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STATISTICAL ANALYSIS OF FRAGILITY CURVES

y Masanobu Shinozuka,1 Honorary Member, M. Q. Feng,2 Associate Member, ASCE,
Jongheon Lee,3 and Toshihiko Naganuma4

ABSTRACT: This paper presents a statistical analysis of structural fragility curves. Both empirical and analytical
fragility curves are considered. The empirical fragility curves are developed utilizing bridge damage data ob-
tained from the 1995 Hyogo-ken Nanbu (Kobe) earthquake. The analytical fragility curves are constructed on
the basis of the nonlinear dynamic analysis. Two-parameter lognormal distribution functions are used to represent
the fragility curves with the parameters estimated by the maximum likelihood method. This paper also presents
methods of testing the goodness of fit of the fragility curves and estimating the confidence intervals of the two
parameters (median and log-standard deviation) of the distribution. An analytical interpretation of randomness
and uncertainty associated with the median is provided.
INTRODUCTION

In performing a seismic risk analysis of a structural system,
it is imperative to identify seismic vulnerability of component
structures associated with various states of damage. The de-
velopment of vulnerability information in the form of fragility
curves is a widely practiced approach when the information is
to be developed accounting for a multitude of uncertain
sources involved, for example, in estimation of seismic hazard,
structural characteristics, soil-structure interaction, and site
conditions. In principle, the development of fragility curves
will require synergistic use of the following methods: (1) Pro-
fessional judgment; (2) quasi-static and design code consistent
analysis; (3) utilization of damage data associated with past
earthquakes; and (4) numerical simulation of the seismic re-
sponse of structures based on dynamic analysis.

This paper concentrates on the development of empirical
and analytical fragility curves for bridges as described in
Methods 3 and 4 above, respectively—the former by utilizing
the damage data associated with a past earthquake, and the
latter by numerically simulating seismic response with the aid
of structural dynamic analysis. At the same time, this paper
introduces statistical procedures appropriate for the develop-
ment of fragility curves under the assumption that they can be
represented by two-parameter lognormal distribution func-
tions. These procedures describe how the test of goodness of
fit can be performed and the confidence intervals of the two
parameters can be estimated. The empirical fragility curves are
developed utilizing bridge damage data obtained from the
1995 Hyogo-ken Nanbu (Kobe) earthquake. Analytical fragil-
ity curves are developed for typical bridges in the Memphis
area on the basis of a nonlinear dynamic analysis.

Two-parameter lognormal distribution functions were tra-
ditionally used for fragility curve construction. This was mo-
tivated by its mathematical convenience in relating the actual
structural strength capacity with the design strength primarily
through a seismic factor of safety, which can be factored into
a number of multiplicative safety factors, each associated with

1Fred Champion Prof., Dept. of Civ. Engrg., Univ. of Southern Cali-
fornia, University Park, CA 90089-2531.

2Assoc. Prof., Dept. of Civ. and Envir. Engrg., Univ. of California,
Irvine, CA 92697-2175.

3Visiting Prof., Dept. of Civ. and Envir. Engrg., Univ. of California,
Irvine, CA.

4Mgr. of Survey and Des. Div., Hanshin Expressway Public Corp.,
Osaka, Japan.

Note. Associate Editor: Ahsan Kareem. Discussion open until May 1,
2001. To extend the closing date one month, a written request must be
filed with the ASCE Manager of Journals. The manuscript for this paper
was submitted for review and possible publication on July 21, 1999. This
paper is part of the Journal of Engineering Mechanics, Vol. 126, No.
12, December, 2000. qASCE, ISSN 0733-9399/00/0012-1224–1231/
$8.00 1 $.50 per page. Paper No. 21465.
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2000

J. Eng. Mech. 2000.1
a specific source of randomness and/or uncertainty. When the
lognormal assumption is made for each of these factors, the
overall seismic safety factor also distributes lognormally due
to the multiplicative reproducibility of the lognormal variables.
This indeed was the underpinning assumption that was made
in the development of probabilistic risk assessment method-
ology for nuclear power plants in the 1970s and in the early
1980s [U.S. Nuclear Regulatory Commission (U.S. NRC)
1983].

EMPIRICAL FRAGILITY CURVES

Empirical fragility curves for the Hanshin Expressway Pub-
lic Corporation’s (HEPC’s) bridges (columns) are developed
on the basis of the records of the damage resulting from the
1995 Kobe earthquake. It is assumed that the curves can be
expressed in the form of two-parameter lognormal distribution
functions, and the estimation of the two parameters (median
and log-standard deviation) is performed with the aid of the
maximum likelihood method. For this purpose, the peak
ground acceleration (PGA) is used to represent the intensity
of the seismic ground motion, although use of intensity mea-
sures other than PGA such as peak ground velocity, spectral
acceleration, spectral intensity, and modified Mercalli intensity
are possible.

The likelihood function for the present purpose is expressed
as follows:

N

x 12xi iL = [F(a )] [1 2 F(a )] (1)i iP
i=1

where F(?) represents the fragility curve for a specific state of
damage; ai = PGA value to which bridge i is subjected; xi =
1 or 0 depending on whether or not the bridge sustains the
state of damage under PGA = ai; and N = total number of
bridges inspected after the earthquake. Under the current log-
normal assumption, F(a) takes the following analytical form:

a
ln S DcF GF(a) = F (2)

z

in which a represents PGA; and F[?] = standardized normal
distribution function.

The two parameters c and z in (2) are computed as ce and
ze satisfying the following equations to maximize ln L and
hence L:

d ln L d ln L
= = 0 (3)

dc dz

This computation is performed by implementing a straightfor-
ward optimization algorithm.
26:1224-1231.
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FIG. 1. Fragility Curves for HEPC’s Bridges

Fragility curves are constructed (Nakamura et al. 1998) on
the basis of a sample of 770 single-support reinforced concrete
columns along two stretches of the viaduct, one in the HEPC’s
Kobe Route and the other in the Ikeda Route with a total
length of 40 km. The damage data reported by HEPC’s en-
gineers after the 1995 Kobe earthquake are utilized for this
purpose. The state of damage is classified as collapse (As),
major (A), moderate (B), and minor (C ). These bridge columns
J. Eng. Mech. 200
are of similar geometry and are similarly reinforced. In this
respect, the 770 columns under consideration here constitute
approximately a homogeneous statistical sample. The PGA
value at each column location under the Kobe earthquake is
estimated by Nakamura et al. (1998) on the basis of the work
by Nakamura and Mizatani (1996).

Integrating the damage state information with that of the
PGA, and making use of the maximum likelihood method in-
volving (1)–(3), three fragility curves are constructed as
shown in Fig. 1 together with values of the median ce and log-
standard deviation ze. The curve with a ‘‘minor’’ designation
represents, at each PGA value a, the probability that ‘‘at least
a minor’’ state of damage will be sustained by a bridge (ar-
bitrarily chosen from the sample of bridges) when it is sub-
jected to PGA a. The same meaning applies to other curves
with their respective damage state designations.

ANALYTICAL FRAGILITY CURVES

To demonstrate the development of analytical fragility
curves, two representative bridges with a precast, prestressed
continuous deck in the Memphis area studied by Jernigan and
Hwang (1997) are used. The plan, elevation, and column cross
section of Bridge 1 are depicted in Fig. 2. Geometry and con-
figuration of Bridge 2 are similar to Bridge 1. Bridge 2 also
has a precast, prestressed continuous deck. However, the deck
FIG. 2. Representative Memphis Bridge (Bridge 1)
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1225
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FIG. 3. Typical Ground Motion Time Histories
is supported by two abutments and four bents with five spans
equal to 10.7 m (35 ft), 16.8 m (55 ft), 16.8 m (55 ft), 16.8
m (55 ft), and 10.7 m (35 ft). Each bent has three columns
5.8 m (19 ft) high with the same cross-sectional and reinforc-
ing characteristics as those of Bridge 1. Following Jernigan
and Hwang (1997), the strength fc of 20.7 MPa (3,000 psi)
concrete used for the bridge is assumed to be best described
by a normal distribution with a mean strength of 31.0 MPa
(4,500 psi) and a standard deviation of 6.2 MPa (900 psi),
whereas the yield strength fy of grade 40 reinforcing bars used
in the design is described by a lognormal distribution having
a mean strength of 336.2 MPa (48.8 ksi) with a standard de-
viation of 36.0 MPa (5.22 ksi). Then, a sample of 10 ‘‘nom-
inally identical but statistically different’’ bridges are created
for each of Bridges 1 and 2 by simulating 10 realizations of
fc and fy according to the respective probability distribution
functions assumed. Other parameters that could contribute to
variability of structural response were not considered in the
present analysis under the assumption that their contributions
can be disregarded.

For the seismic ground motion, the time histories generated
by Hwang and Huo (1996) at the Center for Earthquake Re-
search and Information at the University of Memphis are used.
These time histories are generated by making use of the Fou-
rier acceleration amplitude on the base rock derived under the
assumption of a far-field point source by Boore (1983). In fact,
the study area is located 40–100 km from Marked Tree, Ark.,
the epicenter of an 1846 earthquake of magnitude 6.5 and of
all the scenario earthquakes considered in this study. Upon
using seismologically consistent values for the parameters in
the Boore model and other related models and converting the
Fourier amplitude to the power spectrum, corresponding his-
tories are generated in terms of sample functions of a normal
(Gaussian) stationary process on the base rock by means of
the spectral representation method by Shinozuka and Deodatis
(1991). The seismic wave represented by these time histories
is propagated through the surface layer to the ground surface
by means of the SHAKE 91 computer code by Idriss and Sun
(1992) and used upon appropriately modulating in the time
EERING MECHANICS / DECEMBER 2000
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FIG. 4. Average Acceleration Response Spectra

domain (Hwang and Huo 1996) for the response analysis. To
minimize computational effort, samples of 10 time histories
are randomly selected from 50 histories generated by Hwang
and Huo (1996) for each of the following eight combinations
of magnitude (M ) and epicentral distance (R): M = 6.5 with
R = 80 and 100 km, M = 7.0 with R = 60 and 80 km, M =
7.5 with R = 40 and 60 km, and M = 8.0 with R = 40 and 60
km.

Typical ground motion time histories for two extreme com-
binations M = 8.0 with R = 40 km and M = 6.5 with R = 100
km are shown in Fig. 3. The spectral accelerations averaged
over 10 acceleration time histories used in this study from each
of the combinations of M = 7.5 for R = 40 and 60 km is shown
in Fig. 4 to provide insight to the frequency content of these
ground motion time histories. For the purpose of response
analysis, a sample of 10 time histories generated from each M
and R combination is matched with a sample of 10 bridges in
a pseudo-Latin hypercube format. Hence, each statistical rep-
resentation of Bridges 1 and 2 is subjected to 80 ground mo-
tion time histories.

The present study utilizes the SAP 2000 finite-element code,
126:1224-1231.
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FIG. 5. Fragility Curves for Memphis Bridges
which can in approximation simulate the state of damage of
each bridge under a ground acceleration time history. This
computer code can provide hysteretic elements that are in es-
sence bilinear without strength or stiffness degeneration.

The states of damage considered for Bridges 1 and 2 are
major (all of the columns subjected to ductility demand $2)
and ‘‘at least minor’’ (all of the columns subjected to ductility
demand $1) under the longitudinal applications of ground mo-
tion. Fig. 5 shows the fragility curves associated with these
states of damage for Bridges 1 and 2. Eighty diamonds plotted
on the two horizontal axes represent xi = 0 (for the state of no
damage) and xi = 1 (for the state of major damage) in relation
to (1) for Bridge 1 under the 80 earthquakes generated. The
corresponding fragility curves are derived on the basis of these
diamonds in conjunction with (1)–(3). The analysis performed
under the ground motion in the transverse direction produced
the states of lesser damage and hence are not reported in this
paper.

STATISTICAL ANALYSIS

To date, the issues of hypothesis testing and confidence in-
tervals relating to fragility curve development have not been
addressed in the literature, primarily because the earthquake
engineering community has never had the opportunity to col-
lect damage data of a sufficiently large sample that can be
used to develop fragility curves on the basis of legitimate sta-
tistical analysis. However, the 1994 Northridge and 1995 Kobe
earthquakes, inflicting devastating damage upon many bridges,
buildings, port facilities, and other engineered structures, made
it possible to consider statistical methods to analyze the prob-
abilistic characteristics of damage in a more judicious fashion
rather than relying on an ad hoc curve-fitting exercise.

Test of Goodness of Fit

The fundamental probabilistic interpretation of a fragility
curve F(a) as a function of a suggests that a bridge will sustain
a designated state of damage with probability F(a) and will
not sustain the damage state with probability 1 2 F(a) under
the earthquake intensity represented by PGA equal to a. This
means that, under each PGA value, the probabilistic phenom-
ena one deals with can be described by random variable Xi

following the Bernoulli distribution such that Xi = 1 when the
state of damage is reached under PGA = ai, and Xi = 0 oth-
erwise. Then

2 2Y = (X 2 p ) (4)i i i
J. Eng. Mech. 20
TABLE 1. Values for Goodness of Fit2Py

Damage
state
(1)

HEPC’s
bridges

(2)

Memphis
Bridge 1

(3)

Memphis
Bridge 2

(4)

Minor 0.39 0.64 0.48
Moderate 0.86 — —
Major 0.73 0.57 0.64

has mean and variance equal to

2m = p (1 2 p ) (5)Y i ii

2 2 2
2s = var(Y ) = p (1 2 p )(1 2 2p ) (6)Y i i i ii

respectively, where pi = F(ai).
The sum of shown below2Yi

N

2 2Y = (X 2 p ) (7)i iO
i=1

approaches asymptotically normal (Gaussian) as N becomes
large due to the central limit theorem as each Bernoulli event
under consideration is assumed independent, where N is the
sample size (the total number of the bridges considered), and
in this analysis it is indeed a large value (>>1).

Recalling that Xi is independent of Xj (i ≠ j) and governed
by the Bernoulli distribution, a straightforward analysis shows
that the expected value = E(Y 2) and the variance =2

2 2m sY Y

var(Y 2) can be written as follows:
N

2
2m = E(Y ) = p (1 2 p ) (8)Y i iO

i=1

N

2 2 2
2s = var(Y ) = p (1 2 p )(1 2 2p ) (9)Y i i iO

i=1

On the other hand, if xi represents the realization observation
of Xi as defined in the likelihood function given by (1)

N

2 2y = (x 2 p ) (10)i iO
i=1

is the realization of Y 2.
Because pi depends on the values of ce and ze, the standard

procedure of hypothesis testing suggests that if a is a signif-
icance level and

2
2y 2 my

P = F # 1 2 a (11)2y S D
2sy
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1227
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FIG. 6. Validation of h2 Asymptotically Approaching Normal Distribution
then, the hypothesis that ce and ze are indeed the true values
of c and z cannot be rejected at the significance level a usually
set equal to 0.05 or 0.10.

The values for the fragility curve developed for HEPC’s2py

bridges (Fig. 1), and Memphis Bridges 1 and 2 (Fig. 5) are
given in Table 1. These values indicate that the hypotheses
involved in all of the cases cannot be rejected at the signifi-
cance level of 10%. It is noted here that this method can test
the goodness of fit of the fragility curve only over the range
of PGA where damage data sufficiently exist. For example, the
fragility curve for Bridge 1 associated with the state of major
damage in Fig. 5 is not necessarily valid beyond 0.4g. A sim-
plistic parallel to this is the case of extrapolating the result of
least-squares curve fitting much beyond the range of existing
data.

Fig. 6 shows the validity of the assumption of Y 2 in (7)
being asymptotically normal by means of plotting the 100 re-
alizations of Y 2. This requires simulation of Xi at each ai using
pi based on ce and ze obtained from the empirically or analyt-
ically observed damage data. Upon simulating all Xi for all ai

and obtaining their realizations ji, (10) is evaluated as
N

2 2h = (j 2 p ) (12)i iO
i=1

where h and ji are written in place of y and xi to distinguish
the simulated data from the actual data. This process is re-
peated k times (k = 100 here) to produce 100 realizations of
Y 2 consisting of the same number of h2, each representing one
set of simulations of ji (i = 1, 2, . . . , N ). This sample of h2

is indeed plotted in Fig. 6 using the normal probability paper.
The dashed line represents the least-squares fit of the sample,
and the solid line indicates the theoretical normal distribution
with the mean and standard deviation given by (8) and (9),
respectively, for the fragility curve for HEPC’s bridges asso-
ciated with the state of ‘‘at least minor’’ damage. For other
fragility curves demonstrated above, the simulated realizations
of Y 2 can also be shown to distribute in accordance with nor-
mal distributions with their respective mean and standard de-
viation derivable from (8) and (9).

Estimation of Confidence Intervals

The estimators ĉ and of c and z cannot be explicitly givenẑ
in terms of analytical forms as they represent optimal solutions
obtained numerically by solving (3). From the uncertainty
analysis point of view, however, it is most desirable to dem-
onstrate the extent of the statistical variations of these esti-
ERING MECHANICS / DECEMBER 2000
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FIG. 7. Simulated Distribution of ĉ and ẑ

mators. To this end, Monte Carlo simulation techniques are
used to generate realizations of ĉ and These call for theẑ.
same simulation of Xi at each ai using pi based on ce and ze

as exercised to demonstrate the asymptotic normal property of
Y 2 in relation to the test of goodness of fit. Upon simulating
Xi for all ai and obtaining their realizations ji (i = 1, 2, . . . ,
N), (3) is solved for ce and ze as a set of realizations of ĉ
and ẑ.

Repeating this process a large number of times (500 times
in this case), one obtains 500 sets of realizations of ĉ and ẑ
as plotted in Fig. 7. Assuming that the marginal distribution
of ĉ is lognormal, and taking the 90% confidence interval be-
tween ĉ = c0.95 and ĉ = c0.05 associated with exceedance prob-
abilities 95 and 5% of ĉ, one obtains c0.95 = 0.45g and c0.05 =
0.50g for the fragility curve of HEPC’s bridges with the state
of ‘‘at least minor’’ damage. Fig. 8 shows the three fragility
curves with medians c = c0.95, c = ce, and c0.05 with the identical
log-standard deviation z0 = 0.59; the curves on the left and
right, respectively, represent the fragility curves with 95 and
5% confidence. Following the tradition of the risk assessment
procedure for the nuclear power plant (U.S. NCR 1983), the
log-standard deviations z = ze associated with c = ce is used
for these three curves, although it is possible to combine z =
z0.95 and z = z0.05, which are derivable from the simulated dis-
tribution of together with c = c0.95 and c = c0.05, respectively.ẑ,
This study contends as in ‘‘PRA Procedures Guide’’ (U.S.
NRC 1983) that this is justifiable because the variation in c
has the first-order effect on fragility values whereas that in z
has the second-order effect in general. Similar fragility curves
with 95 and 5% confidence are obtained for other states of
damage.

In the probabilistic risk assessment of nuclear power plants,
126:1224-1231.
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FIG. 8. Confidence Bands of 95 and 5% for HEPC’s Fragility Curve
an ‘‘average’’ fragility curve F*(a) is derived and utilized of-
ten. This average curve is obtained by unconditionalizing
F(auc) = F[ln(a/c)/z] under the assumption that c is lognor-
mally distributed

F*(a) = F(auz) f (z) dz (13)cE
z

where fc(z) = lognormal density function of c with median c̃
and log-standard deviation zc. The distribution function F*(a)
is not lognormal. However, in approximation, it may be and,
indeed, was used in practice as lognormal distribution in
‘‘PRA Procedures Guide’’ (U.S. NRC 1983)

˜ln(z/c)
f (z) = F (14)c F Gzc

The distribution function F*(a) has the same statistical signif-
icance as the combined or composite fragility curve to be in-
troduced below.

Development of Combined and Composite
Fragility Curves

Use of a fragility curve representing a family of bridges
with similar structural attributes, primarily categorized in spe-
cific structural types, expedites the process of urban earth-
quake disaster estimation. A well-known example of such a
categorization is found in ATC 13 [Applied Technology Coun-
cil (ATC) 1985]. Bridges 1 and 2 in the Memphis area ana-
lyzed in an earlier section belong to such a family of bridges
that can be categorized as precast, prestressed continuous deck
bridges with short to medium length. This section demon-
strates how combined fragility curves for a category of bridges
can be derived from individual fragility curves constructed for
member bridges in the aforementioned category.

The fragility curves (associated with specific states of dam-
age) analytically developed for Bridges 1 and 2 in the Mem-
phis area can be combined in the following fashion in order
to develop a combined fragility curve for a mixed set of pop-
ulation of bridges in which there are N1 and N2 of Bridges 1
and 2, respectively. In this case, the combined fragility curve
Fc(a) is obtained as
J. Eng. Mech. 200
F (a) = P ?F (a) 1 P ?F (a) (15)c 1 1 2 2

where Fi(a) = fragility curve for Bridge i and

Ni
P = (16)i (N 1 N )1 2

is the probability with which a Bridge i will be chosen at
random from the combined population. With N1 = N2 = 1, the
resulting fragility curve Fc(a) for major damage is shown in
Fig. 9. It is noted that Fc(a) thus developed is no longer a
lognormal distribution.

Because the density function fc(a) of Fc(a) can be written

f (a) = P f (a) 1 P f (a) (17)c 1 1 2 2

and because fi(a) is a lognormal density function, the expected
value of a = ln a for the combined distribution is given by

ā = P ln c 1 P ln c = P ā 1 P ā (18)1 1 2 2 1 1 2 2

in which ci = median associated with fi(a) and

ā = ln c (19)i i

If is defined asā

ā = ln a (20)c

then

P P21a = c ?c (21)c 1 2

To obtain the standard deviation zc of a = ln a of the com-
bined distribution, one recognizes

2 2 2 2z = E(a 2 ā) = E(a ) 2 ā (22)c

2 2 2E(a ) = P a w (a) da 1 P a w (a) da1 1 2 2E E
2 2= P E (a ) 1 P E (a ) (23)1 1 2 2

where wi(a) = normal density function of a with mean ln ci

and standard deviation zi. One further recognizes that

2 2 2 2 2E (a 2 ā) = (a 2 ā) w (a) da = E (a ) 2 ā = z (24)i i i i iE
from which it follows that
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1229
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2 2 2 2E (a ) = a w (a) da = z 1 ā (25)i i i iE
Combining (18) and (22)–(25)

2 2 2 2 2z = P z 1 P z 1 P (1 2 P )ā 1 P (1 2 P )āc 1 1 2 2 1 1 1 2 2 2

2 2P P ā ā1 2 1 2 (26)

The last three terms of the right-hand side of (26) are positive
semidefinite with respect to and In fact, the sum of theseā ā .1 2

terms are positive except when = in which case the sumā ā ,1 2

is equal to zero. This indicates that the combination of two
fragility curves produces a variance that includes the terms that
form a quadratic expression of logarithms of the medians,
which always increases the value of the variance from its min-
imum equal to the sum of the first two terms of the right-hand
side of (26), unless the medians are equal.

Eqs. (15)–(18) and (26) can all be easily generalized and
take the following forms:

M

F (a) = P F (a) (27)c i iO
i=1

Ni
P = (28)i

N

where N = Ni = total number of bridges with Ni being theM(i=1

number of Bridge i or the ith nominally identical but statisti-
cally different set of bridges in the population of a category
of bridges

M

f (a) = P f (a) (29)c i iO
i=1

M

ā = ln a = P ā (30)c i iO
i=1

M

Pia = c (31)c iP
i=1

2 T Tz = P Z 1 A QA (32)c

where

TP = [P P ? ? ? P ] (33)1 2 M
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T 2 2 2Z = z z ? ? ? z  (34)1 2 M

TA = [a a ? ? ? a ] (35)1 2 M

P (1 2 P ) 2P P ??? 2P P1 1 1 2 1 M
???Q = (36)?F ? G?

2P P 2P P ??? P (1 2 P )m 1 M 2 M M

The expression AT QA is a quadratic form that is positive
semidefinite being equal to zero when = = ??? =ā ā ā .1 2 M

Hence, the comment made above with respect to the increase
of the value of variance is also valid for M > 2.

The combined fragility curve is not lognormal as explained
earlier. It seems reasonable to assume, however, that the com-
bined curve is lognormal with the mean and variance esti-
mated, respectively, by (30) and (32). This approximation is
expected to be particularly valid when the bridges under con-
struction are designed using the same design codes. A com-
bined fragility curve for Bridges 1 and 2 as also shown in Fig.
9 (solid curve) is in fact indistinguishable from the lognormal
distribution with the median computed (in approximation)
from (21) and log-standard deviation from (26).

The fragility curves developed for HEPC’s bridges in Fig.
1 are based on the hypothetically homogeneous population of
a sample size equal to 770. These are referred to as composite
fragility curves in this study because they can be interpreted
as composites of the combined fragility curves just introduced,
each being associated with a specific bridge (or column) cat-
egory. The composite fragility curve can be developed from
the component combined fragility curves in the same manner,
as each combined curve is derived from fragility curves of its
constituent nominally identical but statistically different
bridges. The first two moments of the composite fragility
curves can be derived from (1) the corresponding first two
moments of the combined fragility curves associated with the
bridge categories in the total population; and (2) the relative
size of subpopulation of each bridge category to the size of
the total population.

In general, the composite fragility curves are not lognormal
either. Nevertheless, the lognormal assumption also is used for
composite curves in Fig. 1 for analytical convenience and for
the ease in which comparisons can be made with the fragility
curves developed for other structural and nonstructural sys-
tems, many of which are traditionally based on the lognormal
assumption. It is noted that the lognormal hypothesis deployed
in constructing Fig. 1 cannot be rejected according to the result
FIG. 9. Combined Fragility Curve for Bridges 1 and 2
0.126:1224-1231.
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of the hypothesis testing involving the specific samples that
were used. Whether one wishes to develop a combined or
composite fragility curve, it is possible to interpret that PT Z
and ATQA in (32) are quantities that represent log-standard
deviations bU and bR associated, respectively, with the uncer-
tainty of the median value and randomness involved in the
fragility curve representing each particular category of bridges
(columns) with the same value of bR . Here, the nuclear power
plant seismic risk assessment notation and terminology are
used. This interpretation is indeed compatible with that pro-
vided, for example, by Holman et al. (1987), who considered
composite fragility curves for nuclear power plant equipment.

CONCLUSIONS

This study empirically developed fragility curves associated
with different states of damage of HEPC’s bridges under the
1995 Kobe earthquake event. Analytical fragility curves were
obtained for typical bridges in the Memphis area with the aid
of dynamic analysis. Two-parameter lognormal distribution
functions were used to represent the fragility curves with the
two parameters estimated by the maximum likelihood method.
Statistical procedures were presented to test the goodness-of-
fit hypothesis for these fragility curves and to estimate the
confidence intervals of the two parameters of the lognormal
distribution.

In addition, statistical interpretation of randomness and un-
certainty was introduced through the notation of combined and
composite fragility curves.
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