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Abstract

Functional Magnetic Resonance Imaging (fMRI) is currently one of the most widely used
tools to study in vivo the neural underpinnings of human cognition. Analysis of fMRI
data relies on a General Linear Model (GLM) approach to separate noise from the actual
signal corvarying with some experimental task of interest. Validity of inferences drawn
from such approach to data-analysis is secondary to the satisfaction of condition imposed
by the statistical model. In the present paper we review the GLM approach to fMRI time-
series analysis by considering the degree by which such data abides by the hypothesis of
the model and by presenting the methodologies that have been put forward in order to
correct for assumptions’ infringement.

KEYWORDS: Functional Magnetic Resonance Imaging (fMRI), Blood Oxygenation Level-
Dependent (BOLD), General Linear Model (GLM), Ordinary Least Squares (OLS), Auto-
correlation, Heteroscedasticity, Multicollinearity, Fixed Effects, Random Effects, Conjunc-
tion Analysis.



Statistical Analysis of fMRI Time-Series 3

Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.2 Single Subject Analysis (I): The General Linear Model Approach . . . . . . . 5
0.3 Single Subject Analysis (II): The GMAssumptions & fMRI Time-Series . . . 8

0.3.1 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.3.2 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
0.3.3 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
0.3.4 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0.4 Multiple Subjects Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
0.4.1 Fixed Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
0.4.2 Random Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.4.3 Conjunction Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
0.4.4 Mixed-Effects & Summary Statistics Hierarchical Approach . . . . . 31
0.4.5 ANOVA Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
0.4.6 Variance Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

0.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Statistical Analysis of fMRI Time-Series 4

0.1 Introduction

In the past decade the study of human cognition has largely benefited from technological

innovations in the field of nuclear magnetic resonance (NMR). Its application to study

in vivo the functional architecture of the brain levers on the dynamic change of oxyhe-

moglobin (Hb) – or rather venous deoxyhemoglobine (dHb) – levels in the capillaries. In

a high magnetic field (e.g. 3 Tesla) paramagnetic dHb produces local decreases in the field

intensities (i.e. local field inhomogeneities). Increased capillary oxygenation conversely

diminishes signal disruption by decreasing the levels of capillary dHb. Functional mag-

netic resonance imaging (fMRI) thus detects fluctuations in a blood oxygenation level-

dependent (BOLD) magnetic signal ([1, 2, 3]). Underlying such technique is the assump-

tion that metabolic changes reflect neural activity with some regard to spatial extent and

intensity of firing, an idea originally postulated by Roy and Sherrington [4]. At present

the exact system by which this “automatic mechanism” couples metabolic activity and

neural processing is still unclear. In support of the coupling hypothesis though Logo-

thetis [5] and Logothetis et al. [6] have reported a strong correlation between local field

potentials (LFPs) recorded with intracortical electrodes and the simultaneously acquired

BOLD signal, suggesting synaptic potentials and dendritic processing as the main com-

ponents underlying the BOLD effect. Yet, such coupling has been called into question

by discordant evidence (e.g. [7]). Despite the growing evidence in favor of a coupling of

BOLD signal and LFPs the issue doesn’t seem to be at present univocally resolved (see

[8, 9, 10] for a review of the main issues and experimental findings).

The reminder of the paper will be concerned with statistical methods for separating

noise from systematic fluctuations of the BOLD signal in correlation to a stimulation pat-

tern. First we will briefly introduce the General Linear Model (GLM) statistical frame-

work for analysis of a single subject data. Following we will analyze the degree by which
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fMRI data actually conform to each of the model’s hypotheses and review the main ap-

proaches used to overcome assumption infringements. We will then turn our attention to

how data-sets from multiple runs/sessions of a single subject and from multiple subjects

are combined together reviewing problems and merits of the major approaches in terms

of their validity and inferential scope.1 Finally we will briefly discuss some other more

general statistical issues of fMRI data analysis.

0.2 Single Subject Analysis (I): The General Linear Model Approach

An fMRI data set, can be seen as a set of cuboid elements (i.e. voxels) of variable di-

mension, each of which has an associated time series of as many time-points as volumes

acquired per session. The aim of the statistical analysis is to determine which voxels ac-

tivate and deactivate (as measured by the BOLD signal) in correlation with some specific

task of interest.

The first step in fMRI data analysis is typically a series of “pre-processing” transforma-

tions applied to the aim of “conditioning” the data, possibly increasing robustness of the

following statistical analysis and adjusting for several artifacts introduced at data acquisi-

tion. Each transformation can be applied independently as a function of the specific needs

or requirements of the experimental design used. The most typical steps include recon-

structing the images in “brain-space” from the frequency domain in which the machine

encodes the data (so called k-space), adjusting for acquisition-specific artifacts (e.g. slice

timing realignment), subject motion, and often temporal and spatial smoothing. (See [11]

for a thorough analysis of each step.) Following pre-processing data analysis is carried

1For clarity purposes the rest of the manuscript will refer to a “run” (also a “scan”) as one continuous
stream of data acquisition (i.e. from “scanner on” to “scanner off”). Each subject usually undergoes multiple
runs, with brief interruptions in between, and typically remaining inside the bore of the machine. The set
of these multiple runs is referred to as a “session”. A standard fMRI data-set for a complete experiment
usually comprises one (or more) session per each of about a dozen (or more) subject.
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in two general steps: first-level analysis, typically a time series analysis of data relative

to one subject’s run and second-level analysis, in which results from multiple runs and

multiple subjects are combined together.2

In the GLM framework, single subject fMRI data is analyzed by fitting at each voxel

independently (i.e. univariate approach) a linear combination of independent variables,

plus an error term. Two main reasons, mostly unique to functional neuro-imaging, under-

lie the choice of adopting a “massive univariate” approach rather than a multivariate one.

First, there usually are more voxels than observations, whereas multivariate approaches

need more observations (i.e. time-points) than dimension of the response variable (i.e.

voxels). Second, multivariate techniques would characterize image volumes as a whole,

thus not supporting statistical inference about regionally (i.e. voxel clusters) specific ef-

fects. The voxel-wise GLM is expressed as:

Y = βX + ε (1)

where Y is a column vector of N rows (the number of collected time-points) representing

the time-series BOLD signal associated to a single voxel. X represents the design matrix

with N rows × p columns, each representing a regressor (i.e. an explanatory variable). Of

interest are the columns representing manipulations or experimental conditions, although

the matrix often may include regressors of non-interest, modelling the mean signal (i.e. the

intercept), trends (typically linear and quadratic) and other design specific confounds. β

is a column vector with p rows representing the unknown parameter associated to each

regressor. Finally, ε is also a column vector, with N rows, representing the estimation

error (or residuals) defined as Y − β̂X .
2First-level analysis can be carried out either on one single subject’s run, or on the concatenation of all

the runs from a session. Accordingly the second level will thus either be a combination of multiple runs
from multiple subjects or a combination of all the subjects’ sessions (i.e. the runs’ concatenation).
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The end result of the mass-univariate GLM is to create a statistical parametric map

(SPM) in “brain-space” of voxels responding systematically (significantly according to

some pre-determined criterion) to one or more effects (of interest) modelled in the X ma-

trix. Estimation of the unknown (i.e. β) is usually accomplished with an Ordinary Least

Squares (OLS) 3 approach which computes the β-estimates that minimizes
∑N

t=1 ε̂2 (i.e.

the squared difference between the observed signal Y and the estimated signal Ŷ , given

the matrix). In this approach the estimator and its variance are computed as follows:4

β̂ = (XT X)−1XT Y (2)

var(β̂) = σ2(XT X)−1 (3)

It can be shown that if the following Gauss-Markov (GM ) assumptions relating to the

properties of the error term ε and the matrix X of explanatory variables hold then (2) will

yield the best (i.e. minimum variance), linear and unbiased estimator (BLUE)5 within the

class of linear and unbiased estimators of the parameter. The GM assumptions require

that:

(A1) ε is independently and identically distributed (i.i.d.) ∼ N(0, σ2I)

(A2) The effects of the X matrix are independent of error (i.e. E(ε, X) = 0), non-stochastic

(i.e. deterministic) and known.

(A3) No regressor is a linear transformation of one (or more) regressors.
3Generalized Least Squares (GLS) approaches are also used, especially with consideration to temporal

autocorrelation issue, see below.
4It should be noted that in equation (2) the estimator β̂ should result simply by Y X−1. Yet X is almost

never a square matrix, thus it can’t be inverted (i.e. X−1 can’t be computed). To obviate the Moore-Penrose
“pseudo-inverse” is typically used and X−1 ∼ (XT X)−1XT . Substituting the pseudo-inverse for X−1 we
obtain expression (2).

5In addition to the unbiasedness and maximum efficiency properties, the BLUE is asymptotically normal
∼ N(β, σ2(X ′X)) which is a requirement for subsequent parametric tests that subsume such property.
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It should be noted that (A1) is in fact a three-part assumption requiring that the residuals

are not serially correlated (A1a), that E(ε) = 0 (A1b), and a scalar variance, equal at

all observation (i.e. equality of all the on-diagonal elements of the variance-covariance

matrix) (A1c).

We will now discuss the degree by which fMRI data abides by these assumptions,

consider the bearings of infringements of any of the GM assumptions (e.g. non-validity

of statistical inferences) and the main methods currently available to adjust for them.

0.3 Single Subject Analysis (II): The GMAssumptions & fMRI Time-

Series

Validity of statistical models and inferences crucially depend upon the extent to which the

data actually satisfies the model’s assumptions. When these are not upheld inferences can

be biased and even rendered invalid.

To assess the validity of the GLM approach to fMRI time-series analysis we now con-

sider the degree by which these conform to the GM assumptions and the tools that have

been proposed to overcome failure of meeting any of the hypotheses.

0.3.1 Autocorrelation

The assumption of i.i.d. residuals (A1a) is necessary for the GLM model to allow for

valid inferences. Yet, BOLD time-series suffer from many sources of serial correlation

of residuals, the most typical being hardware related low-frequency drifts, oscillatory

noises related to respiration and cardiac pulsation, and residual movement artifacts not

accounted for by rigid body registration (see for example [12, 13] and [14]••, for reports

of temporal autocorrelation sources in fMRI data). The presence of serial correlation does

not directly affect unbiasedness of the β̂, rather it affects its variance, computed by using



Statistical Analysis of fMRI Time-Series 9

the residuals. Biased variance of an estimator will lead to biased T-values when assessing

its statistical significance. Underestimates of the variance will lead to greater T-statistics

and as a consequence overestimate significance (inflating type I errors) possibly leading

to extremely liberal (i.e. invalid) inferences6. Viceversa, overestimating the variance will

lead to smaller T-values, decreasing statistical power. Different approaches have been

suggested to solve this problem.

Temporal Smoothing (“pre-coloring”). Friston et al. [15]•• and Worseley and Friston

[16]•• suggest an extension of the GLM to accommodate serial correlation via “temporal

smoothing”. Their proposal is to reframe (1) as:

Y = βX + Σε (4)

where Σ represents some process hidden in the residual characterizing the serial corre-

lation, and ε represents a “well-behaved” error term ∼ N(0, σ2I). By then imposing a

linear transformation S to (4) the idea is to “swamp” the endogenous – unknown – corre-

lation structure with some exogenously imposed, therefore known, correlation structure

S, obtaining:

SY = βSX + SΣε (5)

If Σ were known then the best approach would be to clean the data (i.e. “whiten”) by

setting S = Σ−1 thus compensating for the Σ processes. Being this process typically

unknown the problem relies in “pre-coloring” the data by imposing an S correlation

structure that may minimize the unknown Σ process. The proposed approach by Fris-

ton, Worsely and colleagues ([15]••, [16]••, [17]••) is to minimize the estimators’ variance

bias by setting the linear transformation matrix S to be a smoothing kernel similar to the

6The effective dfmodel are less than those expected in the independent case.
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hemodynamic response function (typically a Gaussian or Poissonian distribution), which

according to Friston et al. [15]•• maximizes the signal-to-noise ration (SNR). The assump-

tion underlying this method is that the S Gaussian/Poissonian transformation is robust

enough so that SΣST ∼ SST , effectively “swamping” the unknown endogenous serial

correlation. If this assumption holds then (2), (3) can be re-written as:

β̂ = (X∗T X∗)−1X∗T SY

var(β̂) = σ2(X∗T X∗)−1X∗T SST (X∗T X∗)−1

with X∗ = SX and where the “colored” noise can now be assumed to be i.i.d and

∼ N(0, σ2SST ) (see [16]•• for a complete derivation of the adjusted estimates). These

estimates of β do not retain maximal efficiency, which varies as a function of how effec-

tive the “pre-coloring” filter is in swamping the endogenous correlation, but do retain

unbiasedness. A different approach to choosing the bias-minimizing transformation S is

presented in Carew et al. [18]. The authors suggest using a “smoothing spline” approach.7

The basic idea is to fit a spline at each voxel and then use the spline smoothing matrix as

the linear transformation S in (5). The spline model for a time-series yi is:

yi = f(ti) + εi

where yi is the time-series associated to voxel i, f(•) is a smoothing function, ε is ∼

N(0, σ2I) and ti for i = 1...n (with N being the total number of TRs) are equally spaced

volume acquisition time-points. The authors then show that the optimal smoothing value

(thus the optimal S matrix) is given by application of a generalized cross-validation (GCV)

7A spline function is formed by adjoining polynomials together at fixed points called knots, to the aim
of approximating a given curve with a series of intra-knots components.
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method to the spline model (see [18] for the proof). The authors also provide an empirical

validation of their method by showing the increased efficiency (i.e. reduced variance) of

the β̂s computed with the spline method as compared to both the Friston et al. [15]•• and

Worsley and Friston [16]•• alike approach and a no-smoothing “baseline” analysis.

Pre-Whitening. In opposition to the “pre-coloring” approach Bullmore and colleagues

[19]•• suggest a “pre-whitening” approach. This technique consists in removing an es-

timate of the autocorrelation to then fit the GLM model and find via OLS the BLUEs.

To accomplish this [19]•• make use of a two step procedure. First, a GLM is fit to the

data under i.i.d. error assumption, given the residuals the structure of their correlation

is modelled with a simple Auto-Regressive model of order 1 (AR(1)) in which the error

at each time-point is assumed to be a combination of the error at the previous time-point

with some “fresh” error. Following, the raw data is “pre-whitened” by removing the es-

timated residual structure. Finally the voxel-wise GLM is fitted on the transformed (i.e.

“whitened”) signal. The intuition underlying such approach is that if a good data driven

estimate of the residual autocorrelation structure can be computed and removed, then the

i.i.d. assumption (A1a) will hold and the post-whitening β̂(s) are BLUE(s). As a parallel

to (5) the pre-whitening approach can be expressed as:

K−1Y = βK−1X + K−1Σε

where K ≈ Σ. Thus, instead of the convolution of a temporal smoothing matrix S as in

Friston et al. [15]•• a de-convolution or “pre-whitening” matrix obtained by data driven

estimation of the Σ structure of serial correlation is applied. Unlike the “pre-coloring”

approach, inclusion of the K−1 deconvolution matrix will allow computed estimators to

be the most efficient linear estimator of the unknown parameter β, within the set of its
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unbiased estimators. Thus, equations (2) and (3) can be re-written as:

β̂GLS = (XT K−1X)−1XT K−1Y

var(β̂GLS) = σ2(XT K−1X)−1

If the estimation of the process Σ is exactly characterized by KKT then in the transformed

data:

KKT = K−1Σ(K−1)T = K−1(KKT )(K−1)T = I

thus the error variance is equal to σ2I again.

Purdon et al. [20] note that additional white noise is produced by the scanner as a

function of the rate of acquisition (i.e. TR). Their experimental data for instance indicated

a negative relationship between the TR and false discovery rates for a Student’s T-test,

a Fourier F-Test and a Kolmogorov-Smirnov non-parametric test in fMRI data acquired

under the null hypothesis. For this reason the authors propose a modification of the Bull-

more et al. [19]•• approach by including, in addition to the AR(1) model, also a white noise

model dependant on acquisition rate. Purdon et al. [21] compare the AR(1)+WN method

with the standard SPM-GLM approach (i.e. [14]••, [15]•• and [16]••) finding the former

superior to the second in both synthetic and human data in terms of better modelling

of the noise. The sub-optimality of the latter is imputed to the use of the hemodynamic

response as the smoothing kernel, which assumes the primary source of fluctuations in

fMRI data to be real activations that can induce fluctuations that appear like response ac-

tivations. In opposition Purdon and colleagues [21] use an empirically driven model of

noise which incorporates different noise sources: low-frequency physiological noise (for
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which the AR(1) is used) and scanner background noise (for which they use a drift term

- the WN model). Their complete model thus characterizes the BOLD signal as being

explained, at each voxel, by three components: (i) the drift (scanner background noise),

(ii) the physiological signal, which is the actual signal (the convoluted X matrix) and (iii)

the noise, which includes a well behaved ε and serial correlation process (modelled by an

AR(1)) due to physiologic noise.

Another slightly different solution to serial correlation has been proposed by Locas-

cio et al. [22] who assume the noise to be of (at least) two forms: “autoregressive” (AR)

and/or “moving average” (MA). The authors therefore propose the use of an ARMA

model which should ameliorate the approximation of the actual serial correlation struc-

ture by sequentially testing (voxel-wise) the significance of several orders of AR models

and MA components. Besides the double characterization of possible noise, one impor-

tant contribution of [22] is to allow for local (spatial) variation in specifying voxel-wise

serial correlation. By iterative procedure each voxel is independently fit with an increas-

ing number of ARMA components until they pass a test of residuals “whiteness”.8 This

approach has two main advantages over the Bullmore et al. [19]•• (and Purdon et al. [20])

approach. First, it responds to the criticisms of inadequacy of an AR(1) model to capture

the correlation structure (see [17]••) by allowing for higher order autoregressive models.

Second, it is much more flexible by allowing each voxel to have a variable number of

AR and MA components according to its specific time series profile, as opposed to the a

uniform AR(1) model applied across the whole volume.

As compared with temporal smoothing, pre-whitening has the advantage of being

more efficient (see [23]) across different experimental designs (e.g. Boxcar, randomized

8The software implementation of the ARMA model described in [22] only allows for up to third order
AR and MA models. From a theoretical standpoint many more could be used, although each additional
model affects the subsequent analyses by degrading the number of degrees of freedom, thus the power of
the ARMA-whitened model.
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Event Related) — albeit under the non trivial assumption of satisfactory characterization

of the endogenous correlation structure — but is more prone to bias in case of non-optimal

serial correlation modelling. Indeed, Friston et al. [17]•• report a bias of 24% in parameter

estimation when an AR(1) model (as proposed in [19]••) is (mis-)used to estimate a serial

correlation structure that is actually approximated by an AR(16). The effect of such a

bias, in [17]••, is to reduce by about 10% the T-values, a substantial loss of power. Pre-

coloring on the other side may risk attenuating part of the high frequency features in the

data that may be experimentally determined ([24]) and/or may convey specific localizing

information ([25]). Overall, though, as noted by Bullmore et al. [26] there still may be

insufficient data to definitively judge the adequacy of either approach.

Explicit Noise Modelling. Finally, a promising alternative approach to the data driven

modelling of serial correlation structures has been proposed by Lund et al. [27]••. The

authors approach serial correlation as a source of information regarding excluded vari-

ables (that thus show up as serial correlation), rather than as a simple nuisance (as in the

temporal smoothing and, partially, the pre-whitening approaches) and attempt at “sug-

gesting a unified theory of physiological noise in fMRI”. In their Nuisance Variable Re-

gression (NVR) approach Lund and colleagues explicitly model specific factors known to

be inducive of autocorrelation: hardware instability-related low-frequency drift, residual

movement effects and aliased physiological noise (i.e. cardiac pulsation and respiration).

Specifications of these effects are then used as regressors in the GLM X matrix. The au-

thors also test empirically the performance of their NVR approach; two results are note-

worthy. First, the physiological effects resulted significant in predicted brain regions, thus

validating the used specifications (see [27]•• for a review of evidence on the specification

of the three noise components). The cardiac induced noise, for instance, was found dom-

inant near the major arteries of the brain (e.g. CW and MCA). Second, the NVR resulted
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superior to both the AR(1) and the simple high-pass filtering approaches for dealing with

serial correlation. A possible criticism to this approach is the fact of relying uniquely

on specification of the three sources of noise described, while other un-modelled factors

could be present, thus not guaranteeing an error term as required by GMA1a. The ro-

bustness of this methodology may thus be questionable and may require integration with

supplementary noise-cleaning to capture remaining sources of serial correlation. On a

positive note though this approach holds great potential especially in perspective of the

ever growing understanding and characterization of noise sources.

0.3.2 Heteroscedasticity

Assumption (A1c), requires var(ε) = σ2I , thus that the variance of residuals, assumed to

be a scalar, is constant across the different observations (i.e. time-points), and that their

paired covariances (i.e. the off-diagonal elements of the variance-covariance matrix) are

all equal to zero. Violation of such assumption is referred to as heteroscedasticity. When

this assumption is not upheld the estimator β̂ is still unbiased, but no longer efficient (it

is no longer the minimum variance estimator). As for the case of autocorrelation, if the

variance is biased subsequent paramteric testing will yield incorrect statistics.

In the fMRI literature heteroscedasticity hasn’t received much attention. One of the

few exception is Luo and Nichols [28]• who created a tool to assess whether a given fMRI

data-set does conform to the GM assumptions. The authors mention the possibility of

heteroscedasticity in fMRI data, for example due to a dependency of the variances on the

response, or because of other factors such as time or physical ordering. For these reasons

they include a specific diagnostic test in their package to assess whether the hypothesis

is upheld (see [28]•, p. 1016). As a testimony to the little attention this assumption has

received a SCIENCE@DIRECT search revealed 6 citations of this work. One represented

an actual use of the tool for data diagnostics, whereas all the other were presentations of
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novel statistical techniques that didn’t address the homoscedasticity assumption in any

detail.

0.3.3 Multicollinearity

GM (A3) requires that none of the explanatory variables (i.e. columns of the X matrix)

is perfectly correlated with any other explanatory variable, or any linear combination of.

The problem with violation of such assumption is that the X matrix is no longer invertible,

thus the BLUE estimator can no longer be computed. Use of the Moore-Penrose pseudo-

inverse (see footnote 4) allows for avoiding non-invertibility of the X matrix but still

leaves with a problem of degrees of multicollinearity, from perfect (when all columns

are perfectly correlated – in which case also the pseudo-inverse can’t be computed) to

mild (when only one or few columns are linearly correlated). According to the extent of

multicollinearity the efficiency of the estimate will be reduced thus vitiating parametric

testing by degrading power.

As for the homoscedasticity assumption the multicollinearity issue didn’t find so far

much space in the fMRI methodology literature. There may be at least two reasons for

this: first, the standard use of the pseudo-inverse method and second, the fact that this

problem is typically dealt with and prevented at creation of the experimental design (i.e.

the X matrix).

One interesting point though is raised in relation to the X matrix specification by Pe-

tersson et al. [29] who stress the importance of its appropriate specification. The model

specification, according to the authors, faces two connected trade-offs related to the cases

of over- and under-specification. On one side inclusion of a maximum number of ef-

fects in the model would be desirable to increase fit, yet at the cost of reducing power by

consuming one d.f. for each additional effect, while the marginal increase of explained

variance decreases with each additional factor. Further, over-modelling of the signal may
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degrade the generalizability of the results. On the other hand though, exclusion of regres-

sors from the model may have the effect of inflating the error variance, reducing power,

and possibly introducing serial dependencies in the error term, thus infringing assump-

tion (A1a) of the GM theorem. It should be noted though, that exclusion of effects from

the model has also the (positive) consequence of increasing power via increase of the

d.f.model (one per each excluded variable). (See [29], pp.1246-7 for a complete discussion

on the point).

0.3.4 Linearity

The GLM approach also assumes the effects to add linearly to compose the response mea-

surements. Boynton et al. [13] tested the GLM by parametrically varying a visual stim-

ulus’ duration and contrast, and investigating the additivity of the noise in V1. Their

conclusion was that although deviations from linearity were measurable, these were not

strong enough to reject the GLM. Support for the use of a linear approach is also offered

by Cohen [30] who showed that the amplitude of the responses to parametric variations

of the stimuli well fit a piecewise linear approximation. Despite this initial evidence, it

has been shown that there are at least two sources of non linearities in the BOLD sig-

nal. One relating to the vascular response – especially the vasoelastic properties of the

blood vessel (see [31]) and the other relating to non-linearities at the neuronal level due

to adaptive behavior (see, for example [10]).

Evidence for the presence of nonlinearities has been offered by Vazquez and Noll [32]

who compared the linearity of the response with parametric increases of visual stimuli

duration from 1 to 8 seconds. Results pointed out that while stimulations greater than

4 seconds were approximated well enough by a linear model, shorter displays lead to

great discrepancies between the actual and the expected response. A similar result was

reported by Robson et al. [33]•• where the authors used as stimuli trains of sounds of dif-
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ferent – parametrically varying – durations (from 100ms to 25.5s). Under the assumption

of linearity of the response it should be possible to predict the amplitude of the response

at a given duration via a (linear) combination of the amplitude response at some other

(shorter) stimulus duration. Consistently with the results in [32] it was possible to pre-

dict amplitudes only when using, as the amplitude predictor, the response amplitude of

a trial with duration greater than 6 seconds. Using shorter stimuli as predictors resulted

in massive overestimation of the response amplitude as a positive function of the time

difference between the predictor and the predicted condition (see [33]•• Fig. 4, p. 191 for

a dramatic depiction of these results). The authors thus suggest including in the model

an adaptive component that may discount the response amplitude for short stimulations

specified as:

E(t) = (1− A) + Ae−tα (6)

Equation (6) essentially represents a scaling factor to be applied to the amplitudes of short

latency stimuli in order to correct for the “transient” non-linearity. Applying this transfor-

mation to the amplitudes allowed the authors to reduce the discrepancy (for example) in

the prediction of the longest latency (25.5 sec) from the shortest (100ms) from an average

of 11.09% signal change to .88%.9

Friston et al. [34]•• also used parametric variations in the rate of word presentation to

assess the presence of nonlinear BOLD effects. The significant departure from linearity

was interpreted in terms of a hemodynamic ’refractoriness’, according to which a prior

stimulus interacts with a following (temporally contiguous) stimulus by modulating its

response amplitude. To solve for the presence of significant departures from linearity

Friston and colleagues [34]•• proposed to generalize the standard GLM approach ([15]••,

9The values of parameters A and α were computed empirically by minimizing the discrepancy between
predicted and actual signal.
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[16]••) using Volterra series to “linearize the problem” by characterizing the non-linear

component of the response. The signal y(t) is then characterized as:

y(t) = g0 +
P∑

i=1

g1
i xi(t) +

P∑
i=1

P∑
j=1

g2
ijxi(t) · xj(t) + e(t) (7)

Equation (7) is a GLM with the response y(t) predicted by the explanatory variables xi(t)

and xi(t) · xj(t), and parameters g0, g1, g2 representing the scaling factor of a series of P

basis functions approximating the zeroth, first and second Volterra smoothing kernels

h0, h1(τ1), h
2(τ1, τ2) (see [34, p. 42] for the full derivation):

h0 = g0

h1(τ1) =
P∑

i=1

g1
i bi(τi)

h2(τ1, τ2) =
P∑

i=1

P∑
j=1

g2
ijbi(τi) · bj(τ2)

In equation (7) the second term represents the change in output for a change in input.

The third term is the part of the model that includes the interactions of the response at

one point in time on the response amplitude at a contiguous time. Resolving for the pa-

rameters g0, g1, g2 then allows for computation of the Volterra smoothing kernels, testing

for significance of nonlinear effects and testing on the hemodynamic response at each

voxel.

One criticism to this approach noted in Calvisi et al. [35] and Friston et al. [36]•• is

that while data driven computation of Volterra series parameters may allow for a better

mapping of the input to the output, it does so in a black-box fashion without being in-

formative on what are the processes generating the nonlinearities. In response to these
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criticisms Friston and coworkers [36]•• present evidence for the nonlinearities expressed

in the Balloon model of hemodynamic signal transduction (see [31]) being compatible

with a second order Volterra characterization, thus adding biological plausibility to the

model.

A different approach has been proposed by Wager et al. [37] who report substantial

nonlinearities in the magnitude, peak delay and dispersion of the (hemodynamic) re-

sponse for a stimulus presentation rate of 1s. Noting the consistency of such nonlinear-

ities across the brain they suggest empirically deriving the functional form of each of

these characteristics of the response as a function of stimulus history. The authors chose

to approximate the nonlinearities with the biexponential model:

y = Ae−αx + Be−βx

By fitting the parameters A and α, B and β, the scaling and exponent of two expo-

nential curves, the authors empirically characterize the nonlinear changes in BOLD mag-

nitude, onset time and peak delay. The idea is to first run an experiment from which

to derive the fixed parameters estimates and then use the nonlinear characterizations as

scaling factors for individual responses – according to the history of stimulation up to

each response – in following experiments.

Overall though, as noted by Wager and colleagues [37] nonlinear effects are largely

ignored in the neuroscientific and psychological studies using BOLD fMRI. The authors

suggest that at least three reasons may explain why consideration of nonlinearities is

minimal in this literature. First, the linear approximation of the BOLD signal becomes

unfit only in a restricted range of stimuli spacing (i.e. <∼ 5s). Second, the bulk of the

work has been devoted to determining canonical responses to a single stimulus rather

than to exploring interactions among multiple stimuli. Finally, most proposed solutions



Statistical Analysis of fMRI Time-Series 21

(e.g. Volterra series, see [34]•• and [17]••) require fitting of a large number of parameters

which may cause severe degradation of power.

0.4 Multiple Subjects Analysis

Once individual SPMs for some effect of interest have been computed for multiple ses-

sions (from a single subject) and multiple subjects the second step of the analysis is to

aggregate them to allow for more general inferences to assess whether the effects found

in the single-subject analysis are common and stable between or across groups of interest

([38]••, [39]••). Prior to running aggregate analysis though individual data needs to be

transformed into some “standard” three-dimensional space, typically either in Talairach

([40]) or MNI152 ([41]) space. This transformation allows for alignment of corresponding

cerebral structures across subjects with differing brain anatomy. The normalization pro-

cedure of data is all but uncontroversial, especially in relation to its effectiveness (see [42]

for a brief review of the inherent problems of normalization), although a discussion of the

issue extends beyond the scope of this review.

Following computations of individual SPMs the question is then how to combine these

maps to make inferences pertaining to the group of sampled individuals and, desirably

— and more interestingly — to the population from which the sample is drawn. This

assessment is the very purpose of multi-subject analysis. Several approaches have been

proposed to multi-subject fMRI data analysis, each with its merits and pitfalls; most im-

portantly it should be noted that different methods may bear on the type of conclusion

that can be made (e.g. validity with respect to sample, validity with respect to sampled

population).
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0.4.1 Fixed Effects.

The most simple and straightforward way to analyze a multi-subject data is to concate-

nate the time-series obtained from each subject and run a GLM ([43]). This approach

is a so-called “fixed effects” analysis (FFX). There are two main differences between the

single-subject GLM and the multi-subject one. First, the former includes in the Y time-

series a concatenation of the data obtained from each session of a given subject. Contrar-

ily the multi-subject GLM includes in Y a concatenation of all runs from all subjects. To

accommodate for this a second difference is usually introduced in the X matrix which

now contains one regressor column for each effect per each subject. That is, given an

“ON” condition (for example), the X matrix will include for each subject one “ON” con-

dition regressors, each specifying when the given subject was undergoing such condition.

This is to say that the design matrix is specified as a subject-separable GLM (which also

allows for creating contrasts comparing – or isolating – activity of one or more given sub-

ject). The relevant question is thus what can be inferred, validly, from such analysis. As

Holmes and Friston nicely put, a classical statistical hypothesis test proceeds by compar-

ing the difference between the observed and hypothesised effect against the “yardstick”

of variance ([38]•• p. S745). Thus, the scope of an inference can be assessed by consider-

ing the used yardstick. FFX make use scan-to-scan variability, which, according to Friston

and colleagues [44]•• includes physiological task-related (e.g. adaptation, learning and

strategic changes in cognitive or sensory-motor processing) and task non-related vari-

ability (e.g. changes in global perfusion secondary to vasopressin (AHD) secretion in the

supine position), and non-physiological noise (e.g. gradient instabilities). In other words

FFX analyses only make use of within-subject variability (σ2
w) when computing signifi-

cance testing. In the interpretation of Penny and Holmes [45]•• FFX analyses represent

the population variance as being a sole function of within-subject variability divided by
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the product of subjects (N ) and number of sessions per subject (p)10. In their example, the

effect size for a given subject i at a specific session j is equal to the subject mean effect

plus some session specific error. Thus, formally:

dij = di + eij (8)

(Note that eij is σ2
w for subject i, and is assumed equal across subjects.) Thus the parameter

estimate and its variance for a given subject i are given by:

d̂i =
1

p

p∑
j=1

dij (9)

V ar(d̂i) =
σ2

w

p
(10)

Similarly, the population effect in this approach is given by the simple aggregation of all

the individuals’ effects (i.e. (8)). Thus, aggregating the subjects’ estimates (di) the popula-

tion estimate (and its variance) would thus be:

d̂pop =
1

N

N∑
i=1

di (11)

V ar(d̂pop) =
1

N
V ar(d̂i) =

σ2
w

Np
(12)

The crucial point relies in the fact that the estimate of the population effect dpop in the

FFX approach is a function of only the scan-to-scan (i.e. within-subject) variability σ2
w, as

(12) makes clear. In this sense, running the GLM with the design matrix differentiated

by subject, except for allowing for inspection or comparison of individual subjects, is

equivalent to concatenating all data and using a same regressor for all subjects as in an

10In fact [45]•• makes use of n to define the number of sessions per subject, here p is used to avoid
confusions due to the unfortunate use of N and n to indicate different things.
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experiment with one “super-subject” whom underwent N × p sessions.

It should be clear though that the inferences drawn from a FFX analysis are not invalid,

rather they are only valid in reference of the used yardstick. Inference is thus supported

at the level of the sample analyzed but not in reference to the population from which

this sample is drawn (given that there is no consideration of “sampling variability”). As

noted by Friston and collaborators [44]•• a FFX approach makes the assumptions that

each subject makes the same contribution to the observed activation thus discounting

random variation from subject to subject (see the data presented in [45]••, Figure 2 for a

dramatic example of subject-to-subject variability). This type of analysis can thus be seen

as relevant in “single case” studies ([45]••), but seems unacceptable for the standard fMRI

experiment and its (desired) inferential scope.

0.4.2 Random Effects.

To overcome the limited scope of inference-making from FFX analyses a different yard-

stick should be used. As Beckmann and colleagues observe, in order to generate results

that may support inferences about the population, it is necessary to account for the fact

that individual subjects themselves are sampled from the population and thus random

quantities with associated variances ([46], p. 1053). In other words, the yardstick must

also account for the subject-to-subject (i.e. between-subject, σ2
b ) variability. Indeed, Friston

et al. [44]•• note that there are several reasons for assuming that such variation is present in

fMRI data and that that this can be due to any (and any interaction) of several factors such

as general subject differences in neural or hemodynamic response to stimulation, and/or

differing underlying anatomy. Further, any of the above-mentioned within-subject varia-

tions may be of different magnitude across subjects and, finally, many non-physiological

noise sources could affect the way in which a BOLD effect (even assuming this was actu-

ally the same across several subjects) could give rise to different data (e.g. radio-frequency
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and gradient instabilities, re-calibration of the scanner, repositioning effects or differential

shimming effects). Finally, the authors also remark that the subject-to-subject effects are

typically much greater than scan-to-scan effects.

A “random-effects” analysis (RFX) accounts for such variations by including in the

error term also sampling variability (i.e. departures of the subject effect from the popu-

lation effect). Keeping with the explanation in [45]••, a RFX analysis replaces the FFX

assumption (8) with:

dij = di + eij (13)

di = dpop + zi (14)

Thus, at the level of the individual session the within-subject variability is equivalent

across the two approaches (compare (8) to (13)), but the RFX also considers the effect of a

single subject di as having a E(dpop) plus some variability zi. Note that the variability is

σ2
b (i.e. across-subject variability), therefore the effect of a single subject di ∼ N(dpop, σ

2
b ).

Thus, the RFX parallels to (11) and (12) would be:

d̂pop =
1

Np

N∑
i=1

p∑
j=1

dij (15)

V ar(d̂pop) =
σ2

w

Np
+

σ2
b

N
(16)

It is immediately clear from (16) that in RFX analyses the yardstick used for statistical test-

ing encompasses both the “within” and “across” sources of variability and thus supports

inferences at the population level.
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0.4.3 Conjunction Analysis.

The intuition underlying this approach was first developed by Price and Friston [47]••

who, critic of the standard cognitive subtraction technique (e.g. Task - Baseline), suggest

testing for brain activations by “triangulating” on brain areas which should satisfy two

conditions: (i) be jointly active across different subtractions (e.g. (Task A - Baseline A) and

(Task B - Baseline B)), although (ii) not significantly different across the different subtrac-

tions. The basic idea is to create different task-baseline pairs, each isolating the process

of interest (typically along with some “accessory” activations elicited by the specific task

pairs, to be discarded at the second stage). Conjunction analysis can thus be thought

of as testing for the activating effects of a given process of interest in a set of different

contexts (i.e. task-baseline pairs) which retains activations equally robust across contexts

(“context-independent” activations) while eliminating activations of significantly differ-

ent intensity across contexts (“context-dependent” activations).

The implementation of this conjunction simply requires standard creation of sum

SPMs (i.e. sum of all voxels active in all the different task-baseline pairs) and then elimina-

tion of all voxels that show significant difference across subtractions (“interaction mask-

ing” procedure, see [48]). In factorial analysis jargon, a conjunction is equivalent to

searching for a main effect (e.g. the common underlying psychological-neural process),

in absence of specific task × psychological-neural process interactions. If a given activa-

tion does abide by both (i) and (ii) above, then it must reflect some common mechanism

to all task − baseline pairs (thus a main effect), if instead it abides by (i) but not by (ii)

then it must be reflecting some process relating to the specific task − baseline subtraction

and/or its interaction with the main effect.

As noted in Friston et al. [44]•• FFX models are very sensitive analyses, having sub-

stantially more d.f. and being the scan-to-scan error typically smaller (thus typically
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t(FFX) > t(RFX)) although they have the drawback of circumscribed validity to sample-

specific inferences. On the other hand the price for the generalizability of results provided

by a RFX approach is potentially very small T-statistics (given that subject-to-subject vari-

ance is usually much greater than scan-to-scan variation), and thus a very conservative

analysis. Further, Friston and Holmes [49] also note that it may require many subjects to

reliably assess the subject-to-subject variability. To try to retain the sensitivity of FFX but

still have a methodology supporting population-valid inferences Friston et al. [44]•• sug-

gest a development of the conjunction analysis proposed by Price and Friston [47]•• that,

despite employing FFX models can still be used to make population inferences about

qualitative responses (e.g. activated vs. non activated) in terms of confidence intervals

for the proportion of population showing the effect. In this paper the authors suggest

to first analyze each subject individually with a FFX conjunction approach and then ap-

plying meta-analytic approach to assess reliability of the activations across subjects. The

population-wise inference is thus predicated upon the use of confidence intervals for the

proportion of population that is likely to show the effect(s) identified in the single-subject

FFX analysis. The first-level analysis is essentially analogous to that proposed in [47]••

where the voxels of interest are those that jointly survive multiple (and different) subtrac-

tions, although without being significantly different across them. The only innovation

at this point is the use of a common significance threshold value for the multiple sub-

tractions computed according to Worsley and Friston [50]. In this approach the theory of

random fields (TRF) is applied to 3D brain images to compute the probability of finding a

conjunction anywhere in the brain and thus setting an inferior bound on the probabilities

required for an conjunction to be considered as non casual. The multi-subject analysis

approach is instead novel, and pivots on the construction of confidence intervals which

should contain, for a given (TRF-corrected) α level, the proportion γ of subjects in the

population showing the effect. Specifically, the authors first represent P (n) as the proba-
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bility of a certain number n of individuals showing an effect, and define it in terms of the

specificity α, power and the probability γ of a random subject showing the effect. Then,

in relation to some critical proportion of population γc one wishes to test the presence

of the effect for, Friston and colleagues find an upper bound for P (n|γ < γc) function of

the corrected-α level (i.e. not the family-wise α) and γ. By imposing these two measures,

the upper bound in fact yields a p-value corresponding to an inference on how typical

the effect is (where γc sets the degree of “typicality”) given the specificity (i.e. α). Equal

or smaller values will not support rejection of the null hypothesis that the proportion of

population showing the effect is less or equal to γc. Further, by imposing this p-value to

be equal to the family-wise (desired) false discovery rate αc (which thus is the specificity

at the population level), the critical proportion of subjects showing the effect γc can be

expressed as a sole function of the family-wise and local (i.e. the specificity used for indi-

vidual testing) α levels. The conjunction approach can therefore be interpreted as saying

that with specificity of (1 − αc) a proportion of the population greater than γc shows the

effect. The authors note that this is identical to saying that this is a 100(1 − αc)% confi-

dence interval for the unknown parameter γ. This analysis thus allows to conclude that

a sampled subjects activated a given region (using a FFX model) and that with some de-

sired confidence αc at least a certain proportion γc of the population would have shown

this effect. It should be noted that these inferences can be constructed as statements that

describe the typicality of the effect, without though assuming that it is present in all sub-

jects.

Finally, in the discussion section, the authors make two important remarks. First, com-

paring RFX to conjunction analysis they note that whereas the former is a quantitative

statement, positing for the average effect to be greater than zero, the latter is only a confi-

dence region over a categorical effect (i.e. activate versus non-activate) that only requires

that a (substantial) proportion of the subjects to show the effect. Second, the authors also
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note that this approach is not meant to replace RFX approaches, to which in some cases

there is no alternative, but rather to enable researches to make the best of small data-sets

(e.g. pilot data, case studies).

The idea of conjunction analysis has not been without resistance. Caplan and Moo [51]

for instance oppose the merits that [47]•• ascribe to the cognitive conjunction approach,

especially the fact that it solves the problem of setting an appropriate baseline task and

the “insertion” problem (see [51, 47] for a review of both issues). Indeed, they note that

the baseline problems (e.g. implicit processing) apply just as forcefully to the scenario

reported in [47]••, and that the statement that “conjunction looks for commonality in ac-

tivation differences between two or more pairs of tasks that share only the component of

interest”([47]••, p261) uncovers the fact that conjunction analysis still does rely on the ap-

propriate setting of a baseline, not differently from the standard subtraction method. The

second merit of conjunction analysis according to [47]•• is that it eliminates the need to

assume that the cognitive process of interest added at task (as compared to baseline) does

not interact with other components present in both the baseline and the task (so called

“pure insertion” hypothesis). The need for assuming that a new cognitive component

(the effect of interest) can be inserted without affecting other components is important for

the subtraction results to be interpretable. With conjunction though, elimination of inter-

action effects (the interaction masking) eliminates the need to assume pure insertion. Yet,

as Caplan and Moo [51] point out, for conjunction analysis to get rid of interaction effects,

interactions resulting from different subtractions must not overlap, else the correspond-

ing region will be mistaken for a “context-independent” one when in fact it is responding

to (more) specific contents. However, just as for the baseline problem, conjunction anal-

ysis seems to assume that the problem will not be relevant, given the unlikeliness of two

interaction areas to be overlapping, rather than solve it, as the technique proponents ar-

gue. In addition to the two above criticisms, the authors also note that while on one side
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the conjunction analysis is weak, not solving the problems it was set to overcome, on the

other it may impose unwanted restrictions on the identification of regions associated with

a specific cognitive process. Specifically, should one of the task-baseline pairs engage the

regions responsive to a given cognitive process with greater intensity than the other ones,

the conjunction approach will deem them as interactions and eliminate them; potentially

excluding areas of interest.

On different grounds also Nichols et al. [48] opposes the procedure proposed by [47]••

and [44]••, noting that the second step of the interaction masking procedure relies on

the null result of failing to reject an interaction effect at a given voxel. Using statistical

tests to define regions where there is no interaction is “accepting the null hypothesis”, yet

lack of evidence is not evidence of lack. Further, an even more severe problem with the

Friston and colleagues approach, relates to the statistical testing of joint significance of

the effects (see [44]•• and [50]). As described by Nichols and colleagues [48] the statistical

procedure is to first assess the individual significance of effects (this would be the first

level analysis) and then make use of a minimum statistic procedure to assess the joint

reliability of the results. The minimum statistic test is predicated on the following logic:

given a voxel i associated with one t-value per each tested effect (say effect A and effect

B), the two effects may for example not reach significance – individually – yet the fact

that both are greater than zero suggests a real effect could be present. To test whether

this is the case a test on the minimum t-statistic can be made, under the assumption that

if there is no effect then both effects will be drawn from a null t-distribution. Here is

the logic pitfall: the null hypothesis in Friston et al. [44]•• is then that neither effect A nor

effect B are significant, which, in logical terms is a conjunction of two negations. Now, if a

conjunction is defined as a voxel for which both statements A and B are true, its negation

(and thus the null hypothesis) should be represented by any state in which at least one

(or both) statements is not true (i.e. (¬A) ∨ (¬B) with ∨ interpreted inclusively). Yet the
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null hypothesis in [44]•• is a conjunction of two negations, implying that the alternate

hypothesis being tested is in fact an “inclusive OR” rather than an “AND”. Nichols and

colleagues [48] remark that the test is still valid, simply this global null hypothesis, when

rejected, only allows for the inference that at least one subject shows the effect (i.e. an

inclusive OR statement). Finally, the authors conduct a literature search and report that

within a sample of 42 abstracts submitted (and accepted) to Organization for Human

Brain Mapping (OHBM) reporting the word “conjunction” or “conjoin” 23 erroneously

concluded a strict conjunction of effects (e.g. A ∧ B) upon using the [44]•• procedure, six

were unclear and 4 correctly inferred a conjunction of at least one or more effects.

0.4.4 Mixed-Effects & Summary Statistics Hierarchical Approach

A different approach to group analysis is first proposed by Holmes and Friston [38]•• who

envision a mix-effects hierarchical model of data processing that may take into account

all the sources of variability (i.e. within and across). Their intuition is to first fit the GLM

at the individual level and write out the results as images (SPMs), and then with a simple

t-test assess these activations across multiple-subjects, thus subsuming the RFX idea that

the effect in a given subject is a function of the true population effect plus an error.

Penny and Holmes [45]•• develop further the idea of doing a RFX analysis via this

hierarchical summary-statistics approach, which they conceive more explicitly as a two-

levels model based on the sample mean d̄i rather than on the individual subject × scan

effect dij . The model would thus be:

d̄i = di + ei (17)

di = dpop + zi (18)

At the first level (equation (17)) the variation of the sample mean for each subject around
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the true mean for each subject is considered (the within-subject variation component),

whereas at the second level (equation (18)) the variation of the true subject means about

the population mean is considered (the across-subjects variation component). The popula-

tion-wise validity of this hierarchical summary-statistic approach lies in the fact that the

sample mean, which contains the within variability element, is brought forward from the

first level to the second. The estimate of the population mean (d̂pop) therefore contains con-

tributions from both the within and across components of variance. This claim is readily

apparent by substituting (17) in (18):

d̄i = dpop + zi + eij

Beckmann and coworkers [46] independently develop a very similar approach that, in

consideration of the magnitude of typical fMRI data sets capitalize on the summary statis-

tic hierarchical approach and build a “single complete mixed-effects” model, equivalent

to the hierarchical two level analysis (see [46], section II.C for proof of the equivalence).

The authors assume a standard GLM approach for analysis of subject i, specified as in (1)

In their specification the two level model is represented by:

Y = Xβ + ε (19)

β = XGβG + η (20)

where XG is the group-level design matrix (e.g. separating groups or conditions per each

subject) βG is the vector of group-level parameters, and η specifies the residual of the

group activation (parameter) scores (i.e. Cov(η) = Cov(βG)), with E(η) = 0, Cov(η) = VG,

and Cov(ε) = V , which is the block-diagonal form of the first level covariance matrices

Vi. Thus, (19) and (20) can be re-written in the following compact form:
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Y = XXGβG + γ (21)

with

γ = Xη + ε

where E(γ) = 0 and Cov(γ) = W = XVGXT + V . Application of a GLS approach yields

a “one-step” BLUE of the group-level parameter vector and its variance as follows (see

[46], p.1054, for the full derivation):

β̂G = (XT
GXT W−1XXG)−1XT

GXT W−1Y

var(β̂G) = (XT
GXT W−1XXG)−1

It should be noted that the main purpose of this one-step model is to be able to effi-

ciently test for general hypothesis for a mixed-effects group analysis only making use of

first-level results (i.e. parameter and variance estimates), without the need to “revisit” the

actual fMRI time-series data. It should be noted though that all first (and second) level

assumptions (e.g. GMAssumptions) still need to hold for (21) to yield a BLUE.

0.4.5 ANOVA Approach.

The intuition of “carrying-over” results (i.e. first level estimates and variances) into a sec-

ond level analysis was developed in a slightly different way also by Bosch [52] who sug-

gests an analysis of variance (ANOVA) approach to multi-subject data following an initial

voxel-wise t-test. The idea is to include in the group analysis the individually computed

SPMs in the group analysis rather than the actual individual time-series. In the simplest
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example, a 2 conditions experiment, each voxel of each subject’s run is associated with a

t-statistic resulting from the comparison of the two conditions. The aggregated data thus

has the form of a distribution of N (total number of subjects) statistics per each voxel, each

obtained at hypothesis testing for individual subjects. Assessment of significance of this

distribution (i.e. whether it is reliably different from zero) requires a simple t-test. Fur-

ther, [52] notes that by making use of z-scores, the voxel-wise t-test would simply equal

the average z-score multiplied by the square root of N , given that the mean variance of the

z-score under the null hypothesis is known and equal to 1 (and mean is 0). Simple com-

parison of the t-statistic with the expected t-values under the null hypothesis will yield

a map of voxels significantly active, across subjects. Other standard tools (e.g. contrast

analysis) can then be used to test specific hypothesis regarding each voxel’s aggregated

distribution.

0.4.6 Variance Smoothing.

Finally, Worsley et al. [39] propose a “variance smoothing” method (see [53]), in response

to the RFX approach problem of lack of d.f.. The authors propose an “intermediate”

model that varies in between the two extremes of a FFX and a RFX analysis according

to the amount of smoothing, which is a function of the actual d.f., thus of the design

and of the number of sessions per subject and subjects. In this approach a model much

alike (18) is first built, where the effect of a given subject at run j is a function of a linear

specification matrix z weighted by the parameters γ plus an error ηj ∼ N(0, σ2
j + σ2

random)

where σ2
j represents the standard deviation of the effect Ej in run j from the average value

across runs (thus scan-to-scan error), and σ2
random represents the random effects variance

(the subject-to-subject variability). It is intuitive that setting σ2
random = 0 makes the model

a FFX analysis. The main problem is that usually the d.f. are low, and reliable estimates

of σ2
random are difficult to obtain, and will usually have great variability. A way to reduce
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such variability is to smooth the observed variance, although as noted by [53] this has the

drawback of assuming constant variance over the brain (i.e. spatial stationarity), which

does not seem to be the case (e.g. differences across gray and white matter). So, Worsley

and colleagues [39] replace this assumption with that of local stationarity of the RFX vari-

ance to FFX variance ratio. The idea is to first run a FFX and a RFX analysis, then take

the ratio of the variance estimates (where σ̂2
random would be a “bad” estimate of the true

between variance due to the low d.f.) smooth them and then multiply the smoothed ratio

by the FFX variance (thus effectively using it as a template for a better estimate of the be-

tween variance). Formally, their idea is to create a better estimate of the subject-to-subject

variance as follows:

σ̃2
random = smooth(

σ̂2
random

σ2
fixed

)× σ2
fixed.

This estimate of the between variance can be used to get a better estimator of the

parameter vector γ and its variance. It is immediate that the two extreme smoothing

solutions, no-smoothing and infinite-smoothing, render the analyses a pure RFX or a pure

FFX, respectively. The question then relies to what is the appropriate degree of smoothing

to be applied. [39] argue, on empirical bases (i.e. simulations) that the best smoothing

kernel is the one that yields at least d.f. = 100 for the regularized variance ratio (see

[39], APPENDIX C for the computation of the d.f. of the smoothed ratio, which in their

simulation appears to be equivalent to 15mm FWHM smoothing).

0.5 Conclusion

In the past fifteen years fMRI has assurged as one of the primary tools for in vivo imag-

ing of human cognition. Yet, the typical GLM approach to data analysis – currently the

most used analysis strategy – does not seem excessively fit to fMRI time-series given
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the fact that these do not conform to most of the requirements of the model. At both a

first “single-session/subject” and second “multi-subject” levels several assumptions of

the model simply do not hold. Nonetheless the intuitive nature of the GLM approach

has fostered a (quite successful) effort to resist these shortcomings by using several “cor-

rective strategies” (e.g. data pre-whitening or pre-coloring for autocorrelation). Two final

considerations should be made. First, one should wonder whether this “curing the symp-

toms” approach and its stubborn will to employ the GLM is effectively the best direction

to go, as opposed to alternative routes such as exploratory analysis (e.g. ICA, PCA, ISC),

non-parametric methods or bayesian approaches. Not to say these should be exclusive,

but a greater awareness of model availability could impose a beneficial competitive di-

mension across analysis strategies. Second, there seems to be somewhat a dyscrasy be-

tween the sophisticated research relating to statistical analysis and the actual use by non-

technical groups of such tools. At least two reasons may account for this. On one side the

literature is hard to evaluate. Most articles propose a new analysis strategy, either in re-

sponse to a pitfall of the GLM model or to some other strategy, and typically support their

proposition by “comparative validation” of the procedure on either synthetic or human

data. Such validations are not uncontroversial. (For example the validation of the “pre-

whitening” technique in Bullmore et al. [19]•• has often been questioned as applying only

to the specific data and conditions used in the very validation, e.g. see [17]•• p. 197.) Com-

parative studies by “third parties” are completely lacking. On the other hand, of all these

proposed strategies only a limited number finds implementation in the standard fMRI

analysis packages (e.g. AFNI, SMP, FSL). Furthermore each group just tends to imple-

ment its own procedures. (One of the few remarkable exceptions to this is SMP2 which

abandoned the Friston and Worsley alike “pre-coloring” technique used up to SPM99,

see [15]••, [16]••, [17]•• in favor of a “pre-whitening” approach similar to that proposed in

Bullmore et al. [19]••.) As a consequence a lot of the literature ends up being a “theoretical
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discussion” dissociated from actual implementation and data-analysis amelioration.
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