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ABSTRACT
We present new results for the three-point correlation function, ζ , measured as a function
of scale, luminosity and colour from the final version of the 2dF Galaxy Redshift Survey
(2dFGRS). The reduced three-point correlation function, Q3 ∼ ζ/ξ 2, is estimated for different
triangle shapes and sizes, employing a full covariance analysis. The form of Q3 is consistent
with the expectations for the � cold dark matter model, confirming that the primary influence
shaping the distribution of galaxies is gravitational instability acting on Gaussian primordial
fluctuations. However, we find a clear offset in amplitude between Q3 for galaxies and the
predictions for the dark matter. We are able to rule out the scenario in which galaxies are
unbiased tracers of the mass at the 9σ level. On weakly non-linear scales, we can interpret our
results in terms of galaxy bias parameters. We find a linear bias term that is consistent with
unity, b1 = 0.93+0.10

−0.08 and a quadratic bias c2 = b2/b1 = −0.34+0.11
−0.08. This is the first significant

detection of a non-zero quadratic bias, indicating a small but important non-gravitational
contribution to the three-point function. Our estimate of the linear bias from the three-point
function is independent of the normalization of underlying density fluctuations, so we can
combine this with the measurement of the power spectrum of 2dFGRS galaxies to constrain
the amplitude of matter fluctuations. We find that the rms linear theory variance in spheres of
radius 8 h−1 Mpc is σ 8 = 0.88+0.12

−0.10, providing an independent confirmation of values derived
from other techniques. On non-linear scales, where ξ > 1, we find that Q3 has a strong
dependence on scale, colour and luminosity.

Key words: galaxies: statistics – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

The higher-order statistics of galaxy clustering encode fundamen-
tal information about two key dynamical aspects of the large-scale
structure of the Universe: the growth mechanism of fluctuations and
the connection between the galaxy distribution and the underlying
mass (for a review, see Bernardeau et al. 2002). An accurate mea-
surement of the three-point correlation function of galaxies has the
potential to test the gravitational instability paradigm of structure
formation and, on scales that are evolving in the weakly non-linear
regime, to separate the effects of gravity from the contributions aris-
ing from galaxy bias (Fry & Gaztañaga 1993; Frieman & Gaztañaga
1994).

The measurement of the three-point function and other higher-
order statistics from galaxy catalogues has a rich history (Peebles &

�E-mail: gazta@ieec.fcr.es

Groth 1975; Groth & Peebles 1977; Fry & Peebles 1978; Baumgart
& Fry 1991; Gaztañaga 1992; Bouchet et al. 1993; Fry & Gaztañaga
1994). In the past decade, three-point statistics have supported the
basic premise of gravitational instability from Gaussian initial con-
ditions (Frieman & Gaztañaga 1994; Jing & Börner 1998; Frieman
& Gaztañaga 1999; Hoyle, Szapudi & Baugh 2000; Feldman et al.
2001). The impact of these measurements on theoretical models has,
however, not been as great as it could have been for two reasons.
First, the traditional theoretical predictions rely upon the applica-
tion of perturbation theory, which limits the comparison with data
to relatively large scales on which the fluctuations are evolving in a
linear or weakly non-linear fashion. Secondly, previous generations
of galaxy surveys simply covered too little volume to permit accu-
rate measurements of the higher-order correlation functions on the
scales that could strongly constrain the simple theoretical models.

Recent theoretical and observational advances have been such
that we are now in a position to realize the full potential of
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higher-order statistics. Theoretical models of galaxy formation have
progressed sufficiently to make predictions for the number of galax-
ies that reside in dark matter haloes of different mass (Benson et al.
2000; Peacock & Smith 2000; Scoccimarro et al. 2001b; Berlind
et al. 2003). This allows the prediction to be extended to scales
for which perturbation theory is not valid, and provides a frame-
work for testing the physics of galaxy formation directly against
clustering measurements. Observationally, two recent surveys have
revolutionized our view of the local Universe: the 2dF Galaxy Red-
shift Survey (2dFGRS; Colless et al. 2001) and the Sloan Digital
Sky Survey (SDSS; York et al. 2000). The tenfold increase in sur-
vey size achieved by these projects means that precision measure-
ments of higher-order statistics are now possible across a range of
scales (Matarrese, Verde & Heavens 1997; Colombi, Szapudi &
Szalay 1998; Szapudi, Colombi & Bernardeau 1999; Scoccimarro,
Sefusatti & Zaldarriaga 2004; Sefusatti & Scoccimarro 2005). The
higher-order clustering measurements that are possible with these
surveys have the potential to tighten the accepted values of basic
cosmological parameters and to constrain the physics of galaxy for-
mation that govern how galaxies are clustered.

There have have been several analyses of the distribution of
counts-in-cells using the final 2dFGRS catalogue. Baugh et al.
(2004) demonstrated that the higher-order correlation functions dis-
play a hierarchical scaling, Sp = ξ̄p/ξ̄

p−1
2 , where ξ̄p is the p-point,

volume-averaged correlation function; this behaviour is expected if
gravity plays a dominant role in shaping the distribution of galaxies.
Croton et al. (2004b) found that the scaling of the hierarchical co-
efficients shows a weak (if any) dependence on galaxy luminosity.
In the case of the three-point volume-averaged correlation function,
both authors found that the skewness, S3 = ξ̄3/ξ̄

3
2 � 2. This value

was found to be independent of cell size, although both Baugh et al.
and Croton et al. noted that two large superstructures in the 2dFGRS
volume broke this scale invariance in catalogues characterized by
L � galaxies. The result for the skewness of galaxies, S3 � 2, is at
odds with the expectation for a � cold dark matter (CDM) cosmol-
ogy, in which SDM

3 � 3. We note that Conway et al. (2005) and Wild
et al. (2005) have also looked at the constraints that the distribution
of counts-in-cells in the 2dFGRS provide on galaxy bias. All results
from the 2dFGRS are in line with most previous measurements of the
skewness and three-point statistics, which are generally lower than
the �CDM predictions (for a review, see section 8 in Bernardeau
et al. 2002). This poses a puzzle, because the corresponding mea-
surements for the variance and the two-point function seem to follow
the unbiased �CDM predictions closely on large scales.

In this paper, we present the first general results for the three-point
correlation function measured from the final 2dFGRS catalogue.
Preliminary measurements of three-point statistics were made us-
ing early releases of the 2dFGRS and SDSS data sets by Verde et al.
(2002), Jing & Börner (2004), Wang et al. (2004) and Kayo et al.
(2004). Pan & Szapudi (2005) measured the monopole moment of
the three-point function in the completed 2dFGRS. Our analysis
has the advantage over that of Pan & Szapudi in that it includes
information about the shapes of the triangles of galaxies. A fur-
ther improvement over previous approaches is a proper treatment
of the correlation between data points. We follow the methodology
introduced by Gaztañaga & Scoccimarro (2005, hereafter GS05)
to obtain constraints on bias parameters from measurements of the
reduced three-point correlation function.

This paper is organized as follows. In Section 2, we review
some basic definitions involving the three-point function, as well as
the methodology used for its estimation. In Section 3, we present
the 2dFGRS catalogues and the associated mocks. Our results are

presented in Section 4. This is quite a long section that is divided
into many subsections; a detailed route map is provided at the start
of this section. Our results are compared with previous analyses of
the 2dFGRS in Section 5. Finally, our conclusions are presented in
Section 6.

2 T H E O R E T I C A L BAC K G RO U N D

In this section, we first give some basic definitions (Section 2.1),
before discussing the expected form of the three-point correlation
function (Section 2.2). We then explain how our results can be re-
lated to the predictions for the three-point function of dark matter
(Section 2.3). For a comprehensive discussion of this material, we re-
fer the reader to the review by Bernardeau et al. (2002). The method
for estimating the three-point function for the 2dFGRS is set out in
Section 2.4. Finally, in Section 2.5, we give an outline of how our
measurement of the three-point correlation function can be used to
place constraints on models of bias (for a complete discussion, see
GS05).

2.1 Basic definitions: triangle shape and scale

GS05 discuss the merits of various conventions for defining trian-
gle shapes and scales. We adopt their preferred scheme in which a
triangle is defined by the ratio of the lengths of two of the sides of
the triangle, r 12/r 23 and the angle between them, α:

cos(α) = r 12

r12

r 23

r23
. (1)

The angle α can vary between 0◦ and 180◦; for α = 0◦, the third
side of the triangle is given by r 31 = r 12 − r 23 and for α = 180◦,
r 31 = r 12 + r 23 (Fig. 1).

2.2 Three-point correlation function

The connected two- and three-point correlation functions are defined
as

ξ (r12) = 〈δ(r1)δ(r2)〉 (2)

ζ (r12, r23, r13) = 〈δ(r1)δ(r2)δ(r3)〉 (3)

where δ(r ) = ρ(r )/ρ̄ − 1 is the local density fluctuation around
the mean ρ̄ = 〈ρ〉 and the expectation value is taken over differ-
ent realizations of the model or physical process. In practice, the
expectation value is constructed by averaging over different spatial
locations in the Universe, which are assumed to form a fair sample
(Peebles 1980).

The two- and three-point correlation functions change rapidly in
amplitude as a function of separation. In order to study the relation-
ship between the correlation functions in more detail, it is useful

Figure 1. Three points define a triangle, which is characterized here by the
two sides r12 and r23 and the interior angle α.
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622 E. Gaztañaga et al.

to define the reduced three-point function, Q3, (Groth & Peebles
1977):

Q3 = ζ (r12, r23, r13)

ζH(r12, r23, r13)
(4)

ζH ≡ ξ (r12)ξ (r23) + ξ (r12)ξ (r13) + ξ (r23)ξ (r13). (5)

Here, we have introduced a ‘hierarchical’ form for the three-point
function, ζ H. This quantity is built up from the products of two-point
functions generated from cyclic permutations of the pair separations
which make up the sides of the triangle. When Q3 is constant, the
dependence of the three-point correlation function on triangle shape
and scale is fully accounted for by the corresponding changes in ζ H;
in this case, Q3 is said to have no configuration dependence.

Previously, Q3 was thought to be approximately constant as
a function of triangle size or shape (see, for example, Groth &
Peebles 1977), a phenomenon that is usually referred to as hier-
archical scaling (Peebles 1980). However, GS05 showed that with
sufficiently accurate theoretical predictions or for carefully con-
structed measurements, Q3 is not in fact constant in any clustering
regime. Nevertheless, the variation in Q3 with scale is small when
compared to the corresponding changes in ξ or ζ H. On small scales
(<10 h−1 Mpc), and for galaxies in redshift space (i.e. as measured
by galaxy redshift surveys), GS05 showed that Q3(α) displays a
characteristic U-shape anisotropy moving from collapsed or elon-
gated (α ∼ 0◦, 180◦) to more open (α ∼ 90◦) triangles. This effect is
driven by the velocity dispersion of galaxies inside virialized struc-
tures. GS05 demonstrated that this U-shape is universal, being only
very weakly dependent on scale, the primordial spectral index, or the
values of the cosmological parameters. GS05 further demonstrated
that this feature should be detectable in current galaxy surveys, even
if the measurements are affected by shot-noise or if galaxies are bi-
ased tracers of the mass. On larger scales, the impact of velocity
dispersion on the form of Q3 is reduced, with the consequence that
the U-shape tends towards more of a V-shape and approaches the
(real space) perturbation theory prediction (see fig. 2 in GS05).

2.3 Theoretical interpretation

In order to interpret our measurements of Q3 for galaxies, we com-
pare them with theoretical predictions for dark matter in a �CDM
universe. We first explain the form expected for the three-point func-
tion of dark matter (Section 2.3.1), before introducing a notation to
quantify the differences found between galaxy and dark matter Q3

measurements (Section 2.3.2).

2.3.1 Three-point function of dark matter

We denote the value of Q3 for the dark matter by QDM
3 . The theo-

retical predictions for QDM
3 are relatively insensitive to the precise

values of the cosmological parameters, but have a strong depen-
dence on the local spectral index, n, of the linear perturbation theory
power spectrum, P(k), where n = d log P/d log k (see, for example,
figs 9 and 10 in Bernardeau et al. 2002). This is also the case in
redshift space (see fig. 4 of GS05), but where the dependence is
however weaker. On the scales of interest to the present work, a
change in the local spectral index of 	n translates roughly to a
change in the mean amplitude of QDM

3 by 	Q3 � 	S3/3 � 	n/3
(see Juszkiewicz, Bouchet & Colombi 1993). As an illustration, the
difference in the shape of the power spectrum between CDM models
with density parameters of 
m = 0.7 and 
m = 0.2 is approximately
	n � 0.6 on the scales of interest here, and so the change in QDM

3

between these models is small, 	Q3 � 0.2 (in good agreement with
fig. 4 of GS05). The relative insensitivity of QDM

3 to changes in the
CDM power spectrum is important as it strengthens any conclusions
we reach about differences between the value of Q3 measured for
galaxies and the predictions for the dark matter. The current levels
of uncertainty on the matter density parameter, 
m and the primor-
dial spectral index ns are around the 10 per cent level or better, and
so the predicted value of QDM

3 is tightly constrained (e.g. Percival
et al. 2002; Tegmark et al. 2004; Sanchez et al. 2005).

It is also possible to use an empirical approach to estimate QDM
3 ,

without appealing directly to the �CDM model. If we assume that
the two-point function of galaxy clustering has the same shape as
that of the underlying mass, then the measured correlation function
or power spectrum of galaxies can be used to infer the spectral in-
dex of the dark matter. The two-point correlation function and the
power spectrum of galaxy clustering have both been measured for
the 2dFGRS on large scales (Percival et al. 2001; Hawkins et al.
2003; Cole et al. 2005). It turns out that the shapes of these clus-
tering statistics are compatible with the predictions of the �CDM
model. The uncertainties in n are small (	n < 0.1) compared to the
sampling errors in the measurements of Q3 for the 2dFGRS (GS05).
We therefore assume the concordance �CDM model, specified by

m � 0.3, 
� � 0.7 and h � 0.7, to generate predictions for QDM

3 ,
and neglect the impact of any uncertainty in these parameters.

2.3.2 Comparing the three-point functions of galaxies and dark
matter: the implications for bias

The Q3 value measured for galaxies may be different from the theo-
retical predictions for the dark matter, QDM

3 . We adopt a particularly
simple scheme to quantify any such differences:

Q3 � 1

B

(
QDM

3 + C
)
. (6)

Two numbers specify the difference between the measured and pre-
dicted Q3: a shift or offset, C, and a scaling, B. The simple ansatz
given in equation (6) is general and can, in principle, be applied on
any scale. However, the interpretation of the numbers B and C does
depend upon the scale under consideration. Furthermore, we should
caution that this model may not necessarily always provide a good
description of the transition from the clustering of the dark matter
to galaxies.

The form we have chosen is motivated by perturbation theory,
which applies on scales for which the correlations are small, i.e.
ξ < 1. Fry & Gaztañaga (1993) modelled fluctuations in the density
of galaxies, δG, as a local, non-linear expansion of fluctuations in
the mass distribution, δ:

δG = F[δ] �
∑

k

bk

k!
δk . (7)

This formalism can be used to derive a relation between the three-
point function of galaxies and mass (see Fry & Gaztañaga 1993;
Frieman & Gaztañaga 1994). On the weakly non-linear scales for
which this transformation is a reasonable approximation, B ≈ b1

and C ≈ c2 = b2/b1:

Q3 � 1

b1

(
QDM

3 + c2

)
. (8)

In this case, the shift by C can be interpreted as a non-gravitational
contribution to QDM

3 and B is a simple linear bias scaling. These ef-
fects can become degenerate if Q3 is approximately constant or when
the measurement errors become large. Nevertheless, it is possible, in
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principle, to compare the shape of Q3 measured for galaxies to that
predicted for the dark matter, and so constrain B and C separately.
Norberg et al. (in preparation, hereafter Paper I) use the two-point
correlation function to obtain a working definition of the scale mark-
ing the approximate boundary between the non-linear and weakly
non-linear regimes; they propose that weakly non-linear scales
(ξ 	 1) correspond to pair separations of �9 h−1 Mpc, whereas
the non-linear regime (ξ > 1) is reached when r � 6 h−1 Mpc.

From its definition in equation (4), Q3 is independent of the am-
plitude of fluctuations on large scales. We can therefore use the value
of B to constrain the amplitude of fluctuations in the dark matter.
In this approach, we take the two-point correlation function mea-
sured for galaxies and divide this by B2 to obtain an empirical two-
point function estimate of the dark matter. Then, after measuring
the actual shape of the two-point function of the dark matter distri-
bution from simulations, we can constrain the rms linear variance
in spheres of radius 8 h−1 Mpc, σ 8, by equating our empirical dark
matter estimate to the actual value. This method for constraining σ 8

relies upon several approximations and assumptions that we have
tested successfully using N-body simulations (see Paper I for a full
description of the method). Similar approaches have already been
attempted using the skewness of the distribution of galaxy counts-
in-cells, S3 (Fry & Gaztañaga 1993; Gaztañaga 1994; Gaztañaga &
Frieman 1994), the bispectrum (e.g. Frieman & Gaztañaga 1994;
Fry 1994; Scoccimarro 1998; Verde et al. 2002) and the angular
three-point function (Frieman & Gaztañaga 1999).

2.4 Estimation of the three-point function

To estimate the three-point correlation function efficiently for the
2dFGRS, we use the fast grid based algorithm introduced by Barriga
& Gaztañaga (2002). GS05 presented further tests of this algorithm
using a wide range of numerical simulations and mock catalogues.
These authors demonstrated that special attention should be paid
to the grid dimension employed in order to obtain robust estimates
of the three-point function in redshift space. For practical reasons,
we use a somewhat lower than ideal pixel resolution in the estimation
of the three-point function from the 2dFGRS. This results in some
smoothing of the U-shape in Q3(α) for collapsed configurations
(compare fig. 5 of GS05 with our Fig. 5). As we use the same
pixelization in the analysis of the mocks and dark matter theory,
this loss of resolution does not affect our conclusions, although it
could result in slightly less than optimal constraints on B and C.

The final 2dFGRS catalogue contains some incompleteness,
which is quantified by the spectroscopic completeness mask
(Norberg et al. 2002b). The spectroscopic completeness of the final
2dFGRS is much more uniform than that of the 100-K release or
the samples used in earlier clustering analyses by the 2dFGRS team
(e.g. Verde et al. 2002), as shown by fig. 3 of Cole et al. (2005). We
reject pixels on the sky for which the spectroscopic completeness is
less than 50 per cent. We account for the remaining incompleteness
by applying a weight to the galaxy cell density. Further details about
the 2dFGRS catalogue are given in Section 3.1.

2.5 Constraining model parameters using Q3

The values of Q3 measured for different opening angles are corre-
lated. This needs to be taken into account when using measurements
of Q3 to place constraints on model parameters, such as the values
of B and C defined by equation (6). GS05 introduced an eigenmode
approach to parameter fitting with Q3, and used this to demonstrate
the level of the constraints on B and C that could be expected from

the 2dFGRS. GS05 estimated the covariance matrix for Q3(α) us-
ing the mock 2dFGRS catalogues that we describe in Section 3.2.
They then obtained the inverse of the covariance matrix using the
singular value decomposition method. In this approach, eigenmodes
that fall below some specified signal-to-noise (S/N) threshold are
discarded. The likelihood contours in the B–C plane are specified
by δ χ 2 computed using the eigenvectors above the S/N threshold.
The S/N values that we estimate are not quite optimal, because we
use a finite number of mock catalogues. Our errors are therefore
conservative estimates. The S/N values indicate the significance of
the measurement of Q3 (i.e. the number of standard deviations that
the signal is above the noise). However, the S/N ratio does not trans-
late directly into the size of the likelihood contours in the B–C plane,
because the degeneracy between these parameters also depends on
how far the measured Q3 deviates from a constant as a function of
angle. Even in the case of an infinite S/N, B and C will be degenerate
if Q3 is independent of angle (i.e. see equation 6).

3 T H E G A L A X Y C ATA L O G U E S

In this section, we describe the 2dFGRS data that we use to measure
Q3 (Section 3.1), and the synthetic catalogues that are employed
to perform our error analysis and make the �CDM predictions
(Section 3.2).

3.1 The 2dFGRS data

Our starting point is the final 2dFGRS catalogue (Colless et al.
2003; a full description of the construction of the survey is given in
Colless et al. 2001). The 2dFGRS consists of 221 414 unique, high-
quality galaxy redshifts, with a median redshift of z ≈ 0.11 to the
nominal extinction corrected magnitude limit of bJ ≈ 19.45. Colour
information is now available for the 2dFGRS through the addition
of rF-band photometry (see Cole et al. 2005). In our analysis, we
consider the two contiguous regions of the survey which lie towards
the directions of the South Galactic Pole (SGP) and North Galactic
Pole (NGP), covering a solid angle of approximately 1200 deg2.
The redshift completeness of the survey varies with position on the
sky. Colless et al. (2001) and Norberg et al. (2002b) describe a
strategy for dealing with this incompleteness in clustering studies.
We restrict our attention to regions of the survey for which the
spectroscopic completeness exceeds 50 per cent. We note that the
typical completeness for the final survey is much higher than this
(∼85 per cent).

We follow the approach adopted in several previous clustering
analyses of the 2dFGRS and construct volume-limited samples
from the magnitude-limited redshift catalogue (Norberg et al. 2001,
2002a; Baugh et al. 2004; Croton et al. 2004a,b). This greatly sim-
plifies the estimation of the clustering signal, as then the only vari-
ations in number density across the galaxy sample will be due to
the presence of large-scale structure. A volume-limited sample is
defined by an interval in absolute magnitude, and this translates into
a minimum and maximum redshift. For each galaxy an absolute
magnitude is computed using its redshift and apparent magnitude,
and assuming the band-shift and evolutionary correction (k + e)
advocated by Norberg et al. (2002b) (see also Cole et al. 2005). In a
volume-limited sample, each galaxy could in principle be displaced
to any depth within the sample and would still remain within the
apparent magnitude range of the survey. In this paper we consider
the samples listed in Table 1, which correspond to samples 1–4 as
listed in table 1 of Croton et al. (2004b). As in Cole et al. (2005),
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Table 1. Properties of the combined 2dFGRS SGP and NGP volume-limited
catalogues (VLCs). Columns 1 and 2 give the faint and bright absolute
magnitudes that define the sample. Columns 3 and 4 give the number of
galaxies in each sample and the mean number density. Columns 5 and 6 state
the minimum and maximum comoving distances that bound each sample
for the nominal apparent magnitude limits of the survey. All distances are
comoving and are calculated assuming standard values for the cosmological
parameters (
0 = 0.3 and 
� = 0.7).

Magnitude range N G ρ ave Dmin Dmax

M bJ − 5 log10 h 10−3/h−3 Mpc3 h−1 Mpc h−1 Mpc

−17.0 −18.0 8038 10.9 24.8 169.9
−18.0 −19.0 23290 9.26 39.0 255.6
−19.0 −20.0 44931 5.64 61.1 375.6
−20.0 −21.0 33997 1.46 95.1 537.2
−21.0 −22.0 6895 0.11 146.4 747.9

we also split the samples by rest-frame bJ–r F colour into blue,
bJ–r F < 1.07, and red, bJ–r F > 1.07, subsamples.

Baugh et al. (2004) and Croton et al. (2004b) both point out the
impact of two superstructures, one in each of the NGP and SGP
regions, on the estimation of the moments of the distribution of
counts-in-cells from the 2dFGRS. The SGP structure is at α ∼ 13 h
and d � 240 h−1 Mpc and the NGP structure is at α ∼ 0.5 h and
d � 325 h−1 Mpc (see fig. 1 of Baugh et al. 2004). They found these
overdensities were particularly influential on measurements made
from the L � volume-limited sample, i.e. for galaxies with −20 <

M bJ − 5 log10 h < −19; fainter volume-limited samples do not
extend to the distance of the superstructures and brighter samples
cover a larger volume and thus dilute the contribution of the struc-
tures. In this paper, we follow the approach of these authors and in
Section 4.4 present measurements of the three-point function made
when masking out the regions containing these superstructures. It
turns out that this exclusion removes only a small fraction of the to-
tal L � volume, approximately 2 per cent, along with the fewer than
5 per cent of the total galaxies contained within it. This exercise
is merely intended to be illustrative. We are not proposing that the
removal of these structures should be thought of as a correction to
our measurements, but rather should serve as an indication of the
magnitude of systematic effects in the estimation of higher-order
statistics from surveys of the size of the 2dFGRS.

3.2 Mock catalogues

Mock catalogues play an important role in our analysis. They are
used to compute errors on our measurements and also as a means
of generating the predictions of the �CDM model, taking into
account the selection function of the 2dFGRS. Following GS05,
we construct the (normalized) covariance matrix for the measure-
ments of the three-point function using an ensemble of 22 synthetic
2dFGRS catalogues extracted from the �CDM Hubble volume
N-body simulation (Evrard et al. 2002). The construction of these
catalogues is described by Norberg et al. (2002b). The mock cata-
logues have the same radial and angular selection function as the
2dFGRS, and have been convolved with the completeness mask of
the survey. A simple phenomenological prescription has been ap-
plied to the final density field in the simulation in order to extract
points with a clustering amplitude that is a modulated version of the
clustering of the underlying dark matter (Cole et al. 1998). We also
use the dark matter from the Hubble volume simulation to gener-

ate dark matter predictions for the concordance �CDM model in
redshift space.

The mocks were not constructed to match higher-order clustering
statistics, as the biasing model used (see Norberg et al. 2002b; Cole
et al. 2005) was tuned only to reproduce the two-point correlation
function of all galaxies (as measured for the 2dFGRS by Hawkins
et al. 2003). In particular, this means that the mock galaxy catalogues
do not display luminosity-dependent clustering, as seen in the data
(Norberg et al. 2001). This deficiency can be turned around to pro-
vide an interesting test of our analysis, because the mocks should
always give, for a fixed triangle configuration, the same mean Q 3(α)
for different luminosities, regardless of the volume under consider-
ation or the density of galaxies.

4 R E S U LT S F O R Q3

In this section we present our measurements of Q3 for different
2dFGRS galaxy samples, defined by luminosity and colour. In the
first two subsections, we consider general triangle shapes, focusing
first on scales for which we expect the clustering to be in the weakly
non-linear regime (Section 4.1) before considering the non-linear
regime (Section 4.2). The reason behind this split is that the inter-
pretation of our measurements is quite different in these two cases,
as discussed in Section 2.3. In both sections, we consider how our
measurements depend upon galaxy luminosity and, in the case of
the non-linear regime, on colour as well. In Section 4.3, we consider
the special case of equilateral and elongated triangles, which give
a cleaner measure of the physical scale dependence of Q3. Finally,
in Section 4.4, we discuss the influence of large structures on the
measurement of the three-point function in the 2dFGRS. From now
on, we use the shorthand notation Mh

bJ
to denote M bJ − 5 log10 h.

4.1 Q3(α) in the weakly non-linear regime

The −21 < Mh
bJ

<−20 volume-limited subsample yields the highest
S/N measurements of Q3 in the weakly non-linear regime. Samples
brighter than this have too low a galaxy density to permit robust
measurements on such scales, while fainter samples span smaller
volumes, resulting in a larger sampling variance. We therefore de-
scribe the results for this sample in some detail, as this will serve to
make several basic points that can be applied to other samples.

4.1.1 Q3(α) for −21 < Mh
bJ

< −20

In the top row of Fig. 2, we show Q3(α) for galaxies with −21 <

Mh
bJ

< −20 and different triangle configurations: r 12 = 9 and
r 13 = 9, 18 and 27 h−1 Mpc, from left to right respectively. The
middle panel illustrates the scatter expected in such a measurement
of Q3(α), obtained using the mock galaxy catalogues. Here, the pre-
diction for the �CDM dark matter model is shown by the solid line
while the dashed line shows a biased version of this, computed by
inserting B = 1 and C = −0.3 into equation (6). In the bottom pan-
els, we show the likelihood contours for B and C derived from fitting
the observed Q3(α) to the �CDM prediction with the theoretically
motivated relation given by equation (6).

In the top panels of Fig. 2 we clearly see, for the data, the char-
acteristic dependence of Q3 on α, with the V-shape becoming more
pronounced as larger scales are considered. Note how the variation
in the shape of Q3 with scale seen in the 2dFGRS data is mim-
icked by the dark matter predictions and by results for the mock
catalogues.
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Figure 2. Q3 in the weakly non-linear regime. The upper row shows measurements from the 2dFGRS −21 < Mh
bJ

< −20 volume-limited sample. Different
columns show the results for different triangle sizes, as indicated by the legend. The squares show the mean value of Q3 as a function of α and the error bars
are derived from the scatter in the mock catalogues with the same magnitude limits. The thick solid curves in the upper two rows show the predictions for Q3

in the �CDM model. The thick dashed curves in these panels show the effect of applying a transformation (equation 6) to this prediction corresponding to
B = 1 and C = −0.3. The thin solid lines in the middle row show the mean Q3 measured in individual mocks. In the bottom row, we show the constraints on
B and C, derived from an eigenmode analysis. The four contours shown from outside in correspond to χ2 = 11, 8, 6.17, 2.3 (i.e. 99.7, 95.4 and 68.3 per cent
confidence intervals for two parameters) and χ2 = 1 (i.e. 68.3 per cent for one of the parameters). The cross point shows B = 1, C = 0 for reference.

The middle panels of Fig. 2 show how closely Q3 estimated
from the mock catalogues agrees with the measurements from the
2dFGRS. This agreement is all the more remarkable when one re-
calls that a match to Q3 was not required in the construction of the
mocks. Another noteworthy feature of the results for the mocks is
the strong covariance that is apparent between the measurements
of Q3 in different angular bins. Hence, to perform a meaningful fit
to Q3(α), there is a clear need to decompose the measurement into
statistically independent Q-eigenmodes, yielding a basis in which
the covariance matrix is diagonal. This strong correlation between
bins in measurements of Q3(α) was originally pointed out by GS05.
Further details of the application of the singular value decomposi-

tion to the measured values of Q3(α) and the estimation of the S/N
of the Q-eigenmodes can be found in GS05.

From Fig. 2, it is clear that the −21 < Mh
bJ

< −20 sample pro-
vides a high-quality measurement of Q3(α) in the weakly non-
linear regime. The characteristic V-shape dependence of Q3 on
angle is readily apparent across a range of triangle scales. With
such a high S/N of the Q-eigenmode decomposition, this volume-
limited sample is expected to provide strong constraints on the
parameters B and C in equation (6); we recall that in the weakly
non-linear regime, B ∼ b1 and C ∼ c2. The constraints on these
parameters, shown in the bottom row of Fig. 2, are discussed in
Section 4.1.3
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Figure 3. Same as Fig. 2, but for different volume-limited samples: −21 <

Mh
bJ

< −20 (left) and −19 < Mh
bJ

< −18 (right). In all panels, we consider

the case where r 23 = 2 r 12 = 16 h−1 Mpc.

4.1.2 Q3(α) as function of luminosity

Staying in the weakly non-linear regime, we now consider the de-
pendence of Q3(α) on galaxy luminosity. In Fig. 3 we present, for
the triangle configuration r 13 = 2 r 12 = 16 h−1 Mpc, the variation
of Q3(α) with luminosity, as measured from volume-limited cata-
logues defined by −21 < Mh

bJ
< −20 and −19 < Mh

bJ
< −18. On

these weakly non-linear scales the best S/N, as indicated in the bot-
tom panels of Fig. 3, again occurs for the −21<Mh

bJ
< −20 sample,

as expected from the analysis of GS05.
Fig. 3 shows that the characteristic Q 3(α) shape is seen for both

bright and faint galaxies. Moreover, the V-shape is essentially the
same in the two samples, within the measurement errors. Given the
size of the errors, we are not yet able to detect any clear evidence of
luminosity segregation in Q3(α) in the weakly non-linear regime.
Unfortunately, we encounter the same limitation in Section 4.3,
when considering large equilateral triangles.

From the middle panel of Fig. 3, we conclude that our measure-
ment of Q3 is robust to sampling variance and volume effects. Re-
assuringly, the results obtained from the mock catalogues for Q3(α)
for different volume-limited samples are, within the errors, equiva-
lent as they should be by construction. The bottom panel of Fig. 3,
which presents the constraints on B and C (equation 6), is discussed
in the next section.

4.1.3 Constraints on b1 and c2 from −21 < Mh
bJ

< −20

The bottom panels of Figs 2 and 3 present the likelihood contours
for the bias model parameters B and C, as defined in equation
(6), which relates Q 3(α) for galaxies to QDM

3 (α) for the dark mat-
ter. Remember that in the weakly non-linear regime, B = b1 and
C = c2, the conventional linear and non-linear biasing terms, re-
spectively. The cross-circle point in the bottom panels of Figs 2 and
3 shows an unbiased �CDM prediction (i.e. b1 = 1 and c2 = 0).
For some configurations, such as the bottom-right panel of Fig. 3,
the likelihood contours are broad and the bias parameters are poorly
constrained. In this particular case (i.e. the faint galaxy population),
this is chiefly a result of the small volume considered, telling us
that these larger-scale triangle configurations do not sample enough
different environments in this volume.

By combining measurements on different weakly non-linear
scales, we can improve the constraints on b1 − c2 for the −21 <

Mh
bJ

< −20 sample, as shown in Fig. 4. Table 2 lists the correspond-
ing marginalized best-fitting values. In this regime, we do find a
slight trend, with a decrease of the bias parameters with increasing
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Figure 4. The combined constraints on B and C, in the weakly non-linear
regime, using different triangle configurations and the joint covariance of
Q3(α) for the 2dFGRS volume-limited sample −21 < Mh

bJ
< −20. Each

panel uses different triangle configurations (as indicated by each legend).
For isosceles triangles with r 12 = r 23 = 9 h−1 Mpc, we fit only for α > 60◦,
to ensure that only weakly non-linear scales (9–18 h−1 Mpc) are considered.

Table 2. The best-fitting b1 and c2 values for the −21 < Mh
bJ

< −20
sample for a range of weakly non-linear scales, along with the associated
marginalized 68 per cent confidence intervals (corresponding to 1σ if one
assumes Gaussian statistics), as taken from Fig. 4. Each entry in the table uses
different triangle configurations (indicated in brackets in the first column),
probing the range of scales listed in the first column.

Scale (h−1 Mpc) b1 68 per cent C.I. c2 68 per cent C.I.

6–18 (6:12) 1.01 [0.91,1.15] −0.27 [−0.37,−0.15]
6–27 (6:12+9:18) 0.93 [0.85,1.03] −0.34 [−0.42,−0.23]

9–18 (9:9, α > 60◦) 0.97 [0.88,1.09] −0.31 [−0.41,−0.24]
9–36 (9:18+12:24) 0.94 [0.83,1.07] −0.36 [−0.45,−0.23]
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scale, although the trend is not very significant and is within the
quoted 1σ error. The strongest constraints on b1 − c2 come from
the 6–27 h−1 Mpc configuration (bottom-right panel in Fig. 4), with
measured values of b1 = 0.93+0.10

−0.08 and c2 = −0.34+0.11
−0.08.

Finally, we note that in all the panels of Fig. 4 the unbiased �CDM
prediction (shown by the cross-circle) is strongly excluded by the
data. For example, for r 13 = 2 r 12 = 18 h−1 Mpc, 	χ 2 > 80 for
two degrees of freedom (which implies a disagreement in excess
of 9σ ). Despite the correlation between b1 and c2, the significance
of the detection of bias, i.e. values away from b1 = 1 and c2 = 0,
is much larger than is apparent from just adding the errors in quadra-
ture or using the values in Table 2 with a square error box. In fact,
the measured values of b1 and c2 seem to follow a degenerate line,
illustrated in Fig. 4, which avoids b1 = 1 and c2 = 0 for all scales
and luminosities. As the scale or the luminosity of the sample de-
creases, b1 crosses unity and c2 passes through zero (although not
at the same time), following b1 � c2 + 1.2 and hence avoiding the
unbiased prediction.

4.2 Q3(α) in the non-linear regime

In this section, we consider triangle configurations which probe
non-linear clustering scales corresponding to �6 h−1 Mpc (see
Section 2.3). We first discuss results for three different triangle con-
figurations using the −19 < Mh

bJ
< −18 volume-limited catalogue

(Section 4.2.1). This is found to be the optimal sample with which to
study the non-linear regime due to its relatively high galaxy number
density in a volume that is large enough to account for small-scale
cosmic variance. Thus, this sample is the one least affected by shot
noise.1 Then, in Section 4.2.2, we consider the variation of Q3(α)
with luminosity and colour on non-linear scales, followed by a study
of the constraints on the model parameters B and C (equation 6) in
Section 4.2.3

4.2.1 Q3(α) for −19 < Mh
bJ

< −18

The bottom row of Fig. 5 shows Q3(α) for the −19 < Mh
bJ

<

−18 sample with three triangle configurations which probe non-
linear scales. From left to right, we have r 13 = 2 r 12 with r 12 =
6, 3 and 1.5 h−1 Mpc, respectively. For these configurations, the
characteristic U-shape of Q3(α) is clearly visible. The 1σ errors
are found to increase on larger scales due to the reduced number
of independent triangle configurations that one can fit within the
sample. The S/N for these triangle configurations is 8, 22 and 18,
respectively, as indicated in the bottom row of Fig. 6. Such values
are not exceptional, but nevertheless are sufficient to allow useful
constraints on B and C to be determined. These model constraints
are further discussed in Section 4.2.3

4.2.2 Q3(α) as function of luminosity and colour

We use bright (−21 < Mh
bJ

< −20) and faint (−19 < Mh
bJ

< −18)
volume-limited samples to investigate the luminosity dependence
of Q3(α) in the non-linear regime. This is presented in Fig. 5 (top
and bottom panels) for different triangle configurations (from left
to right). In Fig. 6, we show the corresponding likelihood contours
for the model parameters B and C from equation (6). Comparing the

1 The L � sample is actually statistically better than this fainter one, but suffers
from a much larger systematic uncertainty due to the presence of the two
superstructures (see Section 4.4).
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Figure 5. Q3(α) in the non-linear regime for two different luminosities
(increasing from bottom to top) and different scales (decreasing from left to
right), as indicated in the legend in each panel. The biased model (dashed
lines) has B = 1 and C = −0.3, whereas Q3 for �CDM is plotted with a
solid line.
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Figure 6. Constraints on the model parameters B and C, for the samples
presented in Fig. 5.

results between the faint and bright galaxy samples in Fig. 5, we see
that, even though the characteristic U-shape is generally preserved,
there is a weak tendency for the amplitude of Q3(α) to decrease
with increasing galaxy luminosity. In terms of the model parame-
ters B and C, Fig. 6 suggests that changing the characteristic lumi-
nosity of the galaxy population results in a shift in the best-fitting
model.

This general behaviour is better quantified in Fig. 7, which shows
how Q3 changes with both colour and luminosity. The red and blue
colour samples are subpopulations of each volume-limited sam-
ple, split by rest-frame bJ–r F colour at bJ–r F = 1.07 (Cole et al.
2005). We focus our attention on two characteristic configurations:
equilateral triangles, with α � 60◦, and elongated triangles with
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628 E. Gaztañaga et al.

Figure 7. Values of Q3 for equilateral (upper panel) and elongated (lower
panel) triangles, as a function of luminosity. Measurements with error bars
show different galaxy samples: all galaxies (circles), red galaxies (triangles)
and blue galaxies (squares). The solid, short-dashed and long-dashed lines
show the corresponding best linear fit to equation (9), with the best-fitting
values of the parameters quoted in Table 3. The dotted horizontal line shows
the corresponding �CDM prediction.

Table 3. The best-fitting Q∗
3 and slope α L of equation (9) for dif-

ferent configurations (equilateral and elongated), for different galaxy
populations (all, red and blue) and dark matter (DM).

Triangle Sample Q∗
3 α L χ2

Equilateral All 0.70 ± 0.02 −0.15 ± 0.04 3.1
Equilateral Red 0.74 ± 0.04 −0.34 ± 0.11 4.2
Equilateral Blue 0.62 ± 0.03 −0.06 ± 0.07 4.3
Equilateral DM 0.97 ± 0.03 0
Elongated All 0.99 ± 0.04 −0.06 ± 0.09 1.7
Elongated Red 1.07 ± 0.02 −0.37 ± 0.03 0.2
Elongated Blue 0.96 ± 0.03 0.08 ± 0.08 1.2
Elongated DM 1.46 ± 0.03 0

α � 180◦. We choose a common scale around r 12 � r 23 � 4 h−1 Mpc,
where all samples yield a good detection of Q3. To improve the
S/N, we take a large α bin, 	α = ±18◦, and a large r12 bin,
	r 12 = ±1 h−1 Mpc, compared to our standard choices of 	α =
±5◦ and 	r 12 = ±0.6 h−1 Mpc.

The results in Fig. 7 are well fit by a linear relation that is a
function of absolute magnitude:

Q3 = Q∗
3 + αL log10

L

L∗ = Q∗
3 − 0.4 αL (M − M∗). (9)

Table 3 shows the best-fitting values for the parameters Q∗
3 and α L

using a χ2 fit with the full covariance matrix. As shown by the χ 2

values in the table, the functional form given in equation (9) provides
a very good description of these measurements. As seen in Table 3
and also in Fig. 7, there is weak evidence for luminosity segregation
in both the blue and red populations. Interestingly, the small but
significant trend for the overall population can be fully attributed to
the luminosity segregation in the red galaxies.

Figure 8. Deviations of Q3 from the �CDM prediction as quantified by B
and C (see equation 6; recall that, for the dark matter, B = 1 and C = 0,
as shown by the horizontal dotted line in each panel). Results are shown for
all configurations of triangles with r 12 � r 23 � 4 h−1 Mpc, as a function
of luminosity. Circles, triangles and squares with error bars correspond to
all, red and blue galaxies, respectively. Continuous, short-dashed and long-
dashed lines show the corresponding predictions for all, red and blue galaxies
using the best-fitting parameters listed in Table 3 and equation (9).

4.2.3 Constraints on B and C from non-linear scales

Fig. 8 shows, as symbols with error bars, the best-fitting values for
B and C (see equation 6) in the non-linear regime using all isosceles
triangle configurations with r 12 � r 23 � 4 h−1 Mpc, i.e. not just the
elongated and equilateral cases considered in Fig. 7. We find weak
systematic trends in the values of these parameters with luminosity,
with fainter galaxies favouring larger values of B and C. All samples,
except the brightest, are at least 1σ or 2σ away from the unbiased
�CDM case (i.e. B = 1 and C = 0). Fig. 8 also indicates, using lines,
the corresponding values of B and C when we use the best linear fit
to the Q3 data as a function of luminosity, as listed in Table 3. These
lines emphasize the monotonic behaviour of the data and provide
some additional idea of the uncertainties.

We note that if the naive interpretation of B is taken as the linear
bias parameter, b1, then the behaviour shown in Fig. 8 is exactly the
opposite to that previously reported from the analysis of the two-
point correlation function, ξ 2, over similar volume-limited samples
(Norberg et al. 2001, 2002a; Paper I). However, in our case here,
the measurement of the parameter B is carried out in the non-linear
clustering regime, where B can no longer be interpreted as the linear
bias parameter. This is why our notation explicitly differentiates
between B and b1, and explains our choice to split the analysis
into the two distinct clustering regimes. On small scales, we expect
strong corrections to the linear relation ξ 2 � b2

1ξ
DM
2 and similarly to

equation (6). Indeed, the expansion used in equation (7) is only valid
in regimes where the density fluctuations are small with δ < 1. Thus,
the fact that B, as measured from Q 3(α), decreases with increasing
luminosity does not necessarily mean that ξ 2/ξ

DM
2 should decrease

for brighter galaxies. Once we are in the non-linear regime, B and C
can only be understood in terms of their effect on Q3(α), i.e. a shift
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Figure 9. Left panels: the upper and lower panels show, as a function of the triangle side length, Q3 for equilateral and elongated configurations, respectively.
Squares and dots correspond to the −19 < Mh

bJ
< −18 and −21 < Mh

bJ
< −20 galaxy samples, respectively. For equilateral triangles, we detect a clear

luminosity segregation on non-linear scales and no significant scale dependence for galaxies of a given luminosity. This is in contrast to elongated triangles,
where a strong scale dependence is observed but with no indication of luminosity segregation on any scale. The dotted lines in each panel show the �CDM
prediction for Q3(r 12). Right panels: best-fitting B and C values for the combined configurations shown in the left panel, for the −21 < Mh

bJ
< −20 (dots) and

−19 < Mh
bJ

< −18 (squares) samples. Note the change to a linear scale in the x-axis.

and scale modification of the QDM
3 (α) dark matter configuration,

and not in terms of the theoretically motivated relation given by
equation (7). Even with these interpretative restrictions, the values
of B and C that we recover provide an accurate description of how
biasing changes QDM

3 (α) and so give interesting new constraints on
models of galaxy formation.

4.3 Q3 as a function of scale

We present in Fig. 9 results for Q3 using equilateral and elongated
triangle configurations for the −19 < Mh

bJ
<−18 and −21 < Mh

bJ
<

−20 volume-limited samples. These two configurations correspond
to isosceles triangles with α = 60◦ and α = 180◦, respectively. The
equilateral configuration has the nice property that it can be fully
characterized by just one triangle side length, so that each trian-
gle samples a unique scale. Fig. 9 shows that for the equilateral
configuration (upper panel), Q3 displays little scale dependence, as
opposed to the elongated case (lower panel), which shows a rather
strong scale dependence, much stronger than the dark matter pre-
diction for similar triangle configurations. In addition, on non-linear
scales, the equilateral configuration also provides clear evidence for
luminosity segregation, although on weakly non-linear scales the
results are currently too uncertain to continue making such a claim.
This, unfortunately, mirrors our conclusions from Section 4.1.2, us-
ing other triangle configurations. Elongated measurements of Q3,
in contrast, display no luminosity dependence at all.

From Fig. 9, we conclude that both triangle configurations, when
probing weakly non-linear scales, are in reasonably good agree-
ment with the �CDM prediction, favouring nevertheless a slightly
negative value for C. This is in good agreement with the results
presented in Table 2. On non-linear scales, the difference between
the data and the dark matter prediction is striking and will provide
a powerful constraint on models of galaxy formation. Note that the
results presented in Fig. 9 are fully consistent with those discussed
in Section 4.1.3 The aim of the exercise of considering isosceles tri-

angles is to isolate the dependence of Q3 on scale. To achieve this,
the binning of Q3 as a function of α is degraded and the range of
values of α considered on weakly non-linear scales is reduced when
compared with the earlier, less restrictive analysis in Section 4.1.3
(which considered also triangles with r 13 > r 12 and better α resolu-
tion). As a consequence, the resulting constraints on the parameters
B and C presented in this subsection have larger error bars.

4.4 Influence of superstructures on Q3

The measured Q3 for the L � sample, i.e. galaxies with absolute mag-
nitudes in the range −20 < Mh

bJ
< −19, can be strongly influenced

by the presence of two superstructures in the 2dFGRS, depending
on the scale measured. The impact of these structures on the distri-
bution of counts-in-cells in the L � sample was first pointed out by
Baugh et al. (2004). They presented results both with and without
the superstructures, to illustrate the systematic effect that their pres-
ence has upon the clustering measurements. For the L � sample, the
superstructures were found to dominate the clustering statistics on
scales larger than ≈ 6 h−1 Mpc, and we find that these structures
have a comparable influence in our analysis, as shown in Fig. 10
(in general, the influence of these structures can be seen out to the
largest scales that can be probed). On smaller scales (r 13 < 6 h−1

Mpc), and for the other volume-limited samples that we consider, ei-
ther the systematic contribution from these large coherent structures
lies within the (correlated) error bars from the mocks, or, because
of their spatial location, the superstructures are not present within
the volume analysed.

The impact of the superstructures is equally pronounced in both
the NGP and SGP regions, as is clear from the left panel of Fig. 10.
Both the NGP and SGP results for Q3(α) (solid and dashed lines,
respectively) change in a similar way when the superstructure in
each region is removed. As we pointed out in Section 3, the vol-
ume masked out when the superstructures are excised is less than
2 per cent of the total, with a loss of approximately 5 per cent of
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630 E. Gaztañaga et al.

Figure 10. The impact of the superstructures on the measurement of Q3(α) for the −20 < Mh
bJ

<−19 sample and the r 23 = 2 r 12 = 12 h−1 Mpc triangle
configuration. Open and filled circles show respectively the results with and without the superstructures (SC). All error bars are derived from the mocks and
correspond to a 2σ limit. Left panel: solid (dashed) lines show results for the NGP (SGP) region. The upper pair of lines and set of symbols show the results
with the SC; the lower set without SC. Right panel: solid (dashed) lines correspond to blue (red) galaxies. As in the left panel, the upper pair of lines and set of
symbols show the results with the SC; the lower set without SC.

the galaxies. As Baugh et al. remarked, the act of removing the
superstructures is not intended to serve as a correction to the clus-
tering measurements, but rather as an illustration of the systematic
effects that rare objects produce in higher-order clustering statistics.
That said, the results with the superclusters removed do appear to be
more in line with our theoretical prejudice for the weakly non-linear
regime.

The difference between the results obtained for Q3(α) with and
without the superstructures is larger than the variance over our
ensemble of 22 mock catalogues. This indicates that the volume-
limited samples in the 22 mocks do not contain the large, coherent
structures seen in the real data, as mentioned above. As Baugh et al.
(2004) commented, the presence of such structures could give us
new insights into models of structure formation. However, it is im-
portant to bear in mind that the lack of superstructures in such a
small number of mocks does not place a very high confidence limit
against them being seen at all in the �CDM model. All that we
can conclude from the non-detection of such objects in our ensem-
ble of synthetic 2dFGRS catalogues is that they occur less than
5 per cent of the time. We have carried out an analysis of a large
ensemble of dark matter simulations, in addition to undertaking a
more extensive search of the Hubble volume simulation, in order
to place tighter constraints on the frequency of such superstruc-
tures in the �CDM cosmology. Before we can place firm limits on
the chances of finding superstructures like those seen in the 2dF-
GRS, we need to make realistic mocks with the radial and angular
selection of the 2dFGRS, but the preliminary indication from ana-
lyzing idealized, cubical volumes is that it is possible to find such
superstructures in the simulations. Full details will be presented in
a future paper (see also Fosalba, Pan & Szapudi 2005, who discuss
the impact 1015 solar masses haloes on the theoretical prediction
of Q3).

In the right panel of Fig. 10, we show, for the same triangle con-
figuration as in the left panel, the results for Q3(α) split by colour:
red (solid) and blue (dashed). It is interesting to see that with the
superstructures included, the difference between Q3 measured for
red and blue galaxies is mildly significant (with red galaxies hav-

ing a systematically larger Q3). In contrast, when the superclusters
are excluded from the analysis, the measured Q3 for red and blue
galaxies are identical to within the errors. This segregation suggests
that the superstructures are, perhaps not unsurprisingly, populated
preferentially by red galaxies.

5 C O M PA R I S O N W I T H P R E V I O U S
2 d F G R S R E S U LT S

As mentioned in the introduction, Baugh et al. (2004) and Croton
et al. (2004b) found the puzzling result that S3 � 2 for 2dFGRS
galaxies in contrast to the theoretical value of SDM

3 � 3 expected
in �CDM on large (weakly non-linear) scales. This apparent in-
consistency can now be resolved using the bias parameters we have
measured here, i.e. b1 � 1 and c2 � −0.3 gives SG

3 � (SDM
3 +

3c2)/b1 � 2, in good agreement with the above measurements on
large scales. In their fig. 10, Croton et al. (2004b) found a weak
dependence of S3 on galaxy luminosity, with a slope B 3 � −0.4
detected with 2σ confidence level. We note that this is in very good
agreement with our nearly 4σ detection of α L � − 0.15 ± 0.04, as
quoted in Table 3. Because S3 � 3 Q 3, we would expect B 3 � 3
α L � − 0.45 ± 0.12, as found in Croton et al. (2004b), but with a
higher significance.

Measurements of three-point statistics from early 2dFGRS data
releases were made by Verde et al. (2002) and Jing & Börner
(2004). These authors used compilations comprising 127-K and
100-K galaxies, respectively. Here, as remarked earlier, we use the
final data set which contains double the number of galaxies and
double the volume that were available for analysis in these pre-
liminary studies. Recently, Pan & Szapudi (2005) have also anal-
ysed the final 2dFGRS data set, estimating the monopole moment
of the three-point function, averaging over the shape dependence
of triangles. In this section, we compare our results with those ob-
tained by these authors and also with the measurement of the pro-
jected Q3 for the Automated Plate Measurement (APM) survey, the
parent catalogue of the 2dFGRS, made by Frieman & Gaztañaga
(1999).
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Verde et al. (2002) found, using a three-point function analysis in
Fourier space, that 2dFGRS galaxies are essentially unbiased tracers
of the mass, recovering a linear bias factor consistent with unity,
b1 = 1.04 ± 0.11, and a second-order bias that is effectively zero,
b2 ≡ b1c2 = −0.054 ± 0.08. We note that Lahav et al. (2002) also
reached a similar conclusion applying a different approach to the
same 2dFGRS data set, arguing that b1 ∼ 1. There is good agreement
between our best value for b1 and that obtained by Verde et al., which
is encouraging in view of the possible reasons for discrepancies
between the results of the two studies set out below. However, our
results for the quadratic bias are quite different from those of Verde
et al. Our optimum measurement gives a 3σ detection of a non-
zero value for the quadratic bias, whereas Verde et al. found a value
consistent with zero. The discrepancy between our results and those
of Verde et al. corresponds to 	χ2 > 80 for two degrees of freedom.
This implies a 9σ discrepancy (recalling that the error boxes are not
square, but elongated). The discrepancy in the claimed values of c2

is only 3σ–4σ if we take the nominal errors on the measurement of
c2 by Verde et al. and assume square error boxes.

What are the reasons behind this disagreement? We have identi-
fied some aspects in which our analysis differs from that of Verde
et al., which will contribute to the discrepancy at different lev-
els, over and above the fact that we used different versions of the
2dFGRS data. First, we have considered the full 2dFGRS in config-
uration space, thus avoiding the need to compensate for the impact
of the complicated 2dFGRS angular mask on measurements carried
out in Fourier space. Verde et al. do not correct for the convolution
of the underlying bispectrum with the angular survey window func-
tion, arguing that, for the range of wavenumbers they consider, this
effect is unimportant. This conclusion is based upon tests carried
out for the power spectrum by Percival et al. (2001). The impact
of the window function on the bispectrum could be more extensive
than in the case of the power spectrum, introducing anisotropies
into the recovered bispectrum, and has not been tested explicitly.
Secondly, the range of galaxy luminosities considered is different
in the two studies. We have analysed volume-limited samples drawn
from the 2dFGRS, whereas Verde et al. used the flux-limited sur-
vey (however, our best measurement comes from galaxies with lu-
minosities between 1.3 and 2.5 L �, and their sample corresponds
to ∼1.9 L �). Thirdly, the scales used to constrain the parameters
of the bias model are also different. We use triangles that probe
pair separations from 9 to 36 h−1 Mpc; Verde et al. consider 13–
62 h−1 Mpc, although most of their signal comes from the smaller
scales, as shown by their fig. 4. Fourthly, Verde et al. neglect the
covariance between measurements of the bispectrum at different
wavenumbers, which is a poor approximation even in Fourier space,
as shown by Scoccimarro et al. (2001a) and Feldman et al. (2001).
Neglecting the covariance will artificially suppress the errors on b1

and b2 by a considerable factor, corresponding roughly to the actual
number of bins used divided by the number of dominant eigen-
modes of the reduced three-point function, which in this case could
be up to a factor of 4. This could to some extent explain why our
relative errors are larger than those quoted by Verde et al., in spite
of the more homogeneous 2dFGRS data set used in our analysis.
Verde et al. use mock catalogues to estimate the errors on the re-
covered values of b1 and b2. The true, underlying value of b2 for
the mocks is not known, so it is not possible to assess whether or
not their method introduces any systematic biases in the recovered
value of b2. A bias on b2 introduced by the convolution with the
angular mask and the covariance in the bispectrum measurements
could affect the estimated values of both the mean and the errors. In
fact, the mocks used by Verde et al. are very similar to those used

here as they were produced using the same prescription for galaxy
biasing. As shown by the dashed lines in our Figs 2, 3 and 5 there is
a systematic shift of Q3 in the mocks with respect to the dark matter
simulations, indicating that b2 is in fact non-zero (and negative) in
the mocks, in contrast to fig. 2 of Verde et al.

Our results are in somewhat better agreement with those of Jing
& Börner (2004) and Wang et al. (2004), who analysed the 2dFGRS
100-k release (Colless et al. 2001). They found that Q3 measured
for the 2dFGRS is smaller than the �CDM predictions, particularly
for galaxies brighter than L �. This agrees with our result (compare
the measurements for galaxies shown by symbols in the top rows
of Figs 2 and 3 with the dark matter predictions plotted using thick
lines) and is also at odds with the Verde et al. result. Our results for
equilateral configurations in Fig. 7 are also in good agreement with
fig. 10 in Wang et al. (2004). However, the comparison with these
results is not straightforward for a number of reasons. (i) The authors
used less than half the data that we have analysed. (ii) They used a
different parametrization and binning for their measurements of Q3.
(iii) They neglected covariance between bins and used approximate
bootstrap errors. Jing & Börner interpreted the lower values of Q3

that they found as a consequence of a larger linear bias, b1 � 1.5,
in contrast to our conclusion that most of the bias comes from the
quadratic term c2 � −0.3, with a linear bias consistent with unity.
This difference has a dramatic consequence for the implied value
of σ 8. For galaxies fainter than L �, Jing & Börner obtain unbiased
results, which disagrees with our findings. This, however, could be
a result of the smaller volume probed by Jing & Börner, which gives
larger errors on their measurement. Jing & Börner also seem to find
less configuration dependence for Q3, i.e. as a function of the triangle
shape specified by α. As pointed out in GS05, this could partly be
due to the use of too large a bin in the α angle that parametrizes
triangular shape in addition to the smaller volume used.

Most recently, as this paper was about to be submitted, Pan &
Szapudi (2005) presented new results on the monopole moment of
the three-point function measured from the full 2dFGRS. They find
b1 � 1.04+0.23

−0.09 and b2 � −0.06+0.03
−0.01. Both the technique and assump-

tions employed by Pan & Szapudi are conceptually very different
from ours. The monopole contribution to the normalized three-point
function merely yields a constant value that is independent of trian-
gle opening angle. It is approximately equivalent to the first eigen-
mode in our singular value decomposition of the covariance matrix
of Q3, and therefore contains much less information than we use
to place constraints on the bias parameters. As a consequence, the
monopole alone cannot be used to separate b1 from b2; only the
higher multipoles of Q3 can break this degeneracy. Pan & Szapudi
instead use a simultaneous fit to the amplitudes of the two (ξ ) and
three-point (ζ ) functions (as a function of scale) to place separate
constraints on the values of b1 and b2; recall that our analysis only
requires a fit to the ratio Q3 ∼ ζ/ξ 2. Both the modelling and the
systematics involved in the fit used by Pan & Szapudi are therefore
quite different from ours. Our analysis is less sensitive to possible
systematics in the amplitude of ζ . In particular, we do not need to
model the impact of redshift distortions on the amplitudes of the
two- and three-point functions as Pan & Szapudi must. Another im-
portant difference is the implicit assumption used by Pan & Szapudi
that the biasing parameters, bi, are constant over the whole range of
scales considered, i.e. from 4 − 60 h−1 Mpc. In our case, we allow
bi to change for each combination of fixed scales r12 and r23. Given
these differences, there is surprisingly good agreement in the val-
ues obtained for b1 by the two methods. However, their b2 value is
significantly different. This is not unexpected given the systematic
uncertainties in modelling redshift distortions through the f 2

2 term
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in equation (6) of their paper. As shown in the right-hand panel of
our Fig. 9 and in Table 2, we find a weak trend for the bias parame-
ters to increase as the triangle scale is reduced. This could also help
to explain the slightly larger biasing parameters they find. Perhaps
more puzzling is their fig. 7, which shows how b1 increases for the
brightest galaxies, in contrast to our Fig. 7 (which only applies to
the smallest scales considered by Pan & Szapudi).

Our findings are compatible with the values of the projected Q3

measured in the APM survey, which is the parent catalogue of the
2dFGRS. Frieman & Gaztañaga (1999) also found values of Q3

that lay below the �CDM predictions. However, they did not per-
form a proper S/N analysis with the covariance matrix to separate
b1 from b2.2 Our results are also in qualitative agreement with the
values of the angular skewness, s3, measured in the APM galaxy
survey (Gaztañaga 1994). The mean over large angular scale (cor-
responding to 7 − 30 h−1 Mpc) was estimated to be s 3 = 3.8,
with an error (dominated by sampling covariance) of the order of
�10 per cent. The theoretical predictions for the projected moments
using perturbation theory (Bernardeau 1995) and dark matter sim-
ulations (Gaztañaga & Bernardeau 1998) yield a mean value s 3 �
5 over the same scales.3 The skewness measured from the APM
survey is thus also below the �CDM prediction. This agrees well
with our estimates of the bias parameters b1 � 1 and c2 � −0.3,
which give sG

3 � (s 3 + 3c2)/b1 � 4, in excellent agreement with
the observed APM values. Note that the APM results correspond to
configuration space, in contrast to our results which are in redshift
space. Thus, our simple quadratic bias model (in redshift space) can
account simultaneously for observations of real-space (projected)
and redshift-space results for three-point statistics (both skewness
and three-point function). Our new result solves the long-standing
observational puzzle regarding how the measured and predicted val-
ues of S3 and Q3 can be reconciled.

6 C O N C L U S I O N S

We have measured the reduced three-point function Q3(r 1, r 2, r 3) ∼
ζ/ξ 2 (as defined in equation 5>) in the final 2dFGRS catalogue, us-
ing triangles of different scales and opening angles. We have utilized
a range of volume-limited samples in our analysis, which allows us
to look for clustering trends as a function of galaxy luminosity. The
inclusion of rF-band photometry in the final 2dFGRS data release
also allows us to look for a dependence of the three-point function
on galaxy colour. Another novel aspect of our analysis is that we
employ an eigenmode decomposition to deal with correlations be-
tween data points and to assess the S/N of our measurements; our
results typically have a S/N >20.

There are two primary motivations for measuring the reduced
three-point function. The first is to test the gravitational instability
paradigm for the formation of large-scale structure in the Universe.
There are clear predictions for the form of the three-point function in
the case of an initially Gaussian distribution of density fluctuations
that have evolved under gravity (see Bernardeau et al. 2002). The

2 We note that such an analysis was, however, presented for Q3 measured
in Fourier space from the IRAS Point Source Redshift Catalogue (PSCz;
Saunders et al. 2000) by Scoccimarro et al. (2001a) and Feldman et al.
(2001).
3 Note that this prediction differs from the hierarchical projection for the
same model/scales estimated by Gaztañaga (1994), which were closer to
s 3 � 4. This was first noted by Bernardeau (1995) and later confirmed with
simulations by Gaztañaga & Bernardeau (1998). See also comments relating
to figs 47 and 54 in Bernardeau et al. (2002) for further details.

second motivation is to provide new constraints on models of galaxy
formation, by establishing how the three-point function of galaxies
differs from that of the underlying dark matter. It turns out that the
predictions for the dark matter are insensitive to the amplitude of
density fluctuations and to the detailed shape of the power spectrum.

We have divided our analysis into two clustering regimes: weakly
non-linear clustering (i.e. r � 6 h−1 Mpc or ξ � 1) and non-linear
clustering (r � 6 h−1 Mpc or ξ � 1). On weakly non-linear scales,
there is a striking similarity between the shape of Q3 measured
for galaxies and the predictions for the dark matter. This supports
the idea that the basic phenomenon behind the clustering pattern
of galaxies is gravitational instability, which confirms our previous
conclusions reached from the analysis of the distribution of counts-
in-cells for the 2dFGRS (Baugh et al. 2004; Croton et al. 2004b).

There are, however, significant differences, between Q3 measured
for galaxies and the expectations for a �CDM universe. We have
modelled this discrepancy in terms of a shift and a scaling applied
to the dark matter predictions. For scales on which the fluctuations
are weakly non-linear, the scaling can be identified with the lin-
ear bias, b1, and the offset with the quadratic bias, b2/b1. Our best
measurement of these bias parameters gives a linear bias consistent
with unity, but a significant detection of a non-zero quadratic bias,
b2/b1 = −0.34+0.11

−0.08. This is the first time that the signature of a
quadratic bias has been seen so convincingly; our measurements are
9σ away from the case in which galaxies faithfully trace the mass
(b1 = 1 and b2 = 0). Our results disagree with some of the previ-
ous analyses of the three-point function in the 2dFGRS; a detailed
discussion of the possible reasons for this is given in Section 5. We
note that Feldman et al. (2001) also found a negative quadratic bias
term when analysing the three-point function of galaxies in the IRAS
PSCz survey, albeit at a less significant level than our detection.

The discrepancy between Q3 for galaxies and the dark matter
increases as the scale of the triangles is reduced (while remaining in
the weakly non-linear regime), which translates into a slight increase
in the best-fitting values of the bias parameters (see Table 2). We
find no significance evidence for luminosity segregation on these
weakly non-linear scales.

On smaller scales we are able to detect a significant dependence of
Q3 on scale, colour and luminosity. These trends appear at first sight
to be at odds with the preliminary results obtained by Kayo et al.
(2004) using the SDSS, although the errors on the measurements
presented by these authors are much larger than ours. In all cases,
the measurements for the various samples of galaxies are clearly be-
low the predictions for the dark matter. Our detailed measurements,
presented in Figs 6–8 and Table 3, should provide important new
constraints on models of galaxy formation (see Scoccimarro et al.
2001b; Wang et al. 2004).

Our strong detection of a quadratic bias offers a new explanation
of the long-standing puzzle of why redshift surveys have tended to
measure a different skewness (SG

3 ∼ ξ̄3/ξ̄
2
2 = 2; see Croton et al.

2004b for the 2dFGRS and table 19 of Bernardeau et al. 2002 for a
summary of other observational results) from that predicted for the
�CDM cosmology (SM

3 ∼ 3). If we take the non-linear bias rela-
tion derived by Fry & Gaztañaga (1993), SG

3 = (SM
3 + 3c2)/b1 and

insert our best-fitting values for the bias parameters (b1 = 0.95 and
c2 = −0.35), then we obtain SG

3 � 2, just as required by the
observations.

The value of Q3 is independent of the overall amplitude of fluc-
tuations. This means that our measurement of the linear bias, b1,
is fully independent of the normalization of the fluctuations in the
dark matter, as specified by σ 8. Furthermore, the predictions for Q3

for dark matter are relatively insensitive to the shape of the power
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spectrum, making this estimate of the bias robust to minor changes
in the parameters of the �CDM model. We can therefore combine
our estimate of b1 with the amplitude of fluctuations measured from
the galaxy distribution, σ G

8 , to derive an estimate of the amplitude
of fluctuations in the dark matter, σ 8. Cole et al. (2005) measured
the power spectrum of galaxy clustering in the 2dFGRS and found
σ G

8 � 0.924 ± 0.032. The equation relating fluctuations in the galax-
ies to those in the dark matter involves two other terms:

σ G
8 = b1 D(z) K (β) σ8. (10)

Here D(z) � 0.95 is the growth factor at the mean depth of the
survey (z � 0.1) relative to the growth factor at z = 0 and K is
the linear Kaiser (1987) redshift space distortion factor: K � 1.17
for β � 0.48. Both factors depend on the cosmological density
parameters for matter and vacuum energy, which we have set to
their concordance model values (
m � 0.3, 
� � 0.7 and h � 0.7).
This allows us to estimate σ 8:

σ8 � 0.88+0.12
−0.10. (11)

Here we have assumed that the errors are dominated by the errors in
b1. This explains the good agreement found between the large-scale
variance in 2dFGRS galaxies and the variance of the dark matter for
σ 8 � 0.9, as shown in fig. 2 of Baugh et al. (2004). A more detailed
presentation of our result for σ 8 will be deferred to a later paper.

Note added on submission

On the day before our paper was submitted, Hikage et al. (2005)
posted a paper on the three-point function of SDSS galaxies, in
which they perform a Fourier phase analysis. Their main result is
that b2/b1 ≈ 0 if σ 8 = 0.9, in apparent contradiction with our
principal finding. However, Hikage et al. consider scales in excess
of 30 h−1 Mpc and restrict their attention to triangles with large
opening angles. Their analysis is therefore similar to the special
case we present in Fig. 9 for elongated and equilateral triangles.
As we explained in Section 4.3, in this case, due to the reduced
number of triangles considered, the errors on the bias parameters
are large. As shown in the upper-right panel of our Fig. 2, the error
bars become quite large for α � 180◦ on large scales. Furthermore,
there is actually no reason to expect the bias parameters extracted
by Hikage et al. to agree closely with ours, as SDSS galaxies are
red selected.
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