; Eriksson 1996). When classical numerical methods

are placed within statistical analysis, however, we argue that

significant difficulties can arise as a result of errors in the

computed approximate solutions. While the distributions of

interest commonly do converge asymptotically as the solver
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mesh becomes dense [e.g. in statistical inverse problems

(Dashti and Stuart 2016)], we argue that at a finite resolu-

tion, the statistical analyses may be vastly overconfident as

a result of these unmodelled errors.

The purpose of this paper is to address these issues by

the construction and rigorous analysis of novel probabilistic

integration methods for both ordinary and partial differential

equations. The approach in both cases is similar: we iden-

tify the key discretisation assumptions and introduce a local

random field, in particular a Gaussian field, to reflect our

uncertainty in those assumptions. The probabilistic solver

may then be sampled repeatedly to interrogate the uncer-

tainty in the solution. For a wide variety of commonly used

numerical methods, our construction is straightforward to

apply and provably preserves the order of convergence of the

original method.

Furthermore, we demonstrate the value of these prob-

abilistic solvers in statistical inference settings. Analytic

and numerical examples show that using a classical non-

probabilistic solver with inadequate discretisation when

performing inference can lead to inappropriate and mislead-

ing posterior concentration in a Bayesian setting. In contrast,

the probabilistic solver reveals the structure of uncertainty

in the solution, naturally limiting posterior concentration as

appropriate.

As a motivating example, consider the solution of the

Lorenz’63 system. Since the problem is chaotic, any typi-

cal fixed-step numerical methods will become increasingly

inaccurate for long integration times. Figure 1 depicts a

deterministic solution for this problem, computed with a

fixed-step, fourth-order, Runge–Kutta integrator. Although

the solver becomes completely inaccurate by the end of the

depicted interval given the step-size selected, the solver pro-

vides no obvious characterisation of its error at late times.

Compare this with a sample of randomised solutions based

on the same integrator and the same step-size; it is obvi-

ous that early-time solutions are accurate and that they

diverge at late times, reflecting instability of the solver.

Every curve drawn has the same theoretical accuracy as

the original classical method, but the randomised integra-

tor provides a detailed and practical approach for revealing

the sensitivity of the solution to numerical errors. The

method used requires only a straightforward modification

of the standard Runge–Kutta integrator and is explained in

Sect. 2.3.

We summarise the contributions of this work as follows:

– Construct randomised solvers of ODEs and PDEs using

natural modification of popular, existing solvers.

– Prove the convergence of the randomised methods and

study their behaviour by showing a close link between

randomised ODE solvers and stochastic differential

equations (SDEs).

– Demonstrate that these randomised solvers can be used

to perform statistical analyses that appropriately consider

solver uncertainty.

1.2 Review of existing work

The statistical analysis of models based on ordinary and

partial differential equations is growing in importance and

Fig. 1 A comparison of

solutions to the Lorenz’63

system using deterministic (red)

and randomised (blue)

integrators based on a

fourth-order Runge–Kutta

integrator
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a number of recent papers in the statistics literature have

sought to address certain aspects specific to such mod-

els, e.g. parameter estimation (Liang and Wu 2008; Xue

et al. 2010; Xun et al. 2013; Brunel et al. 2014) and sur-

rogate construction (Chakraborty et al. 2013). However,

the statistical implications of the reliance on a numeri-

cal approximation to the actual solution of the differential

equation have not been addressed in the statistics litera-

ture to date and this is the open problem comprehensively

addressed in this paper. Earlier work in the literature includ-

ing randomisation in the approximate integration of ordi-

nary differential equations (ODEs) includes (Coulibaly and

Lécot 1999; Stengle 1995). Our strategy fits within the

emerging field known as Probabilistic Numerics (Hennig

et al. 2015), a perspective on computational methods pio-

neered by Diaconis (1988), and subsequently (Skilling 1992).

This framework recasts solving differential equations as a

statistical inference problem, yielding a probability mea-

sure over functions that satisfy the constraints imposed by

the specific differential equation. This measure formally

quantifies the uncertainty in candidate solution(s) of the

differential equation, allowing its use in uncertainty quan-

tification (Sullivan 2016) or Bayesian inverse problems

(Dashti and Stuart 2016).

A recent Probabilistic Numerics methodology for ODEs

(Chkrebtii et al. 2013) [explored in parallel in Hennig and

Hauberg (2014)] has two important shortcomings. First, it

is impractical, only supporting first-order accurate schemes

with a rapidly growing computational cost caused by the

growing difference stencil [although Schober et al. (2014)

extends to Runge–Kutta methods]. Secondly, this method

does not clearly articulate the relationship between their

probabilistic structure and the problem being solved. These

methods construct a Gaussian process whose mean coin-

cides with an existing deterministic integrator. While they

claim that the posterior variance is useful, by the con-

jugacy inherent in linear Gaussian models, it is actually

just an a priori estimate of the rate of convergence of

the integrator, independent of the actual forcing or ini-

tial condition of the problem being solved. These works

also describe a procedure for randomising the construc-

tion of the mean process, which bears similarity to our

approach, but it is not formally studied. In contrast, we

formally link each draw from our measure to the analytic

solution.

Our motivation for enhancing inference problems with

models of discretisation error is similar to the more gen-

eral concept of model error, as developed by Kennedy and

O’Hagan (2001). Although more general types of model

error, including uncertainty in the underlying physics, are

important in many applications, our focus on errors aris-

ing from the discretisation of differential equations leads to

more specialised methods. Future work may be able to trans-

late insights from our study of the restricted problem to the

more general case. Existing strategies for discretisation error

include empirically fitted Gaussian models for PDE errors

(Kaipio and Somersalo 2007) and randomly perturbed ODEs

(Arnold et al. 2013); the latter partially coincides with our

construction, but our motivation and analysis are distinct.

Recent work (Capistrán et al. 2013) uses Bayes factors to

analyse the impact of discretisation error on posterior approx-

imation quality. Probabilistic models have also been used to

study error propagation due to rounding error; see Hairer

et al. (2008).

1.3 Organisation

The remainder of the paper has the following structure:

Sect. 2 introduces and formally analyses the proposed proba-

bilistic solvers for ODEs. Section 3 explores the characteris-

tics of random solvers employed in the statistical analysis of

both forward and inverse problems. Then, we turn to elliptic

PDEs in Sect. 4, where several key steps of the construction

of probabilistic solvers and their analysis have intuitive ana-

logues in the ODE context. Finally, an illustrative example

of an elliptic PDE inference problem is presented in Sect. 5.1

2 Probability measures via probabilistic time

integrators

Consider the following ordinary differential equation (ODE):

du

dt
= f (u), u(0) = u0, (1)

where u(·) is a continuous function taking values in Rn .2

We let Φt denote the flow map for Eq. (1), so that u(t) =
Φt

(
u(0)

)
. The conditions ensuring that this solution exists

will be formalised in Assumption 2, below.

Deterministic numerical methods for the integration of

this equation on time interval [0, T ] will produce an approx-

imation to the equation on a mesh of points {tk = kh}K
k=0,

with K h = T , (for simplicity we assume a fixed mesh). Let

uk = u(tk) denote the exact solution of (1) on the mesh and

Uk ≈ uk denote the approximation computed using finite

evaluations of f . Typically, these methods output a single

discrete solution {Uk}K
k=0, often augmented with some type

of error indicator, but do not statistically quantify the uncer-

tainty remaining in the path.

1 Supplementary materials and code are available online: http://www2.

warwick.ac.uk/pints.

2 To simplify our discussion we assume that the ODE is autonomous,

that is, f (u) is independent of time. Analogous theory can be developed

for time-dependent forcing.
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Let Xa,b denote the Banach space C([a, b]; Rn). The

exact solution of (1) on the time interval [0, T ]may be viewed

as a Dirac measure δu on X0,T at the element u that solves the

ODE. We will construct a probability measure μh on X0,T ,

that is straightforward to sample from both on and off the

mesh, for which h quantifies the size of the discretisation

step employed, and whose distribution reflects the uncer-

tainty resulting from the solution of the ODE. Convergence

of the numerical method is then related to the contraction of

μh to δu .

We briefly summarise the construction of the numerical

method. Let Ψh : Rn → Rn denote a classical determin-

istic one-step numerical integrator over time-step h, a class

including all Runge–Kutta methods and Taylor methods for

ODE numerical integration (Hairer et al. 1993). Our numer-

ical methods will have the property that, on the mesh, they

take the form

Uk+1 = Ψh(Uk) + ξk(h), (2)

where ξk(h) are suitably scaled, i.i.d. Gaussian random vari-

ables. That is, the random solution iteratively takes the

standard step, Ψh , followed by perturbation with a random

draw, ξk(h), modelling uncertainty that accumulates between

mesh points. The discrete path {Uk}K
k=0 is straightforward to

sample and in general is not a Gaussian process. Furthermore,

the discrete trajectory can be extended into a continuous time

approximation of the ODE, which we define as a draw from

the measure μh .

The remainder of this section develops these solvers in

detail and proves strong convergence of the random solu-

tions to the exact solution, implying that μh → δu in an

appropriate sense. Finally, we establish a close relationship

between our random solver and a stochastic differential equa-

tion (SDE) with small mesh-dependent noise. Intuitively,

adding Gaussian noise to an ODE suggests a link to SDEs.

Additionally, note that the mesh-restricted version of our

algorithm, given by (2), has the same structure as a first-order

Ito–Taylor expansion of the SDE

du = f (u)dt + σdW, (3)

for some choice of σ . We make this link precise by perform-

ing a backwards error analysis, which connects the behaviour

of our solver to an associated SDE.

2.1 Probabilistic time integrators: general formulation

The integral form of Eq. (1) is

u(t) = u0 +
∫ t

0

f
(
u(s)

)
ds. (4)

The solutions on the mesh satisfy

uk+1 = uk +
∫ tk+1

tk

f
(
u(s)

)
ds, (5)

and may be interpolated between mesh points by means of

the expression

u(t) = uk +
∫ t

tk

f
(
u(s)

)
ds, t ∈ [tk, tk+1). (6)

We may then write

u(t) = uk +
∫ t

tk

g(s)ds, t ∈ [tk, tk+1), (7)

where g(s) = f
(
u(s)

)
is an unknown function of time. In the

algorithmic setting, we have approximate knowledge about

g(s) through an underlying numerical method. A variety of

traditional numerical algorithms may be derived based on

approximation of g(s) by various simple deterministic func-

tions gh(s). The simplest such numerical method arises from

invoking the Euler approximation that

gh(s) = f (Uk), s ∈ [tk, tk+1). (8)

In particular, if we take t = tk+1 and apply this method induc-

tively the corresponding numerical scheme arising from

making such an approximation to g(s) in (7) is Uk+1 =
Uk + h f (Uk). Now consider the more general one-step

numerical method Uk+1 = Ψh(Uk). This may be derived

by approximating g(s) in (7) by

gh(s) = d

dτ

(
Ψτ (Uk)

)
τ=s−tk

, s ∈ [tk, tk+1). (9)

We note that all consistent (in the sense of numerical analysis)

one-step methods will satisfy

d

dτ

(
Ψτ (u)

)
τ=0

= f (u).

The approach based on the approximation (9) leads to a

deterministic numerical method which is defined as a con-

tinuous function of time. Specifically, we have U (s) =
Ψs−tk (Uk), s ∈ [tk, tk+1).Consider again the Euler approx-

imation, for which Ψτ (U ) = U + τ f (U ), and whose

continuous time interpolant is then given by U (s) = Uk +
(s − tk) f (Uk), s ∈ [tk, tk+1). Note that this produces

a continuous function, namely an element of X0,T , when

extended to s ∈ [0, T ]. The preceding development of a

numerical integrator does not acknowledge the uncertainty

that arises from lack of knowledge about g(s) in the interval
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s ∈ [tk, tk+1). We propose to approximate g stochastically

in order to represent this uncertainty, taking

gh(s) = d

dτ

(
Ψτ (Uk)

)
τ=s−tk

+ χk(s − tk), s ∈ [tk, tk+1)

where the {χk} form an i.i.d. sequence of Gaussian random

functions defined on [0, h] with χk ∼ N (0, Ch).3

We will choose Ch to shrink to zero with h at a prescribed

rate (see Assumption 1), and also to ensure that χk ∈ X0,h

almost surely. The functions {χk} represent our uncertainty

about the function g. The corresponding numerical scheme

arising from such an approximation is given by

Uk+1 = Ψh(Uk) + ξk(h), (10)

where the i.i.d. sequence of functions {ξk} lies in X0,h and is

given by

ξk(t) =
∫ t

0

χk(τ )dτ. (11)

Note that the numerical solution is now naturally defined

between grid points, via the expression

U (s) = Ψs−tk (Uk) + ξk(s − tk), s ∈ [tk, tk+1). (12)

When it is necessary to evaluate a solution at multiple points

in an interval, s ∈ (tk, tk+1], the perturbations ξk(s − tk)

must be drawn jointly, which is facilitated by their Gaussian

structure. Although most users will only need the formulation

on mesh points, we must consider off-mesh behaviour to

rigorously analyse higher order methods, as is also required

for the deterministic variants of these methods.

In the case of the Euler method, for example, we have

Uk+1 = Uk + h f (Uk) + ξk(h) (13)

and, between grid points,

U (s) = Uk + (s − tk) f (Uk) + ξk(s − tk), s ∈ [tk, tk+1).

(14)

This method is illustrated in Fig. 2. Observe that Eq. (13)

has the same form as an Euler–Maryama method for an

associated SDE (3) where σ depends on the step-size h. In

particular, in the simple one-dimensional case, σ would be

given by
√

Ch/h. Section 2.4 develops a more sophisticated

connection that extends to higher order methods and off the

mesh.

3 We use χk ∼ N (0, Ch) to denote a zero-mean Gaussian process

defined on [0, h] with a covariance kernel cov(χk(t), χk(s)) � Ch(t, s).

(a)

(b)

Fig. 2 An illustration of deterministic Euler steps and randomised vari-

ations. The random integrator in (b) outputs the path in red; we overlay

the standard Euler step constructed at each step, before it is perturbed

(blue)

While we argue that the choice of modelling local uncer-

tainty in the flow map as a Gaussian process is natural

and analytically favourable, it is not unique. It is possi-

ble to construct examples where the Gaussian assumption

is invalid; for example, when a highly inadequate time-

step is used, a systemic bias may be introduced. However,

in regimes where the underlying deterministic method per-

forms well, the centred Gaussian assumption is a reasonable

prior.

2.2 Strong convergence result

To prove the strong convergence of our probabilistic numeri-

cal solver, we first need two assumptions quantifying proper-

ties of the random noise and of the underlying deterministic

integrator, respectively. In what follows we use 〈·, ·〉 and | · |
to denote the Euclidean inner product and norm on Rn . We

denote the Frobenius norm on Rn×n by | · |F, and Eh denotes

expectation with respect to the i.i.d. sequence {χk}.

Assumption 1 Let ξk(t) :=
∫ t

0 χk(s)ds withχk ∼ N (0, Ch).

Then there exists K > 0, p ≥ 1 such that, for all t ∈ [0, h],
Eh |ξk(t)ξk(t)

T |2F ≤ K t2p+1; in particular Eh |ξk(t)|2 ≤
K t2p+1. Furthermore, we assume the existence of matrix

Q, independent of h, such that Eh[ξk(h)ξk(h)T ] = Qh2p+1.
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Here, and in the sequel, K is a constant independent of h,

but possibly changing from line to line. Note that the covari-

ance kernel Ch is constrained, but not uniquely defined. We

will assume the form of the constant matrix is Q = σ I , and

we discuss one possible strategy for choosing σ in Sect. 3.1.

Section 2.4 uses a weak convergence analysis to argue that

once Q is selected, the exact choice of Ch has little practical

impact.

Assumption 2 The function f and a sufficient number of its

derivatives are bounded uniformly in Rn in order to ensure

that f is globally Lipschitz and that the numerical flow map

Ψh has uniform local truncation error of order q + 1:

sup
u∈Rn

|Ψt (u) − Φt (u)| ≤ K tq+1.

Remark 2.1 We assume globally Lipschitz f , and bounded

derivatives, in order to highlight the key probabilistic ideas,

whilst simplifying the numerical analysis. Future work will

address the non-trivial issue of extending of analyses to

weaken these assumptions. In this paper, we provide numer-

ical results indicating that a weakening of the assumptions is

indeed possible.

Theorem 2.2 Under Assumptions 1, 2 it follows that there

is K > 0 such that

sup
0≤kh≤T

Eh |uk − Uk |2 ≤ K h2 min{p,q}.

Furthermore,

sup
0≤t≤T

Eh |u(t) − U (t)| ≤ K hmin{p,q}.

This theorem implies that every probabilistic solution is a

good approximation of the exact solution in both a discrete

and continuous sense. Choosing p ≥ q is natural if we want

to preserve the strong order of accuracy of the underlying

deterministic integrator; we proceed with the choice p = q,

introducing the maximum amount of noise consistent with

this constraint.

2.3 Examples of probabilistic time integrators

The canonical illustration of a probabilistic time integrator is

the probabilistic Euler method already described.4 Another

useful example is the classical Runge–Kutta method which

defines a one-step numerical integrator as follows:

Ψh(u) = u + h

6

(
k1(u) + 2k2(u, h) + 2k3(u, h) + k4(u, h)

)
,

4 An additional example of a probabilistic integrator, based on a

Ornstein–Uhlenbeck process, is available in the supplementary materi-

als.

where

k1(u) = f (u), k2(u, h) = f
(
u + 1

2
hk1(u)

)

k3(u, h) = f
(
u + 1

2
hk2(u)

)
, k4(u, h) = f

(
u + hk3(u)

)
.

The method has local truncation error in the form of Assump-

tion 2 with q = 4. It may be used as the basis of a probabilistic

numerical method (12), and hence (10) at the grid points.

Thus, provided that we choose to perturb this integrator with

a random process χk satisfying Assumption 1 with p ≥ 4,5

Theorem 2.2 shows that the error between the probabilistic

integrator based on the classical Runge–Kutta method is, in

the mean square sense, of the same order of accuracy as the

deterministic classical Runge–Kutta integrator.

2.4 Backward error analysis

Backwards error analyses are useful tool for numerical analy-

sis; the idea is to characterise the method by identifying a

modified equation (dependent upon h) which is solved by

the numerical method either exactly, or at least to a higher

degree of accuracy than the numerical method solves the

original equation. For our random ODE solvers, we will show

that the modified equation is a stochastic differential equation

(SDE) in which only the matrix Q from Assumption 1 enters;

the details of the random processes used in our construction

do not enter the modified equation. This universality prop-

erty underpins the methodology we introduce as it shows that

many different choices of random processes all lead to the

same effective behaviour of the numerical method.

We introduce the operators L and Lh defined so that, for

all φ ∈ C∞(Rn, R),

φ
(
Φh(u)

)
=

(
ehLφ

)
(u), Eφ

(
U1|U0 = u

)
=

(
ehLh

φ
)
(u).

(15)

Thus L := f · ∇ and ehLh
is the kernel for the Markov

chain generated by the probabilistic integrator (2). In fact we

never need to work with Lh itself in what follows, only with

ehLh
, so that questions involving the operator logarithm do

not need to be discussed.

We now introduce a modified ODE and a modified SDE

which will be needed in the analysis that follows. The mod-

ified ODE is

dû

dt
= f h(û) (16)

5 Implementing Eq. 10 is trivial, since it simply adds an appropriately

scaled Gaussian random number after each classical Runge–Kutta step.
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whilst the modified SDE has the form

dũ = f h(ũ)dt +
√

h2p Q dW. (17)

The precise choice of f h is detailed below. Letting E denote

expectation with respect to W , we introduce the operators L̂h

and L̃h so that, for all φ ∈ C∞(Rn, R),

φ
(
û(h)|û(0) = u

)
=

(
ehL̂h

φ
)
(u), (18)

Eφ
(
ũ(h)|ũ(0) = 0

)
=

(
ehL̃h

φ
)
(u). (19)

Thus,

L̂
h := f h · ∇, L̃

h = f h · ∇ + 1

2
h2p Q : ∇∇, (20)

where : denotes the inner product on Rn×n which induces the

Frobenius norm, that is, A:B = trace(AT B).

The fact that the deterministic numerical integrator has

uniform local truncation error of order q +1 (Assumption 2)

implies that, since φ ∈ C∞,

ehLφ(u) − φ(Ψh(u)) = O(hq+1). (21)

The theory of modified equations for classical one-step

numerical integration schemes for ODEs (Hairer et al. 1993)

establishes that it is possible to find f h in the form

f h := f +
q+l∑

i=q

hi fi , (22)

such that

ehL̂h

φ(u) − φ(Ψh(u)) = O(hq+2+l). (23)

We work with this choice of f h in what follows.

Now for our stochastic numerical method we have

φ(Uk+1) = φ(Ψh(Uk)) + ξk(h) · ∇φ(Ψh(Uk))

+ 1

2
ξk(h)ξ T

k (h) : ∇∇φ(Ψh(Uk)) + O(|ξk(h)|3).

Furthermore, the last term has mean of size O(|ξk(h)|4).
From Assumption 1 we know that Eh

(
ξk(h)ξ T

k (h)
)

=
Qh2p+1. Thus

ehLh

φ(u) − φ
(
Ψh(u)

)

= 1

2
h2p+1 Q : ∇∇φ

(
Ψh(u)

)
+ O(h4p+2). (24)

From this it follows that

ehLh

φ(u) − φ
(
Ψh(u)

)

= 1

2
h2p+1 Q : ∇∇φ(u) + O(h2p+2). (25)

Finally we note that (20) implies that

ehL̃h

φ(u) − ehL̂h

φ(u)

= ehL̂h (
e

1
2 h2p+1 Q:∇∇ − I

)
φ(u)

= ehL̂h
(1

2
h2p+1 Q : ∇∇φ(u) + O(h4p+2)

)

=
(
I + O(h)

)(1

2
h2p+1 Q : ∇∇φ(u)

+ O(h4p+2)
)
.

Thus we have

ehL̃h

φ(u)− ehL̂h

φ(u) = 1

2
h2p+1 Q : ∇∇φ(u)+O(h2p+2).

(26)

Now using (23), (25), and (26) we obtain

ehL̃h

φ(u) − ehLh

φ(u) = O(h2p+2) + O(hq+2+l). (27)

Balancing these terms, in what follows we make the choice

l = 2p − q. If l < 0 we adopt the convention that the drift

f h is simply f. With this choice of q we obtain

ehL̃h

φ(u) − ehLh

φ(u) = O(h2p+2). (28)

This demonstrates that the error between the Markov ker-

nel of one-step of the SDE (17) and the Markov kernel of the

numerical method (2) is of order O(h2p+2). Some straight-

forward stability considerations show that the weak error over

an O(1) time interval is O(h2p+1). We make assumptions

giving this stability and then state a theorem comparing the

weak error with respect to the modified Eq. (17), and the

original Eq. (1).

Assumption 3 The function f is in C∞ and all its deriv-

atives are uniformly bounded on Rn . Furthermore, f is

such that the operators ehL and ehLh
satisfy, for all ψ ∈

C∞(Rn, R) and some L > 0,

sup
u∈Rn

|ehLψ(u)| ≤ (1 + Lh) sup
u∈Rn

|ψ(u)|,

sup
u∈Rn

|ehLh

ψ(u)| ≤ (1 + Lh) sup
u∈Rn

|ψ(u)|.

Remark 2.3 If p = q in what follows (our recommended

choice) then the weak order of the method coincides with

the strong order; however, measured relative to the modified

equation, the weak order is then one plus twice the strong

order. In this case, the second part of Theorem 2.2 gives

us the first weak order result in Theorem 2.4. Additionally,

Assumption 3 is stronger than we need, but allows us to

highlight probabilistic ideas whilst keeping overly technical
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aspects of the numerical analysis to a minimum. More sophis-

ticated, but structurally similar, analysis would be required

for weaker assumptions on f . Similar considerations apply

to the assumptions on φ.

Theorem 2.4 Consider the numerical method (10) and

assume that Assumptions 1 and 3 are satisfied. Then, for

φ ∈ C∞ function with all derivatives bounded uniformly on

Rn , we have that

|φ(u(T )) − Eh
(
φ(Uk)

)
| ≤ K hmin{2p,q}, kh = T,

and

|E
(
φ(ũ(T ))

)
− Eh

(
φ(Uk)

)
| ≤ K h2p+1, kh = T,

where u and ũ solve (1) and (17), respectively.

Example 2.5 Consider the probabilistic integrator derived

from the Euler method in dimension n = 1. We thus have

q = 1, and we hence set p = 1. The results in Hairer et al.

(2006) allow us to calculate f h with l = 1. The preceding

theory then leads to strong order of convergence 1, measured

relative to the true ODE (1), and weak order 3 relative to the

SDE

dû =
(

f (û) − h

2
f ′(û) f (û) + h2

12

(
f ′′(û) f 2(û)

+ 4( f ′(û))2 f (û)
))

dt +
√

ChdW.

These results allow us to constrain the behaviour of the

randomised method using limited information about the

covariance structure, Ch . The randomised solution converges

weakly, at a high rate, to a solution that only depends on Q.

Hence, we conclude that the practical behaviour of the solu-

tion is only dependent upon Q, and otherwise, Ch may be

any convenient kernel. With these results now available, the

following section provides an empirical study of our proba-

bilistic integrators.

3 Statistical inference and numerics

This section explores applications of the randomised ODE

solvers developed in Sect. 2 to forward and inverse prob-

lems. Throughout this section, we use the FitzHugh–Nagumo

model to illustrate ideas (Ramsay et al. 2007). This is a two-

state non-linear oscillator, with states (V, R) and parameters

(a, b, c), governed by the equations

dV

dt
= c

(
V − V 3

3
+ R

)
,

dR

dt
= −1

c
(V − a + bR) .

(29)

This particular example does not satisfy the stringent

Assumptions 2 and 3 and the numerical results shown demon-

strate that, as indicated in Remarks 2.1 and 2.3, our theory

will extend to weaker assumptions on f , something we will

address in future work.

3.1 Calibrating forward uncertainty propagation

Consider Eq. (29) with fixed initial conditions V (0) =
−1, R(0) = 1, and parameter values (.2, .2, 3). Figure 3

shows draws of the V species trajectories from the measure

associated with the probabilistic Euler solver with p = q =
1, for various values of the step-size and fixed σ = 0.1.

The random draws exhibit non-Gaussian structure at large

step-size and clearly contract towards the true solution.

Although the rate of contraction is governed by the

underlying deterministic method, the scale parameter, σ ,

completely controls the apparent uncertainty in the solver.6

This tuning problem exists in general, since σ is problem

dependent and cannot obviously be computed analytically.

Therefore, we propose to calibrate σ to replicate the

amount of error suggested by classical error indicators. In the

following discussion, we often explicitly denote the depen-

dence on h and σ with superscripts, hence the probabilistic

solver is U h,σ and the corresponding deterministic solver is

U h,0. Define the deterministic error as e(t) = u(t)−U h,0(t).

Then we assume there is some computable error indicator

E(t) ≈ e(t), defining Ek = E(tk). The simplest error indi-

cators might compare differing step-sizes, E(t) = U h,0(t)−
U 2h,0(t), or differing order methods, as in a Runge–Kutta 4–

5 scheme.

We proceed by constructing a probability distribution

π(σ) that is maximised when the desired matching occurs.

We estimate this scale matching by comparing: (i) a Gaussian

approximation of our random solver at each step k, μ̃
h,σ
k =

N (E(U
h,σ
k ), V(U

h,σ
k )); and (ii) the natural Gaussian mea-

sure from the deterministic solver, U
h,0
k , and the available

error indicator, Ek , νσ
k = N (U

h,0
k , (Ek)

2). We construct

π(σ) by penalising the distance between these two normal

distributions at every step: π(σ) ∝
∏

k exp
(
−d(μ̃

h,σ
k , νσ

k )
)

.

We find that the Bhattacharyya distance (closely related to the

Hellinger metric) works well (Kailath 1967), since it diverges

quickly if either the mean or variance differs. The density can

be easily estimated using Monte Carlo. If the ODE state is a

vector, we take the product of the univariate Bhattacharyya

distances. Note that this calibration depends on the initial

conditions and any parameters of the ODE.

6 Recall that throughout we assume that, within the context of Assump-

tion 1, Q = σ I . More generally it is possible to calibrate an arbitrary

positive semi-definite Q.
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Fig. 3 The true trajectory of

the V species of the

FitzHugh–Nagumo model (red)

and one hundred realisations

from a probabilistic Euler ODE

solver with various step-sizes

and noise scale σ = .1 (blue) −4

−2

0

2

4

R

h = 0.2 h = 0.1 h = 0.05

−4

−2

0

2

4

R

h = 0.02 h = 0.01 h = 0.005

0 5 10 15 20
t

−4

−2

0

2

4

R

h = 0.002

0 5 10 15 20
t

h = 0.001

0 5 10 15 20
t

h = 0.5 × 10
−3

Fig. 4 A comparison of the

error indicator for the V species

of the FitzHugh–Nagumo model

(blue) and the observed

variation in the calibrated

probabilistic solver. The red

curves depict 50 samples of the

magnitude of the difference

between a standard Euler solver

for several step-sizes and the

equivalent randomised variant,

using σ ∗, maximising π(σ)

Returning to the FitzHugh–Nagumo model, sampling

from π(σ) yields strongly peaked, uni-modal posteriors,

hence we proceed using σ ∗ = arg maxπ(σ). We exam-

ine the quality of the scale matching by plotting the

magnitudes of the random variation against the error indi-

cator in Fig. 4, observing good agreement of the mar-

ginal variances. Note that our measure still reveals non-

Gaussian structure and correlations in time not revealed

by the deterministic analysis. As described, this procedure

requires fixed inputs to the ODE, but it is straightfor-

ward to marginalise out a prior distribution over input

parameters.

3.2 Bayesian posterior inference problems

Given the calibrated probabilistic ODE solvers described

above, let us consider how to incorporate them into infer-

ence problems.

Assume we are interested in inferring parameters of the

ODE given noisy observations of the state. Specifically, we

wish to infer parameters θ ∈ Rd for the differential equation

u̇ = f (u, θ), with fixed initial conditions u(t = 0) = u0 (a

straightforward modification may include inference on initial

conditions). Assume we are provided with data d ∈ Rm , d j =
u(τ j ) + η j at some collection of times τ j , corrupted by i.i.d.
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noise, η j ∼ N (0, Γ ). If we have prior Q(θ), the posterior

we wish to explore is, P(θ | d) ∝ Q(θ)L(d, u(θ)), where

density L compactly summarises this likelihood model.

The standard computational strategy is to simply replace

the unavailable trajectory u with a numerical approxi-

mation, inducing approximate posterior Ph,0(θ | d) ∝
Q(θ)L(d, U h,0(θ)). Informally, this approximation will be

accurate when the error in the numerical solver is small com-

pared to Γ and often converges formally to P(θ | d) as h → 0

(Dashti and Stuart 2016). However, highly correlated errors

at finite h can have substantial impact.

In this work, we are concerned about the undue optimism

in the predicted variance, that is, when the posterior concen-

trates around an arbitrary parameter value even though the

deterministic solver is inaccurate and is merely able to repro-

duce the data by coincidence. The conventional concern is

that any error in the solver will be transferred into posterior

bias. Practitioners commonly alleviate both concerns by tun-

ing the solver to be nearly perfect, however, we note that this

may be computationally prohibitive in many contemporary

statistical applications.

We can construct a different posterior that includes the

uncertainty in the solver by taking an expectation over ran-

dom solutions to the ODE

Ph,σ (θ | d) ∝ Q(θ)

∫
L(d, U h,σ (θ, ξ))dξ, (30)

where U h,σ (θ, ξ) is a draw from the randomised solver given

parameters θ and random draw ξ . Intuitively, this construc-

tion favours parameters that exhibit agreement with the entire

family of uncertain trajectories. The typical effect of this

expectation is to increase the posterior uncertainty on θ , pre-

venting the inappropriate posterior collapse we are concerned

about. Indeed, if the integrator cannot resolve the underlying

dynamics, h p+1/2σ will be large. Then U h,σ (θ, ξ) is inde-

pendent of θ , hence the prior is recovered, Ph,σ (θ | d) ≈
Q(θ).

Notice that as h → 0, both the measures Ph,0 and Ph,σ

typically collapse to the analytic posterior, P, hence both

methods are correct. We do not expect the bias of Ph,σ to

be improved, since all of the averaged trajectories are of the

same quality as the deterministic solver in Ph,0. We now

construct an analytic inference problem demonstrating these

behaviours.

Example 3.1 Consider inferring the initial condition, u0 ∈
R, of the scalar linear differential equation, u̇ = λu, with

λ > 0. We apply a numerical method to produce the approx-

imation Uk ≈ u(kh). We observe the state at some times

t = kh, with additive noise ηk ∼ N (0, γ 2): dk = Uk + ηk .

If we use a deterministic Euler solver, the model predicts

Uk = (1 + hλ)ku0. These model predictions coincide with

the slightly perturbed problem

du

dt
= h−1 log(1 + λh)u,

hence error increases with time. However, the assumed obser-

vational model does not allow for this, as the observation

variance is γ 2 at all times.

In contrast, our proposed probabilistic Euler solver pre-

dicts

Uk = (1 + hλ)ku0 + σh3/2
k−1∑

j=0

ξ j (1 + λh)k− j−1,

where we have made the natural choice p = q, where σ is

the problem-dependent scaling of the noise and the ξk are

i.i.d. N (0, 1). For a single observation, ηk and every ξk are

independent, so we may rearrange the equation to consider

the perturbation as part of the observation operator. Hence, a

single observation at k has effective variance

γ 2
h := γ 2 + σ 2h3

k−1∑

j=0

(1 + λh)2(k− j−1)

= γ 2 + σ 2h3 (1 + λh)2k − 1

(1 + λh)2 − 1
.

Thus, late-time observations are modelled as being increas-

ingly inaccurate.

Consider inferring u0, given a single observation dk at

time k. If a Gaussian prior N (m0, ζ
2
0 ) is specified for u0,

then the posterior is N (m, ζ 2), where

ζ−2 = (1 + hλ)2k

γ 2
h

+ ζ−2
0 ,

ζ−2m = (1 + hλ)kdk

γ 2
h

+ ζ−2
0 m0.

The observation precision is scaled by (1 + hλ)2k because

late-time data contain increasing information. Assume that

the data are dk = eλkhu
†
0 + γ η†, for some given true ini-

tial condition u
†
0 and noise realisation η†. Consider now

the asymptotic regime, where h is fixed and k → ∞. For

the standard Euler method, where γh = γ , we see that

ζ 2 → 0, whilst m ≍
(
(1 + hλ)−1ehλ

)k
u

†
0. Thus the infer-

ence scheme becomes increasingly certain of the wrong

answer: the variance tends to zero and the mean tends to

infinity.

In contrast, with a randomised integrator, the fixed h, large

k asymptotics are

ζ 2 ≍ 1

ζ−2
0 + λ(2 + λh)σ−2h−2

,

m ≍
(
(1 + hλ)−1ehλ

)k
u

†
0

1 + ζ−2
0 σ 2h2λ−1(2 + λh)−1

.
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Fig. 5 The posterior marginals

of the FitzHugh–Nagumo

inference problem using

deterministic integrators with

various step-sizes
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Thus, the mean blows up at a modified rate, but the variance

remains positive.

We take an empirical Bayes approach to choosing σ , that

is, using a constant, fixed value σ ∗ = arg maxπ(σ), chosen

before the data are observed. Joint inference of the parameters

and the noise scale suffer from well-known MCMC mixing

issues in Bayesian hierarchic models. To handle the unknown

parameter θ , we can marginalise it out using the prior distrib-

ution, or in simple problems, it may be reasonable to choose

a fixed representative value.

We now return to the FitzHugh–Nagumo model; given

fixed initial conditions, we attempt to recover parameters

θ = (a, b, c) from observations of both species at times

τ = 1, 2, . . . , 40. The priors are log-normal, centred on the

true value with unit variance, and with observational noise

Γ = 0.001. The data are generated from a high-quality solu-

tion, and we perform inference using Euler integrators with

various step-sizes, h ∈ {0.005, 0.01, 0.02, 0.05, 0.1}, span-

ning a range of accurate and inaccurate integrators.

We first perform the inferences with naive use of deter-

ministic Euler integrators. We simulate from each posterior

using delayed rejection MCMC (Haario et al. 2006), shown

in Fig. 5. Observe the undesirable concentration of every

posterior, even those with poor solvers; the posteriors are

almost mutually singular, hence clearly the posterior widths

are meaningless.

Secondly, we repeat the experiment using our probabilis-

tic Euler integrators, with results shown in Fig. 6. We use

a noisy pseudomarginal MCMC method, whose fast mix-

ing is helpful for these initial experiments (Medina-Aguayo

et al. 2015). These posteriors are significantly improved,

exhibiting greater mutual agreement and obvious increasing

concentration with improving solver quality. The posteriors

are not perfectly nested, possible evidence that our choice of

scale parameter is imperfect, or that the assumption of locally

Gaussian error deteriorates for large step-sizes. Note that the

bias of θ3 is essentially unchanged with the randomised inte-

grator, but the posterior for θ2 broadens and is correlated

to θ3, hence introduces a bias in the posterior mode; with-

out randomisation, only the inappropriate certainty about θ3

allowed the marginal for θ2 to exhibit little bias.

4 Probabilistic solvers for partial differential

equations

We now turn to present a framework for probabilistic solu-

tions to partial differential equations, working within the

finite element setting. Our discussion closely resembles the

ODE case, except that now we randomly perturb the finite

element basis functions.

4.1 Probabilistic finite element method for variational

problems

Let V be a Hilbert space of real-valued functions defined on

a bounded polygonal domain D ⊂ Rd . Consider a weak for-

mulation of a linear PDE specified via a symmetric bilinear

form a : V×V −→ R, and a linear form r : V −→ R to give

the problem of finding u ∈ V : a(u, v) = r(v), ∀v ∈ V.

This problem can be approximated by specifying a finite-

dimensional subspace Vh ⊂ V and seeking a solution in

Vh instead. This leads to a finite-dimensional problem to be

solved for the approximation U :

123



1076 Stat Comput (2017) 27:1065–1082

Fig. 6 The posterior marginals

of the FitzHugh–Nagumo

inference problem using

probabilistic integrators with

various step-sizes
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U ∈ V
h : a(U, v) = r(v), ∀v ∈ V

h . (31)

This is known as the Galerkin method.

We will work in the setting of finite element methods,

assuming that Vh = span{φ j }J
j=1, where φ j is locally sup-

ported on a grid of points {x j }J
j=1. The parameter h is

introduced to measure the diameter of the finite elements.

We will also assume that

φ j (xk) = δ jk . (32)

Any element U ∈ Vh can then be written as

U (x) =
J∑

j=1

U jφ j (x) (33)

from which it follows that U (xk) = Uk . The Galerkin

method then gives AU = r, for U = (U1, . . . , UJ )T ,

A jk = a(φ j , φk), and rk = r(φk).

In order to account for uncertainty introduced by the

numerical method, we will assume that each basis function

φ j can be split into the sum of a systematic part φs
j and ran-

dom part φr
j , where both φ j and φs

j satisfy the nodal property

(32), hence φr
j (xk) = 0. Furthermore, we assume that each

φr
j shares the same compact support as the corresponding φs

j ,

preserving the sparsity structure of the underlying determin-

istic method.

4.2 Strong convergence result

As in the ODE case, we begin our convergence analy-

sis with assumptions constraining the random perturbations

and the underlying deterministic approximation. The bilin-

ear form a(·, ·) is assumed to induce an inner product, and

then norm via ‖ · ‖2
a = a(·, ·); furthermore, we assume

that this norm is equivalent to the norm on V . Through-

out, Eh denotes expectation with respect to the random basis

functions.

Assumption 4 The collection of random basis functions

{φr
j }J

j=1 are independent, zero-mean, Gaussian random

fields, each of which satisfies φr
j (xk) = 0 and shares the

same support as the corresponding systematic basis function

φs
j . For all j , the number of basis functions with index k

which share the support of the basis functions with index

j is bounded independently of J , the total number of basis

functions. Furthermore, the basis functions are scaled so that∑J
j=1 Eh‖φr

j‖2
a ≤ Ch2p.

Assumption 5 The true solution u of problem (4.1) is in

L∞(D). Furthermore, the standard deterministic interpolant

of the true solution, defined by vs :=
∑J

j=1 u(x j )φ
s
j , satis-

fies ‖u − vs‖a ≤ Chq .

Theorem 4.1 Under Assumptions 4 and 5 it follows that the

approximation U, given by (31), satisfies

Eh‖u − U‖2
a ≤ Ch2 min{p,q}.

As for ODEs, the solver accuracy is limited by either

the amount of noise injected or the convergence rate of the

underlying deterministic method, making p = q the natural

choice.
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4.3 Poisson solver in two dimensions

Consider a Poisson equation with Dirichlet boundary condi-

tions in dimension d = 2, namely

−△u = f, x ∈ D,

u = 0, x ∈ ∂ D.

We set V = H1
0 (D) and H to be the space L2(D) with inner

product 〈·, ·〉 and resulting norm | · |2 = 〈·, ·〉. The weak

formulation of the problem has the form (4.1) with

a(u, v) =
∫

D

∇u(x)∇v(x)dx, r(v) = 〈 f, v〉.

Now consider piecewise linear finite elements satisfying the

assumptions of Sect. 4.2 in Johnson (2012) and take these

to comprise the set {φs
j }J

j=1. Then h measures the width of

the triangulation of the finite element mesh. Assuming that

f ∈ H it follows that u ∈ H2(D) and that

‖u − vs‖a ≤ Ch‖u‖H2 . (34)

Thus q = 1. We choose random basis members {φr
j }J

j=1 so

that Assumption 4 hold with p = 1. Theorem 4.1 then shows

that, for e = u − U , Eh‖e‖2
a ≤ Ch2. We note that that in

the deterministic case, we expect an improved rate of conver-

gence in the function space H . Such a result can be shown

to hold in our setting, following the usual arguments for the

Aubin–Nitsche trick Johnson (2012), which is available in

the supplementary materials.

5 PDE inference and numerics

We now perform numerical experiments using probabilistic

solvers for elliptic PDEs. Specifically, we perform infer-

ence in a 1D elliptic PDE, ∇ · (κ(x)∇u(x)) = 4x for

x ∈ [0, 1], given boundary conditions u(0) = 0, u(1) = 2.

We represent log κ as piecewise constant over ten equal-

sized intervals; the first, on x ∈ [0, .1) is fixed to be one to

avoid non-identifiability issues, and the other nine are given

a prior θi = log κi ∼ N (0, 1). Observations of the field u

are provided at x = (0.1, 0.2, . . . 0.9), with i.i.d. Gaussian

error, N (0, 10−5); the simulated observations were gener-

ated using a fine grid and quadratic finite elements, then

perturbed with error from this distribution.

Again we investigate the posterior produced at vari-

ous grid sizes, using both deterministic and randomised

solvers. The randomised basis functions are draws from a

Brownian bridge conditioned to be zero at the nodal points,

implemented in practice with a truncated Karhunen–Loève

expansion. The covariance operator may be viewed as a frac-

tional Laplacian, as discussed in Lindgren et al. (2011). The

scaling σ is again determined by maximising the distribution

described in Sect. 3.1, where the error indicator compares lin-

ear to quadratic basis functions, and we marginalise out the

prior over the κi values.

The posteriors are depicted in Figs. 7 and 8. As in the ODE

examples, the deterministic solvers lead to incompatible pos-

teriors for varying grid sizes. In contrast, the randomised

solvers suggest increasing confidence as the grid is refined,

as desired. The coarsest grid size uses an obviously inade-

quate ten elements, but this is only apparent in the randomised

posterior.

Fig. 7 The marginal posterior

distributions for the first four

coefficients in 1D elliptic

inverse problem using a classic

deterministic solver with various

grid sizes
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Fig. 8 The marginal posterior

distributions for the first four

coefficients in 1D elliptic inverse

problem using a randomised

solver with various grid sizes

h=1/10

h=1/20

h=1/40

h=1/60

h=1/80

−6

−4

−2

0

2

−2

0

2

4

−
3

−
2

−
1 0 1

θ1

−2

0

2

−
6

−
4

−
2 0 2

θ2

−

2 0 2 4

θ3

−
2 0 2

θ4

6 Conclusions

We have presented a computational methodology, backed by

rigorous analysis, which enables quantification of the uncer-

tainty arising from the finite-dimensional approximation of

solutions of differential equations. These methods play a nat-

ural role in statistical inference problems as they allow for the

uncertainty from discretisation to be incorporated alongside

other sources of uncertainty such as observational noise. We

provide theoretical analyses of the probabilistic integrators

which form the backbone of our methodology. Furthermore

we demonstrate empirically that they induce more coher-

ent inference in a number of illustrative examples. There

are a variety of areas in the sciences and engineering which

have the potential to draw on the methodology introduced

including climatology, computational chemistry, and sys-

tems biology.

Our key strategy is to make assumptions about the local

behaviour of solver error, which we have assumed to be

Gaussian, and to draw samples from the global distribution of

uncertainty over solutions that results. Section 2.4 describes

a universality result, simplifying task of choosing covariance

kernels in practice, within the family of Gaussian processes.

However, assumptions of Gaussian error, even locally, may

not be appropriate in some cases, or may neglect important

domain knowledge. Our framework can be extended in future

work to consider alternate priors on the error, for example,

multiplicative or non-negative errors.

Our study highlights difficult decisions practitioners face,

regarding how to expend computational resources. While

standard techniques perform well when the solver is highly

converged, our results show standard techniques can be dis-

astrously wrong when the solver is not converged. As the

measure of convergence is not a standard numerical analy-

sis one, but a statistical one, we have argued that it can be

surprisingly difficult to determine in advance which regime

a particular problem resides in. Therefore, our practical rec-

ommendation is that the lower cost of the standard approach

makes it preferable when it is certain that the numerical

method is strongly converged with respect to the statistical

measure of interest. Otherwise, the randomised method we

propose provides a robust and consistent approach to address

the error introduced into the statistical task by numerical

solver error. In difficult problem domains, such as numerical

weather prediction, the focus has typically been on reducing

the numerical error in each solver run; techniques such as

these may allow a difference balance between numerical and

statistical computing effort in the future.

The prevailing approach to model error described in

Kennedy and O’Hagan (2001) is based on a non-intrusive

methodology where the effect of model discrepancy is

allowed for in observation space. Our intrusive randomisa-

tion of deterministic methods for differential equations can be

viewed as a highly specialised discrepancy model, designed

using our intimate knowledge of the structure and proper-

ties of numerical methods. In this vein, we intend to extend

this work to other types of model error, where modifying the

internal structure of the models can produce computationally

and analytically tractable measures of uncertainty which per-

form better than non-intrusive methods. Our future work will

continue to study the computational challenges and opportu-

nities presented by these techniques.
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A Numerical analysis details and proofs

Proof (Theorem 2.2) We first derive the convergence result

on the grid, and then in continuous time. From (10) we have

Uk+1 = Ψh(Uk) + ξk(h) (35)

whilst we know that

uk+1 = Φh(uk). (36)

Define the truncation error ǫk = Ψh(Uk) − Φh(Uk) and note

that

Uk+1 = Φh(Uk) + ǫk + ξk(h). (37)

Subtracting Eq. (37) from (36) and defining ek = uk − Uk ,

we get

ek+1 = Φh(uk) − Φh(uk − ek) − ǫk − ξk(h).

Taking the Euclidean norm and expectations give, using

Assumption 1 and the independence of the ξk ,

Eh |ek+1|2 = Eh
∣∣∣Φh(uk)−Φh(uk − ek)−ǫk

∣∣∣
2
+ O(h2p+1),

where the constant in the O(h2p+1) term is uniform in k :
0 ≤ kh ≤ T . Assumption 2 implies that ǫk = O(hq+1),

again uniformly in k : 0 ≤ kh ≤ T . Noting that Φh is

globally Lipschitz with constant bounded by 1 + Lh under

Assumption 2, we then obtain

Eh |ek+1|2 ≤ (1 + Lh)2Eh |ek |2

+ Eh
∣∣∣
〈
h

1
2
(
Φh(uk) − Φh(uk − ek)

)
, h− 1

2 ǫk

〉∣∣∣

+O(h2q+2) + O(h2p+1).

Using Cauchy–Schwarz on the inner product, and the fact

that Φh is Lipschitz with constant bounded independently of

h, we get

Eh |ek+1|2 ≤
(
1 + O(h)

)
Eh |ek |2 + O(h2q+1) + O(h2p+1).

Application of the Gronwall inequality gives the desired

result.

Now we turn to continuous time. We note that, for s ∈
[tk, tk+1),

U (s) = Ψs−tk (Uk) + ξk(s − tk),

u(s) = Φs−tk (uk).

Let Ft denote the σ -algebra of events generated by the {ξk}
up to time t . Subtracting we obtain, using Assumptions 1 and

2 and the fact that Φs−tk has Lipschitz constant of the form

1 + O(h),

Eh
(
|U (s) − u(s)|

∣∣Ftk

)

≤ |Φs−tk (Uk) − Φs−tk (uk)|
+ |Ψs−tk (Uk) − Φs−tk (Uk)|
+ Eh

(
|ξk(s − tk)|

∣∣Ftk

)

≤ (1 + Lh)|ek | + O(hq+1) + Eh |ξk(s − tk)|
≤ (1 + Lh)|ek | + O(hq+1)

+
(
Eh |ξk(s − tk)|2

) 1
2

≤ (1 + Lh)|ek | + O(hq+1) + O

(
h p+ 1

2

)
.

Now taking expectations we obtain

Eh |U (s) − u(s)| ≤ (1 + Lh)
(
Eh |ek |2

) 1
2 + O(hq+1)

+O

(
h p+ 1

2

)
.

Using the on-grid error bound gives the desired result, after

noting that the constants appearing are uniform in 0 ≤ kh ≤
T . ⊓⊔

Proof (Theorem 2.4) We prove the second bound first. Let

wk = E
(
φ(ũ(tk))|ũ(0) = u

)
and Wk = Eh

(
φ(Uk)|U0 = u).

Then let δk = supu∈Rn |Wk −wk |. It follows from the Markov

property that

Wk+1 − wk+1 = ehLh

Wk − ehL̃h

wk

= ehLh

Wk − ehLh

wk

+
(
ehLh

wk − ehL̃h

wk).

Using (28) and Assumption 3 we obtain

δk+1 ≤ (1 + Lh)δk + O(h2p+2).
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Iterating and employing the Gronwall inequality gives the

second error bound.

Now we turn to the first error bound, comparing with the

solution u of the original Eq. (1). From (25) and then (21) we

see that

ehLh

φ(u) − φ(Ψh(u)) = O(h2p+1),

ehLφ(u) − ehLh

φ(u) = O(hmin{2p+1,q+1}).

This gives the first weak error estimate, after using the sta-

bility estimate on ehL from Assumption 3. ⊓⊔

Proof (Theorem 4.1) Recall the Galerkin orthogonality

property which follows from subtracting the approximate

variational principle from the true variational principle: it

states that, for e = u − U ,

a(e, v) = 0, ∀v ∈ V
h . (38)

From this it follows that

‖e‖a ≤ ‖u − v‖a, ∀v ∈ V
h . (39)

To see this note that, for any v ∈ Vh , the orthogonality prop-

erty (38) gives

a(e, e) = a(e, e + U − v) = a(e, u − v). (40)

Thus, by Cauchy–Schwarz, ‖e‖2
a ≤ ‖e‖a‖u − v‖a, ∀v ∈

Vh implying (39). We now set, for v ∈ V ,

v(x) =
J∑

j=1

u(x j )φ j (x)

=
J∑

j=1

u(x j )φ
s
j (x) +

J∑

j=1

u(x j )φ
r
j (x)

=: vs(x) + vr(x).

By the mean-zero and independence properties of the random

basis functions we deduce that

Eh‖u − v‖2
a = Eha(u − v, u − v)

= Eha(u − vs, u − vs) + Eha(vr, vr)

= ‖u − vs‖2
a +

J∑

j=1

u(x j )
2Eh‖φr

j‖2
a .

The result follows from Assumptions 4 and 5. ⊓⊔

Ornstein–Uhlenbeck integrator

An additional example of a randomised integrator is an

integrated Ornstein–Uhlenbeck process, derived as follows.

Define, on the interval s ∈ [tk, tk+1), the pair of equations

dU = V dt, U (tk) = Uk, (41a)

dV = −ΛV dt +
√

2Σ dW, V (tk) = f (Uk). (41b)

Here W is a standard Brownian motion and Λ and Σ are

invertible matrices, possibly depending on h. The approxi-

mating function gh(s) is thus defined by V (s), an Ornstein–

Uhlenbeck process.

Integrating (41b) we obtain

V (s) = exp
(
−Λ(s − tk)

)
f (Uk) + χk(s − tk), (42)

where s ∈ [tk, tk+1) and the {χk} form an i.i.d. sequence of

Gaussian random functions defined on [0, h] with

χk(s) =
√

2Σ

∫ s

0

exp
(
Λ(τ − s)

)
dW (τ ).

Note that the h-dependence of Ch comes through the time

interval on which χk is defined, and through Λ and Σ .

Integrating (41a), using (42), we obtain

U (s) = Uk + Λ−1
(
I − exp

(
−Λ(s − tk)

))
f (Uk)

+ ξk(s − tk), (43)

where s ∈ [tk, tk+1], and, for t ∈ [0, h],

ξk(t) =
∫ t

0

χk(τ )dτ. (44)

The numerical method (43) may be written in the form (12),

and hence (10) at the grid points, with the definition

Ψh(u) = u + Λ−1
(

I − exp
(
−Λh

))
f (u).

This integrator is first-order accurate and satisfies Assump-

tion 2 with p = 1. Choosing to scale Σ with h so that q ≥ 1 in

Assumption 1 leads to convergence of the numerical method

with order 1.

Had we carried out the above analysis in the case Λ = 0

we would have obtained the probabilistic Euler method (14),

and hence (13) at grid points, used as our canonical example

in the earlier developments.
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Convergence rate of L2 convergence

When considering the Poisson problem in two dimensions,

as discussed in Sect. 4, we expect an improved rate of con-

vergence in the function space H . We now show that such a

result also holds in our random setting.

Note that, under Assumption 4, if we introduce γ jk that

is 1 when two basis functions have overlapping support, and

0 otherwise, then γ jk is symmetric and there is constant C ,

independent of j and J , such that
∑J

k=1 γ jk ≤ C. Now

let ϕ solve the equation a(ϕ, v) = 〈e, v〉, ∀v ∈ V. Then

‖ϕ‖H2 ≤ C |e|. We define ϕs and ϕr in analogy with the

definitions of vs and vr. Following the usual arguments for

application of the Aubin–Nitsche trick Johnson (2012), we

have |e|2 = a(e, ϕ) = a(e, ϕ − ϕs − ϕr). Thus

|e|2 ≤ ‖e‖a‖ϕ − ϕs − ϕr‖a

≤
√

2‖e‖a

(
‖ϕ − ϕs‖2

a + ‖ϕr‖2
a

) 1
2
. (45)

We note that ϕr(x) =
∑J

j=1 ϕ(x j )φ
r
j (x) = ‖ϕ‖H2

∑J
j=1

a jφ
r
j (x) where, by Sobolev embedding (d = 2 here), a j :=

ϕ(x j )/‖ϕ‖H2 satisfies max1≤ j≤J |a j | ≤ C. Note, however,

that the a j are random and correlated with all of the random

basis functions. Using this, together with (34), in (45), we

obtain

|e|2 ≤ C‖e‖a

(
h2 +

∥∥
J∑

j=1

a jφ
r
j (x)

∥∥2

a

) 1
2 ‖ϕ‖H2 .

We see that

|e| ≤ C‖e‖a

(
h2 +

J∑

j=1

J∑

k=1

a j ak a(φr
j , φ

r
k)

) 1
2
.

From this and the symmetry of γ jk , we obtain

|e| ≤ C‖e‖a

(
h2 +

J∑

j=1

J∑

k=1

γ jk

(
‖φr

j‖2
a + ‖φr

k‖2
a

)) 1
2

≤ C‖e‖a

(
h2 + 2C

J∑

j=1

‖φr
j‖2

a

) 1
2
.

Taking expectations, using that p = q = 1, we find,

using Assumption 4, that Eh |e| ≤ Ch
(
Eh

∥∥e‖2
a

) 1
2 ≤ Ch2

as desired. Thus we recover the extra order of convergence

over the rate 1 in the ‖ · ‖a norm (although the improved rate

is in L1(Ω; H) whilst the lower rate of convergence is in

L2(Ω;V).).
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