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Statistical Analysis of Hominoid Molecular

Evolution

Daniel Barry and J. A. Hartigan

Abstract. The core data of molecular biology consists of DNA sequences.
We will show how DNA sequences may be used to infer the evolution of
the primates, human, chimpanzee, ape, orangutan and gibbon. The under-
lying probability models are taken to be Markov processes on trees. Some
dependencies along the sequence due to the genetic code are also considered.
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1. INTRODUCTION

Since Darwin, man has been relegated from the
angels to the apes, but exactly where in the apes? In
1960, the Encyclopedia Britannica places man outside
the Pongidae, consisting of the gibbons, orangutans,
chimpanzees and gorillas. In 1980, man is securely
established in the group human, chimpanzee and go-
rilla, although there remains some controversy over
his exact placement there. (See, however, Kluge (1983)
who favors a human-orangutan grouping.)

The traditional data for inferring evolution come
from morphology (form and structure) and paleontol-
ogy (fossil remains). The new data, which are destined
to resolve many long-standing problems in evolution
and systematics, are based on the genetic macromol-
ecules called deoxyribonucleic acid (DNA).

The DNA consists of a sequence of bases, either
thymine (T), cytosine (C), adenine (A) or guanine (G),
attached to a sugar-phosphate backbone and paired
with a complementary sequence of the same bases
attached to another such backbone. Thymine pairs
with adenine and guanine with cytosine. Adenine and
guanine are purines, composed of two carbon rings,
and thymine and cytosine are pyrimidines, composed
of one carbon ring. Human DNA is approximately
, 3 X 10° base pairs (bp) in length. The DNA generates
ribonucleic acid (RNA) and proteins, which assist in
the reproduction of the DNA. When an organism
reproduces, it transmits DNA to its offspring, and this
DNA determines the development of the new orga-
nism (see Alberts, Bray, Lewis, Raff, Roberts and
Watson (1983) to discover the glorious details). Sci-
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entific American (October 1985) reviews recent ad-
vances.

In humans and apes, the DNA is divided between
the nucleus and organelles outside the nucleus called
mitochondria. The mitochondrial DNA is only 16,500
bp in length, and it is known to change somewhat
more rapidly than nuclear DNA; it is therefore a good
first candidate for comparative studies between close
species. Each protein is a sequence of amino acids, of
which there are 20; a codon of DNA is a sequence of
three bases that translates to a particular amino acid.
The code that translates DNA codons to amino acids
in mitochondria is given in Figure 1. The nuclear code
is slightly different. The four STOP codons specify
the end of a segment of DNA that translates, via an
RNA messenger strand, into protein. Note that the
third position of a codon is degenerate, in the mito-
chondrial code, in that either purine or pyrimidine
gives the same amino acid.

Until the late seventies, DNA sequences were
mainly determined indirectly by sequencing the RNA
or proteins that they generate. In 1977, two new
techniques, named for the developers, Maxam-Gilbert
and Sanger-Nicklen-Coulson, greatly speeded up the
routine sequencing of DNA, and a flood of DNA
sequences have since appeared (Table 1).

It is our intention to study a variety of molecular
data to demonstrate a variety of statistical methods
that might be used for inferring evolution. The partic-
ular evolutionary problem considered is the ancestry
of the hominoids. The statistical literature is modest;
the first probability models are due to Edwards and
Cavalli-Sforza (1964); Neyman (1971) first presented
models for nucleic acid sequences; and Felsenstein
(1983) has an excellent review article on Markov
process models.

Sections 2 through 4 review the evidence provided
by chromosome comparisons, DNA hybridization, pro-
tein comparisons and cleavage maps. The remainder
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/Codon
L1010 1¢C0 1
DNA . .... ACG TGT TAC GGG .
PROTEIN. . . . Thr - Cys - Tyr - Gly
TTT TCT TAT 16T
17c Phe TCe o TAC VT T6ec ©rs
TTA TCA TAA TGA
T1G “Y TCG tag STOP g TP
cTT ceT CAT CGT
c1c o cce cac s cec ,
cTa ' cca're CAA cGa ¢
CTG cCc6 cac CGG
ATT ACT AAT AGT
aTc e ACC - AAC Asn Acc Ser
ATA ACA AAA AGA
atc Met ACG AAG O'® acG STOF
6TT 6T GAT , o GGT
6TC 6cC GAC GG6C
6Ta Vo cea Ala GAA o cea SV
6TG 6CG GAG GGG

Fi16. 1. Mitochondrial genetic code. A triplet of nucleotides, or codon,
translates to 1 of 20 amino acids according to the code. Note that the
transitions in the third positions (changing the purine to a purine, or
the pyrimidine to a pyrimidine) do not change the amino acid coded
for.

TABLE 1
DNA sequences in Gen bank (15 Feb 1984): 2,825,441 bases at
3,424 loci®
Bases Fraction of
DNA

Human 279,837 0.00005
Mouse 257,207 0.00004
Rat 108,968 0.00002
Drosophila 95,825
Sea urchin 38,682
Yeast 105,594
Escherichia coli 222,844 0.05
Phage lambda 49,789 1.00

a 'i‘ypical fragment is 1 or 2 kb associated with a particular gene.

of the paper deals with techniques for analyzing DNA
sequence data and applies these techniques to the
hominoid DNA data. The data used is described in
detail in Section 5. Graphical techniques for looking
at single DNA sequences are developed in Section 6
along with Markov models to describe the dependence
between sites indicated by the graphs. The concept of
a silent site is described in Section 7 and the behavior
of silent sites contrasted with that of non-silent or
replacement sites. In Section 8 measures of distance

between pairs of DNA sequences are described and a
new measure proposed. Sections 9 through 11 include
the specifications of a simple probability model for
evolutionary change and the development of algo-
rithms to fit this model to data using maximum like-
lihood. In Section 12 these algorithms are applied to
the hominoid DNA data and we conclude that there
is evidence (although not conclusive evidence) that
human and chimpanzee branched most recently from
the evolutionary tree of the hominoids.

2. LARGE SCALE MOLECULAR COMPARISONS

In this section, evidence based on viewing the DNA
as a whole is considered. The DNA is divided into 23
pairs of chromosomes in humans, and 24 pairs in
chimpanzees, gorillas and orangutans. Yunis and
Prakash (1982) photographed G-banded chromosomes
for humans, chimpanzees, gorillas and orangutans;
G-banding is achieved by dyeing the chromosomes
giving bands of different shades. Each human chro-
mosome may be matched with a similar chromosome
in each of the other species; all matched chromosomes
are said to be homologous, descended from a common
ancestral chromosome. One of the human chromo-
somes is homologous to two ape chromosomes. The
main differences between homologous chromosomes
made visible by G-banding are inversions, in which a
segment of chromosome is reversed in direction. The
chromosomes are about 10® bp in length, so differences
between homologous segments less than 10° bp in
length are not visible.

Yunis and Prakash judge that 13 of the human-
chimpanzee chromosomes are identical, but only 9 of
the human-gorilla and 8 of the human—orangutan are
identical. This is evidence that human and chimpan-
zee branched most recently.

The most powerful global technique for comparing
DNA is DNA hybridization, which has been used by
Sibley and Ahlquist (1983) for an extensive revision
of the systematics of birds. A distance between two
pieces of DNA is measured by the propensity of single
strands from each piece to reassociate as double
strands:

1. Take a piece of double-stranded DNA, shear it
by sonification into fragments about 500 bp in length,
disassociate the fragments into single-stranded frag-
ments by heating.

2. Cool and remove those fragments of the DNA
that reassociate most quickly. These will be “repeated
copy” sequences of DNA; perhaps half of the DNA is
composed of sequences that repeat themselves, some
sequences of length 10 repeated 107 times, some se-
quences of length 1000 repeated 10* times; these
sequences are excluded from the comparison because
they tend to reassociate with other copies in the same
single strand.
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3. A tracer piece is labeled radioactively, and the '

driver piece, in concentration 1000:1 to the tracer, is
allowed to reassociate with it. The tracer piece is
treated by steps 1 and 2, the driver by step 1. At this
point almost all the tracer DNA will be associated
with driver DNA; each fragment of tracer will be
aligned, with some mismatches, with a fragment of
driver. The mixture is heated until 50% of the tracer
DNA is disassociated, and 50% is hybridized with the
driver DNA—this temperature is called the TscH, and
the higher the T5H the more similar the two pieces
of DNA, since dissimilar pieces will have many mis-
matches in the aligned fragments, and so the frag-
ments will easily disassociate.

4. The TsoH is determined first for tracer DNA and
driver DNA from the same species, and then for tracer
DNA from that species and driver DNA from another
species. The difference between the two values of TsocH
is denoted AT;5H and measures distance between the
tracer and driver species.

1t is difficult to see, through the complex interaction
of billions of fragments extensively treated, what kind
of distance between molecules is measured by AT;s.H.
From Sibley and Ahlquist (1983) ATsH = 1°C cor-
responds to a 1% mismatch rate, based on experiments
using synthetic polynucleotides of known compo-
sition. But there remains to be developed a model
connecting the possible evolutionary changes—sub-
stitutions, insertions, deletions, inversions, to the
kinetics of association of DNA fragments.

Average ATs50H distances between the hominoids
are given in Table 2. Chimpanzee-human distances
are smaller than the others, but the gorilla distances
to human and chimpanzee are only slightly larger.
Each of these averages is based on several separate
ATs, computations, so that it is possible to use stand-
ard analysis of variance (one-way classification)
techniques to evaluate various hypotheses about
the underlying distances. It might be expected that
the errors are somewhat larger in estimating distances
between the more distant species, but they did not
seem to be large enough to affect the analysis. It might

also be argued that the analysis should be directed at
the original T, values rather than the AT;, values; a
more sophisticated analysis should allow for different
errors associated with each driver and tracer prepa-
ration. We are first interested in detecting asymmetry
in the matrix; we hope to find that the tracer-driver
distances are not significantly different from the cor-
responding driver-tracer distances. There are two ad-
ditive models that may be associated with a given
evolutionary tree.

1. Asynchronous models, in which the distance be-
tween two species is the sum of the “amounts of
evolutionary change” in each of the links on the path
connecting the two species. See, for example, Cavalli-
Sforza and Edwards (1967).

2. Synchronous models, in which the distances sat-
isfy (1), but also the total evolutionary change from
the root of the tree to all present day species is the
same; the term synchronous is used because the
models follow from the assumption that the amount
of change in a given time period is the same across all
lineages, although not necessarily the same in differ-
ent time periods of the same length. In this case the
distances form an ultrametric (Hartigan, 1967).

Denote by HCG the models in which chimpanzee,
human and gorilla have the same branch point, by HC
the models in which human and chimpanzee have the
most recent branch point and by CG the models in
which gorilla and chimpanzee have the most recent
branch point. The letters A and S are used to distin-
guish asynchronous from synchronous models. Each
model represents the ATs;H distances as a sum of
parameters (see Figure 2). The parameters are esti-
mated by least squares, and the models evaluated by
the residual sum of squares computed from the origi-
nal 147 distances of Sibley and Ahlquist (1983). The
two bifurcation models are compared to the trifurca-
tion model, and the synchronous models are compared
to the corresponding asynchronous models in Table 3.

If we could be sure of synchronous evolution, the
evidence for HC would be compelling (the F value is
27 for HC against trifurcation). Sibley and Ahlquist

TABLE 2
Average ATs, for hominoids
Driver
Tracer
Pan Pt Hs Gg Pp H1 Hsyn
Pan paniscus .18 1.77 2.38 3.87 5.58 ¢ Chi
Pan troglodytes 50 1.72 2.12 3.60 498 o 1Impanzees
Homo sapiens 1.77 1.83 2.54 3.67 5.10 480 Human
Gorilla gorilla 2.00 2.14 2.24 3.90 5.43 ¢ Gorilla
Pongo pigmaeus 3.55 3.72 3.60 3.70 5.33 5.09 Orangutan
Hylobates lar 5.90 5.16 5.28 5.28 4.98 2.15 .
Hylobates syndactulus . . ¢ . . . } Gibbons

? No data available.
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(1984) base their analysis on synchronous evolution,
which they call the uniform average rate hypothesis.
The data suggest some asynchronous behavior (the F
for AHC against SHC is 2.98), and this reduces the
strength of the evidence for HC, but HC remains
clearly significant agamst HCG and clearly preferred
to CG.

Finally, we may compare the asynchronous human-
chimpanzee model with the network model (NET) in
which distances are unconstrained, except that they

SHCG AHCG
Hs Pon Pt Gg Gy Pr
(] 9 Pp Hl Hsyn HsPan Pt Hi Hsyn
SHC
m om\
Hs fan Pt Gg Pp W Hsyn  Hs Pan Hsyn
SC6
m m
Hs Pan Pt Gg Pp HI Hsyn Hsp i Hsyn

FiG. 2. Synchronous and asynchronous models for hominoid evo-
lution. HCG denotes human, chimpanzee and gorilla branching at
the same time; HC denotes human and chimpanzee branching more
recently than gorilla; and CG denotes chimpanzee and gorilla branch-
ing more recently. Evolution may be synchronous (S), where the rate
of change is the same in all lines, or asynchronous (A) where the rate
of change varies in different lines.
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be symmetrical. Then F; ;2 = 2.03 has a tail probabil-
ity of 0.05. Against the synchronous model, Fizs9 =
2.50 has tail probability 0.001. Thus, we can barely be
satisfied with fitting an asynchronous CH model, but
have too much error for the synchronous CH model.
The network model would be superior to the tree
models if convergent evolution occurs: different line-
ages become more similar after first diverging.

3. PROTEIN EVIDENCE

A typical protein is 100 amino acids long, generated
by 300 bp of DNA. Since proteins have functions of
varying importance to the survival of the DNA, there
are widely varying rates of change for different pro-
teins. Until the late 70s data of this type were the
main source of information about DNA (see Dayhoff,
1978). For studying closely related species such as the
hominoids, it is necessary to look only at fast changing
proteins.

In Table 4 are given the hominoid sequences for
fibrinopeptides A and B, proteins that are linked to
form fibrinogen. These are among the fastest evolving
proteins; fibrinopeptide A changes only in the third
position, suggesting the grouping (human, chimpan-
zee, gorilla, orangutan); the ancestral value threonine
changed after the branch point between Hylobates and
pongids to serine—such an event, where two species
have in common a character differing from an ances-
tral character, is called a synapomorphy. Two
synapomorphies appear in fibrinopeptide B, and in
addition there is a deletion in the gibbon sequence.
(In long protein sequences, the possibility of many
insertions and deletions creates a different realign-
ment problem for which a number of algorithms have
been developed—these are variations of the Erdos and
Szekeres (1935) method for finding the longest in-
creasing subsequence in a sequence of integers; see
Sankoff and Kruskal, 1983.)

TABLE 3
Analysis of variance of Sibley-Ahlquist data®

Model Residual sum d.f. Including model F value
of squares
No constraints 8.452 114
Symmetry 9.832 129 No constraints 1.24
AHC 10.917 136 Symmetry 2.03
ACG 11.577 136 Symmetry 3.27
AHCG 11.580 137 AHC or ACG 8.26 or .03
SHC 12.115 141 AHC 2.98
SCG 14.098 141 ACG 591
SHCG 14.464 140 SHC or SCG 27.34 or 3.66

2 No constraints, distances may be asymmetrical; symmetry, distances symmetrical; AHCG, asynchronous, chimpanzee-human-gorilla branch
simultaneously; AHC, asynchronous, chimpanzee-human split latest; ACG, asynchronous, chimpanzee—gorilla split latest; SHCG, synchro-
nous, chimpanzee-human-gorilla branch simultaneously; SHC, synchronous, chimpanzee-human split latest; SCG, synchronous, chimpanzee—

gorilla split latest.
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The synapomorphies in fibrinopeptide B suggest
the branch human-chimpanzee-gorilla. Note that the
ambiguous subsequence BBBZZ is probably NDNEE.
Goodman et al. (1982) find seven positions in
B-hemoglobin, fibrinopeptides and myoglobin that
separate human-chimpanzee—gorilla from gibbon-or-
angutan; they find one position in a-hemoglobin and
four positions in carbonic anhydrase I separating hu-
man—chimpanzee from gorilla—orangutan. Thus, there
are five synapomorphies in favor of human-chimpan-
zee.

4. CLEAVAGE MAPS

Ferris, Wilson and Brown (1981) studied mitochon-
drial DNA in hominoids using cleavage maps. Mito-
chondria are organelles in eucaryotic cells that carry
their own DNA, and that reproduce by mitosis, inher-
itance being from the mother. Thus, mitochondrial
evolution is more similar to bacterial evolution than
to evolution of nuclear DNA. Mitochondrial DNA is
a circle of about 16,500 bp in mammals; it evolves
rapidly and so is especially suited to studying homi-
noid evolution. ‘

Restriction enzymes cleave the DNA at specific
sequences, usually four or six in length, and usually
palindromic—for example the enzyme HindIII cleaves
sequences AAGCTT; the complementary sequence is
TTCGAA, which is the reverse of the original se-

TABLE 4
Hominoid fibrinopeptides®
Fibrinopeptide A Fibrinopeptide B

Human ADSGEGDFLAEGGGVR ZGVNDNEEGFFSAR

Chimpanzee ADSGEGDFLAEGGGVR ZGVNDNEEGFFSAR

Gorilla ADSGEGDFLAEGGGVR ZGVNDNEEGFFSAR

Orangutan ADSGEGDFLAEGGGVR ZGVBBBZZGLFGAR

Siamang ADTGEGDFLAEGGGVR ZGVBBBZZGLFGAR

Gibbon ADTGEGEFLAEGGGVR ZGVBBBZGLFGAR
1 2 3 4

“1, 3, 4: A synapomorphy, a set of species sharing a character
differing from the ancestral character; 2: a deletion in gibbon,
requiring realignment. A, alanine; B, aspartic acid or asparagine;
D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine;
L, leucine; N, asparagine; R, arginine; S, serine; T, threonine;
,V’ valine; Z, glutamic acid or glutamine.

quence. Restriction enzymes were invented by bacteria
as weapons to hurl at invading viruses, cutting them
into harmless little pieces. (Of course the bacteria
have to arm their vulnerable segments, and the viruses
try to acquire the same armor.) °

Ferris, Wilson and Brown studied the sites in hom-
inoid mitochondrial DNA where' 19 restriction en-
zymes cleave, about 50 sites in all; we see the behavior
of the DNA at 300 = 6 X 50 bp. Synapomorphies are
sites where two sets of two species have different
restriction behavior; Table 5 favors gorilla—chimp
(seven synapomorphies) over chimp-human (three
synapomorphies).

5. MITOCHONDRIAL DNA

Brown, Prager, Wang and Wilson (1982) looked at
complete mitochondrial DNA sequences for five hom-
inoids, at 896 sites between two HindIII cleavage sites.
Chimpanzee had a HindIII cleavage site at position
263, so it was necessary to combine fragments of
length 263 and 633 to obtain the chimpanzee sequence.
The orangutan had a deletion at site 562.

Brown, Prager, Wang and Wilson (1982) compute
for each possible evolutionary tree the minimum
number of substitutions required to reproduce the
observed sequences for the five hominoids. Last split
gorilla—chimpanzee requires 145 substitutions, hu-
man-chimpanzee 147 substitutions and human-go-
rilla 148 substitutions. They conclude that the data
favors gorilla—chimpanzee but does not rule out the
other splits. Our analyses to follow show that the data
favor, slightly, a human-chimpanzee branch.

6. MARKOV MODELS ALONG HUMAN DNA
SEQUENCES

Many of the probability models used in constructing
evolutionary trees assume that the sites on the DNA
molecule are independent and identically distributed
(iid) over the set of bases {A, C, G, T}. However, some
patterns are observable in DNA sequences.

" For example, purines tend to follow purines and

pyrimidines tend to follow pyrimidines. Certain sub-
sequences tend to occur more frequently than others

. TABLE 5
Synapomorphies at cleavage sites in mitochondrial DNA®

Human Chimpanzee Gorilla Orangutan Gibbon
Human 3 1 1 2
Chimpanzee 0 6 1 2
Gorilla 0 1 1 1
Orangutan 2 1 0 4
Gibbon 0 1 2 3

“ Above diagonal, sites cleaved only at the given two species; below diagonal, sites not cleaved only at

the given two species.
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and, as will be seen in Section 7, some sites are more
prone to change than others.

It is possible to represent a DNA sequence graphi-
cally using the following two plots:

(1) Let X;=+1 ifpositioniisCorT,
— 1 ifposition iis A or G.
(2) Let Y;=+1 if positioniisC or G,
—1 ifposition iis A or T.
Let SX; =Y., X;. Plot SX; versus i.
Let SY; =Y:., Y;. Plot SY; versus i.

The first plot looks at the preponderance of pyrimi-
dines over purines and the second looks at the prepon-
derance of one pair of complementary bases over the
other. Figure 3 shows these plots for the human mi-
tochondrial DNA sequences. Long series of pyrimi-
dines occur starting approximately at positions 350
and 650. One would not expect to see such phenomena
in an iid sequence. The complementary base plot
reveals less of a departure from the iid model.

The adequacy of the iid model for representing long
range patterns in a DNA sequence under study can be
checked by comparing the above graphs calculated
using the real sequence with graphs calculated using
sequences simulated from the iid mpdel.

We considered a generalization of the iid model to
a Markov model. The probability of the whole se-
quence-is determined by the conditional distribution
of the next base given the preceding sequence of bases.
It is assumed that this conditional distribution is

200

~100 1

A) ¥ T
o 200 400 €00 800
CuMuLATED COUNT Base Pair

Fi16.3. GATC-TAGC plots of 896 bp of human mitochondrial DNA.
The top plot is the cumulative count of the number of Cs and Ts less
the number of Gs and As, that is the number of pyrmidines less the
number of purines. The sequence is pyrimidine-rich, especially in
sequences near 400 and 700 bp. The lower plot is the cumulative
number of Gs and Cs less the number of As and Ts, the difference
between the two complementary pairs. There are more As and Ts,
but the distribution over the sequence is apparently random. A third

‘plot G + T — C — A would complement these and make possible
complete recovery of the sequence.

determined by just a few different subsequences which
we call the effectives. If there are no effectives then
the DNA is just a sequence of independent and iden-
tically distributed assignments of bases from the set
{A, C, G, T}. We shall describe this case by saying
that there is one effective which we shall denote
by -. The long nonrandom patterns observable in some
parts of the DNA may make this an inappropriate
probability model. For an actual sequence it is neces-
sary to build a set of effectives, ones with different
conditional distributions for the next base, to maxi-
mize the probability of the observed sequence.

Given a set of effectives and their associated con-
ditional distributions, it is possible to generate random
sequences having the same distribution. These may
be examined to see how well they reflect the large
scale behavior of observed DNA strands.

Suppose we are given a set of effectives E. Each site
on the DNA is assigned to the longest effective im-
mediately preceding it. The conditional probabilities
for each effective can be calculated from the frequen-
cies at sites assigned to it. The log likelihood of the
observed sequence X = (x, x5 - - - X,,) is then Y log p(x,),
where p(x;) is the probability of the ith element cal-
culated using the conditional distribution of the effec-
tive to which it is assigned.

We describe an algorithm which may be used to
find all effectives up to a maximum length, MAX.

1. We begin with only - as an effective and calculate
the log likelihood as above.

2. L=1.

3. Find the increase in log likelihood obtained by
adding each subsequence of length L to the set of
effectives, E.

4. Add to E any subsequence for which the increase
is bigger than some prechosen limit ADD + L.

5. Find the drop in log likelihood obtained by drop-
ping each effective from E.

6. If the smallest such drop is smaller than a precho-
sen limit DROP + L, drop that effective from E

_ and go to 5. (We add L to ADD and DROP to allow
for the increase in number of available effectives
as L increases.) If the smallest drop is larger than
DROP+ L,L=L+ 1.

7. If L < MAX go to 3; otherwise STOP.

When this algorithm (with ADD = DROP = 2,
MAX L = 6) was applied to the human mitochondrial
DNA sequences only two effectives were found —— -
and the effective C of length 1. The increase in log
likelihood for this model as compared to the inde-
pendence model was —1172.8 — (—1179.6) = 6.8. This
has significance level less than 0.005 when compared
with a % xZ variable; some adjustment must be made
to allow for selecting the best of four effectives
of length 1. The conditional probabilities are as in
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TABLE 6
Markov models along DNA
Effective A C G No. of
occurrences
(i) iid model

. -30 .33 -11 -26 896
(i) Markov Model 1

. .31 .33 .13 -23 599

C .31 .33 .06 -30 297
(iii) Markov Model 11

. .30 -34 .13 .23 580

C .34 -26 -07 -33 187

CC -19 -39 -00 -42 54

ACC .29 -46 .11 .14 28

CCG -50 -00 -50 -00 4

GTA 1-00 -00 -00 -00 4

CCcccC -44 .44 .11 .11 16

TAAC .25 .67 .00 -08 12

TCAT -36 -00 .28 .36 11

Table 6. Clearly more T’s and fewer G’s tend to follow
C’s in the sequence. This is an example of pyrimidines
following each other.

When the algorithm was applied with a less con-
servative ADD = DROP = 0.5, the set of effectives
found is listed in Table 6.

The increase in log likelihood for this model as
compared to the independence model was —1141.9 —
(—1179.6) = 37.7, which has a nominal significance
level less than 0.005 when compared with a %2 x34
variable. The significance level is untrustworthy since
we searched over a huge class of possible effectives to
reach the final model. The first Markov model may
be more appropriate in this case.

7. REPLACEMENT- SITES AND SILENT SITES

In Figure 4, the pattern of substitutions between
human and gibbon is given in six strips. Each strip is
composed of blanks or circles (representing substitu-
tions) in columns of three; the first column corre-
sponds to sites 1, 2, 3, the second to 4, 5, 6 and so on.
It is evident that substitutions occur much more fre-
quently in the top row of the strips in the first part of
‘the data and in the bottom row in the later part of the
data.

The mitochondrial segment is composed of part of
an unidentified reading frame, URF4, coding for some
unidentified protein; three short segments of about 80
bp coding for transfer RNA for histidine, serine and
leucine; and part of an unidentified reading frame,
URFS5. From the genetic code for mitochondrial DNA,
the value of the site in the third position of the codon
may be either purine or pyrimidine without affecting
the amino acid coded for. A change from one purine
to the other or from one pyrimidine to the other is
said to be a transition; other changes are said to be

Shows human and gibbon
1ffer at site T
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F1G. 4. Sites where humans and gibbons differ. The 896 sites are
arranged in triplets. Circles mark the sites where humans and gibbons
differ. The three interior segments code for the transfer RNAs for
histidine, serine and leucine; note that the leucine transfer RNA has
only one site of change. The outer segments code for unidentified
proteins; the number of changes in the top row of the first segment
and the bottom row of the last is greater than in the other two rows
combined; these are the third codon changes. The only third codon
changes that cause a change in the protein coded for are indicated by
two filled circles; thus, third codon changes are nearly all silent.
Conversely almost all first and second codon changes affect the
protein.

transversions. Thus, a transition in the third position
has no effect on the protein: the third position is said
to be silent. (Even transversions have no effect in the
third position of 6 of the 20 codons.) Changes in the
other sites cause replacement of an amino acid in the
protein—these are said to be replacement sites. (The
code for nuclear DNA is slightly different and some
transitions in third position do effect the protein
translated to.)

Here the top row of the strip at the beginning of the
segment and the bottom row at the bottom are silent;

. the transfer RNAs appear in the middle of the seg-

ment; the last transfer RNA is significantly well-
conserved. Empirical evidence suggests treating silent
sites differently from the others—indeed, since they
do not affect the protein, they offer a selection-neutral
history of change.

8. MEASURES OF DISTANCE BETWEEN
SPECIES

Measures of distance between species are an impor-
tant first step in constructing evolutionary trees. Nu-
merous measures are proposed and we will use the
mitochondrial DNA data to examine the usefulness of
each.
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A simple measure of distance is the number of sites
at which the two species differ. These distances are
shown in Table 7 for the five hominoid species. The
chimpanzee and human seem closest, whereas the
gibbon appears quite different from each of the other
four species.

A synapomorphy exists when a pair of species has
the same value at a site differing from the ancestral
value at that site. It is usually necessary to infer the
ancestral value. A synapomorphy for two or more
species is taken as evidence that they have a common
ancestor differing from the ancestor for all species.
Consider two examples:

C Gi Go 0 H
1. C C T T T
2. T G A A T

Example 1 shows a synapomorphy between C and Gi,
T being taken as the ancestral value. Example 2 is
more complicated. We scored this as a synapomorphy
between C and H arguing that the distant Gi changed
from a G to an A for the group {C, Go, O, H} and later
C and H both substituted a T for A. In general in
dealing with 2 — 2 — 1 splits we assumed that the
gibbon is most distant followed by the orangutan and
assigned synapomorphies accordingly. These assump-
tions do not bias the comparison between C, H and
G. Such splits only occurred eight times. Table 8 shows
the number of synapomorphies between each pair of
species. Large values indicate closeness. Here oran-
gutan and gibbon seem close, but the chimpanzee
seems about equidistant from human and gorilla. This
picture is quite different from that obtained using raw
differences. :

Table 9 shows separate observed substitution rates

TABLE 7
Number of differences between species

H C Go 0 Gi

H 79 92 144 162

C 95 154 169

Go 150 169

0 ] 169
Gi

TABLE 8
Number of synapomorphies between species

H C Go 0 Gi

H 14 8 2 3

C 211 3 6

Go 6 9

(6] 28
Gi

TABLE 9
Observed substitutions
C Go (6] Gi

All (n = 896) :

H .09 .10 .16 .18

C 11 17 19

Go 17 19

(0] .19
Silent (n = 232)

H .23 24 .32 .36

C 27 .34 .39

Go .30 .37

(0] .40
Replacement (n = 465)

H .04 .05 11 13

C .05 A1 12

Go 13 13

(0] 12
Transfer (n = 198)

H .05 .06 .09 A1

C .07 11 12

Go .09 11

(0] .10

for silent, replacement and transfer sites. Clearly the
substitution rates for silent sites are much higher.
However, the rates are not proportional to the replace-
ment rates; silent sites show much smaller relative
distances between species. The distances calculated
using replacement and transfer sites are similar to one
another and lead to conclusions similar to those ar-
rived at by consideration of raw differences between
complete sequences.

The observed number of substitutions underesti-
mates the total number occurring between two species
since a series of substitutions at the same site produces
the same final effect as just one substitution. It is
therefore necessary to adjust the observed substitution
rates to allow for this possibility.

Let P be the matrix of transition probabilities be-
tween two species (P is a 4 X 4 matrix where, for
example, P,c is the probability of a C in the second
species given an A in the first). It is proposed to

. estimate the substitution rate by

r = =% log{det(P)}.
This choice can be justified as follows. Suppose
P=1]P,
where {P,} are infinitesimal transition matrices. Then

log{det(P)} = Y log{det(P.,)}.

Let P, = (P;;). Then

o 1+a,-j, l#],
Py = {aij, i #J,
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where the (a;;) are small. Hence,

det(P,) =~ 1 + a;; + az; + as3 + ay = — log{det(P,)}
= — (a1 + G + az3 + a44)
=1 —Pu)+ (1 —Py)+ (1 — Py3) + (1 — Py

4 .
= Y. P[change|i]
i=1

(where i is the value at start of increment o)

4
= Y P[change from i]/P(i).

i=1
So changes from i are weighted by 1/P(i). The average
value of 1/P(i) is 4 and so —% log{det(P,)} estimates
the number of changes in increment «, where a change
from i is weighted by 1/P(i). There is no assumption
that the infinitesimal transition matrices are the same
or that the process is stationary—in general —% log
det P estimates the total number of changes between
two species, with each change weighted inversely by
the probability of the base changed from.

Table 10 shows the distances calculated using this
measure. The distance from species A to B is not
necessarily equal to the distance from B to A. Here
they are very close and have been averaged. Again
silent sites show much higher substitution rates than
replacement or transfer sites although again relative
distances are smaller for silent sites. In some cases,
the determinant was negative. This may be inter-
preted to mean that so much change has occurred that
it is not possible to estimate distance. The estimated

TABLE 10
Estimated substitutions (log det)

C Go (0] Gi

All

H .10 12 .20 .23

C 13 21 24

Go 21 .23

(6] 24
Silent

H .66 17 91 1.26

C .87 1.47 @

Go 1.20 1.58

O a
Replaéement

H 04 .06 14 .15

C .05 14 .14

Go 17 .16

0 14
Transfer

H .05 .06 11 11

C .07 R 14 .14

Go 11 13

(6] A1

¢ Negative determinant.

number of substitutions is about three times the ob-
served number for the silent sites, and about the same
for the replacement sites. In all cases human-
chimpanzee are the closest pair but the differences
are not statistically significant. '

Felsenstein (1983) considers constant rate models
for the transition probabilities. Let @ = (g;;) be a 4 X
4 matrix where g;;8t, i # J, is the probability of state j
at time ¢t + 8¢t given state i at time ¢; g;; = —Y, ;= qij-
Then the transition matrix over a time period ¢, P,, is
given by

Po=e¥=1+Qt+%Q%*+ ...

In order to determine the expected number of substi-
tutions, it is necessary to assume that the process is
reversible, that is the transition matrix in going from
0 to t equals the transition matrix in going from
t to 0. Let m; be the stationary probabilities; then
¥ muq; = 0 and the process is reversible if and only
if m;q;; = myq;;.

Assume without loss of generality that the total
time elapsed between two species is t = 1, so that
P = 9. In this model we can estimate the substitution
rate as follows:

expected no. of substitutions in time 4t

4
2 m; 2 g;;ot

i=1 i

4
= — Y mig:dt.

i=1
Hence,
expected no. of substitutions between species

4
-Y X migidt

i=1 &t

4
- 2 miq;;.

i=1

Let H = (h;;) be the observed joint probability matrix
between two species. To calculate the above quantity
we first symmetrize the data by creating a symmetric
joint probability matrix H*,
h: = ‘/2(h,-j + hj,‘).

From H* we calculate m; and a transition matrix P.
Then

€ = log(P)
log(I — (I — P))
=—I—-P)—%(I—-P?*—4%I—-P>3—....

This series converges to @ if the eigenvalues of I — P
are less than one in absolute value.
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TABLE 11
Estimated substitutions at constant rate

C Go (0] Gi

All

H .10 11 .19 22

C . 12 21 .23

Go .20 .23

(6] .23
Silent

H .38 45 .67 .78

C .53 .80 a

Go .84 1.11

O a
Replacement

H .04 .05 12 .14

C .05 .13 13

Go 15 15
"0 14
Transfer

H .05 .06 .10 a1

C .07 13 14

Go .10 13

(0] 11
% No Q exists.

TABLE 12

Human-gibbon joint distribution

Gibbon
Human
A G T C
A .269 023 .003 .009
G 019 .085 .001 .002
T .008 .001 .203 .045
C .020 .006 042 .264

Table 11 shows these distances calculated for the
hominoid data. Here * means that the series defining
€ did not converge. The results are similar to those
obtained using —%4log{det(P)} as a measure of dis-
tance; however, the silent sites are estimated to be
50% further apart using —%log det P.

Table 12 shows the human-gibbon joint distribu-
tions. Clearly the symmetrization process has only a
small effect in this case.

9. CONSTRUCTING EVOLUTIONARY TREES

Consider the construction of an evolutionary tree
based on data from five species. A general tree struc-
ture appropriate to this case is shown in Figure 5.

The tree consists of eight nodes labeled 0 through
7. Nodes 0, 4, 5, 6 and 7 correspond to the five species
making up the available data. No direct data is avail-
able for nodes 1, 2 and 3.

There are N sites, and it is supposed that a sequence
of bases occurs for each node over the N sites. Each
base is one of four possible nucleotides: adenine, gua-
nine, cytosine, thymine.

4 5 6 7

Fi16. 5. Evolutionary tree for five species. The observed species are
at nodes 0, 4, 5, 6, 7. No data is available at internal nodes 1, 2, 3.

We make the following assumptions:

1. At each site, the eight bases at the eight nodes
are distributed identically as, and independently
of, sets of eight bases at the other sites.

2. At each site, the bases are distributed as a Mar-
kov process: given the base at an internal node,
the three sets of bases that remain connected
when the internal node is removed are distrib-
uted independently of each other. For example,
given the base at node 2, the bases at {0, 1, 3, 6,
7}, {4} and {5} are independent.

This model is more general than the one discussed
in Felsenstein (1983); there each link in the tree has
transition matrix P; = €%, where v; is a parameter
indicating length of link; here, P, is arbitrary.

For each species we have a sequence of length N
made up of the letters A, G, C and T. The five species
can be allocated to the end nodes (i.e., nodes 0, 4, 5, 6
and 7) in 15 different ways. We proceed by calculating
the likelihood for each of the resulting trees.

Write X, = {xi:i=1, 2, ..., N} for the sequence
at node k. Then the likelihood of the tree may be
written as

N
L= H Po(x0;) P1(%03, %1:)
i=1
X Po(x1;, %2))P3(%1i, %3:)Pal%ai, X47)
X Ps(x2:, %5)Pe(x3:, %e:)Prlxs:, x7ij’

where P;(x;, x,) is the probability that a site is x, at
node j given that it is x; at the beginning of the link
leading into node j. P, is the marginal probability at
node 0. (Node 0 is chosen as the root node, but any
node could be so chosen.)

The unknowns in the above expression for the like-
lihood are Po, Pl, Pz, ey P7, Xl, X2, X3. In handling
these unknowns two different approaches were
considered.

1. Most parsimonious likelihood. All the unknowns,
including the unknown values at internal nodes, are
estimated by maximum likelihood and the likelihood
of the tree calculated using these estimated values.
We call this technique most parsimonious because the
values of internal nodes are usually assigned to agree
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as much as possible with neighboring nodes. It is
therefore similar to the maximum parsimony fitting
techniques in which values are assigned to internal
nodes to minimize change between neighboring nodes
(Felsenstein, 1983). This technique is easier to apply
than the maximum average technique, but based on
Felsenstein (1983) we expect the estimates of the
transition matrices to be inconsistent as the number
of sites approaches infinity.

2. Maximum average likelihood. In this approach
we sum over the possible values of x;;, xs;, x3; before
taking products to get

N i
L =11 3 3 ¥ Po(xo) Pi(x0i, X1:) Pa(x1i, X2:) P3(%1;, X3:)

i=1 x; X3 Xig
X Py(%a:, %4;) Ps(%ai, %5:) Pe(%3i, %e:) Pr(%si, %7:).

In this expression only Py, P, Ps, - --, P; are left as
unknowns. These may be estimated by the values
which maximize L; and the likelihood of the tree is
taken to be the value of L, obtained using these
estimates.

It is desirable to associate a distance measuring
evolutionary change with each link in the tree.

It is clear how this should be done in the most
parsimonious likelihood case. We can write

L = LLL; --- Ly

where

N
Ly = l:[l Poy(x09),

N
L, = H Py (x0i, x13),
i=1

LZ’ L3’ Ct L7

We associate the distance —log L; with the link leading
into node j. These distances become bigger as the
conditional probabilities become more spread out in-
dicating more change along that link.

In the average likelihood case, the measure of dis-
tance used is —% log[det(P;)] where det(P;) is the
determinant of the transition probability matrix along
the link leading into node j.

The proposed probability model is not identifiable.
Consider the tree shown in Figure 5. Here nodes 0, 4,
5, 6 and 7 correspond to observed sequences. We can
relabel the bases A, C, G, T at position 1 and positions
2, 3 and change the link transition matrices accord-
ingly without changing the final likelihood. So, many
sets of transition matrices lead to the same likelihood.
If we insist that no change has higher conditional
probability than any particular change, the relabelling
of internal nodes will be prevented.

Neyman (1971) and Felsenstein (1981) have pro-
posed parametric forms for the transition probabilities

similarly.

P,, P,, --., P;. Felsenstein assumes that in a small
interval of time of length dt there is a probability udt
that the current base at the site is replaced. If a base
is replaced its replacement is A, C, G or T with
probabilities ;, 7z, 73 or 74. Let P;;(t) be the proba-
bility that a site which is initially in state i will be in
state j after t units of time have elapsed. The above
assumptions lead to

o e+ (1 — ey,
Pu(t) - {(1 — e_“t)1rj,

1=
L #J.

In our notation

_ e—kj + (1 —_ e_kj)Po(xZ), if X1 = X2,
Pj(xl’ x2) - {(1 — e_kj)Po(xz)’ if X1 # Xo.

P, is assumed known and Felsenstein estimates
ky, ks, ---, By by maximum likelihood. Neyman’s
model is essentially the same except that he suggests
Py(x,) = % for all x;.

Our model imposes no structure on the transition
probabilities—at a cost of 12 parameters for each link
instead of Felsenstein’s one.

10. THE ALGORITHMS

1. Most parsimonious likelihood case (MPL).
(i) Initialize X, by setting

t=1,2,.-.-.,N.
(ii) Initialize X, and X; by setting

X1 = mOde{xoi, Xaiy X5iy Xeiy x7i},

Xo; = mOde{xli, X4i, xsi},

X3i = mOde{xlh Xéiy x7i}’ i = 1, 29 Tty N'

(iii) Estimate P;(x,, x;) by the proportion of times
a transition from x, to x; occurs along the link leading
into node j. Estimate Py(x;) by the proportion of times
x, occurs in X,. Calculate the likelihood L.

(iv) Update X3, X; and X; by choosing

%2; to maximize Po(x1;, X2:) Py(%ai, %4) Ps(%2:, %5:),
%3; to maximize Ps(xy;, x3:) Pe(xsi, X6:)Pr(%3i, X7:),
x1; to maximize P;(xo;, %11 Pa(%x1:, %2:) P3(%1i, %3:).

(v) Estimate the probabilities as in (iii). Calculate,
the likelihood.

(vi) If the increase in likelihood is large enough,
repeat (iv) and (v). Otherwise stop.

2. Maximum average likelihood (MAL). The
expression defining L, is the probability of the ob-
served data. Write @,(xo, x;) for the joint probability
along the link leading into node 1. Similarly define
Q:, Qs, - - -, @7. Then we can write

N

L, = H Z Q1 (x0i, x)P(R; | x1)

i=1 x;
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where
P(R;|x1) = P(x4i, Xsi, Xei, X7: | %1)

= 2 Z Py(xy, x9)(Py(x2, x4)Ps(%2, x5;)

X9 X3
X Pi(xy, x3)Pg(x3, x6i)Pr(x3, x7;).

Since Y., Y., Qi(xo, x1) = 1, we choose @:(xo, x;) to
maximize

log L, + >\<1 - 2 2 Glxo, x1)>.
xg X1
Differentiating and setting equal to zero gives

_ 1§ Qulxo, x) P(R; | 1) {oi = o}
Q1(x0, x1) = A igl Y, Q1(x0, 21)P(R; | x1) s

3 ¥ @Qi(xo, x1) = 1 implies A = N.
We call

_1 S Qulxo, x1)P(R; | x1){xo: = %o}
A, 1) = N igl Yx; Q%o 21)P(R;| x1)

the updating equation for Q..

A similar calculation can be carried out for internal
links. Consider the link leading into node 2. We can
write

N
L, = I_Il 2 Z Qa(x1, x2) P(R; | 22) P(S; | x1),

where
P(R;| x2) = P(x4i, x5: | x2)
= Py(xs, x4)P5(x2, x5)
and
P(S; | x1) = P(x0:, Xe;, %7: | %1)
= P(xo; | x1) P(xei, x7: | %1)
— Q1 (xoi, x1)
2 Qi(xo, x1)
X ¥ Py(xy, %3) Pe(x3, %6:) Pa(x3, 27).

X3
Arguing as before the updating equation for Q(x;, x2)
is

Qo(x1, %)
l N Qz(xl, xz)P(Ri'xz)P(Si | 1)
N 51 3u Xs, Qax1, x2) PR | %) P(Si | x1)

Updating equations can also be derived for
Qs, Q4, - -+, Q7. The algorithm proceeds by starting
with some initial values for all the probabilities and
iterating through the sequence of updating equations
until the increase in likelihood is small.

11. A GENERAL TREE

Consider a tree formed from observations on S
species. Let N=1{0, 1, 2, ..., M} be the collection of
nodes in the tree, 0 corresponding to the root. Let
X = (xp1, Xp2, -+ -, xxy) be the sequence of node k.
We only consider trees for which X, is one of the
observed sequences.

The tree may be described by a function

7:N—- N

where 7(j) is the next node to j that is closer to the
root 0. Let E = {j: Ai € N with (i) =j} . E is the
set of end nodes in the tree. Let P; be the transition
matrix on the link joining 7(j) and j; P, is the marginal
probability of the root.

Assumptions 1 and 2 of Section 9 apply without
change to the general tree. The likelihood of the tree
may be written as

N M
L= H Po(x0:) H E(xf(j)i, xji)-
i=1 Jj=1

In this expression all the probabilities are unknown
as well as the sequences x; for which 2 & E. As in
Section 9 we can reduce the number of unknowns
considerably by summing over all x;; for which j ¢ E
to get

N M
Li=J Y Polxe) Il Pilx.pi xj0)-
i=1 {x;:k¢E]} j=1

In this expression only the probabilities are left as
unknowns.

An example may help to clarify the notation. Con-
sider the tree shown in Figure 6. Here N = {0, 1, 2, 3,
4,5,6,7,8.7(0)=0,7(1)=0,7(2) =1, 7(3) = 1,
74) = 7(6) = 2, 7(6) = +(7) = 3, 7(8) = 0.
E=1{0,4,5,6,7, 8} and

N
L= H Po(x0:) P10, %15)Pa(%1i, %20)Ps(x1:, X3:)
i=1

X Py(%0i, %45) Ps(%2:, %5:) Pe(xsi, %6:) P7(%3i, %7:) Ps(%0:, Xsi)

4 5 6 7 8

F16. 6. . The function 7 defined on 0, 1, 2, 3, 4, 5, 6, 1, 8 determines
the tree. Any function  with the property: «*i = i for k = 1 implies
i = 0, will produce a tree with root 0.
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and

N
L= I ¥ X X Po(xo:) P1(x0:, x1:) P21, 22:) Pa(1;, x3;)

i=1 xy; xp; x3;
X Py(%9;, %4:) Ps(%0;, %5:) Pe{%3:, X6:) Pr(%3:, %7:) Pa(%o:, %g:).

Maximization of L cdn be carried out by applying the
algorithm described in Section 10 to this case.
Maximization of L, is more difficult to describe. Let
Q: be the joint distribution on the link joining 7(j)
and j. If we remove this link from the tree we divide
the end nodes into two groups G;; and G.;, where G,;
comprises those connected to 7(j) and Gs; those con-
nected to j. We need to consider three cases:
1) 7(j)=0, j#O.
We can write

N
= [I ¥ Qj(xoi, %) P(Gy; | x;2)
i=1 xj;
where P(Gy; | x;) is the conditional probability of Gs;
given x;; here Gi; = .
Differentiating and setting equal to zero gives
13 Qj(xl’ x2)P(G2j |x2)

Qb m) = L5 o ) P(Gy |29 0 =™

as an updating equation for Q;(x;, x2).
(2) j€E€ E\0}.
Let & = 7(j). Then we can write

N
=1 ¥ Q;(xui;, %) P(Gy; | xii)-

=1 xp;
@. This leads to

- Q;(xl, x2)P(Glj | x1)
Qe 1) =5 & 50 e PGy 1) |

Here Gy; =

Xji = X}

as an updating equatlon for Q;(x:, x2).
(3) JEE,7(j)EE.
Let & = 7(j). Then we can write

N
L =11 Y ¥ Qj(xui, x)P(Gy; | x:) P(Gy; | x73),

i=1 Xji Xpi
leading to

Q’j(xl’ xz)
Qj(xla xz)P(Gl] ,xl)P(G2] | x2)
i=1 211 sz Qj(xl’ x2)P(G1; le)P(ng | x2)

as an updating equation for Q;(x:, x2).

The algorithm proceeds by starting with some initial
values for all the probabilities and iterating through
the sequence of updating equations until the increase
in likelihood is small.

When constructing trees from data on a large num-
ber of species the task of finding the optimal tree
topology becomes a major computational problem. For

MZ

the case of five species we can simply calculate the
likelihood of each of the 15 tree topologies and choose
the topology which produces the largest likelihood.
This approach becomes increasingly impractical, how-
ever, as the number of species grows. Edwards
and Cavalli-Sforza (1964) showed that the number
of unrooted bifurcating trees with n labeled tips
is (2n — 5)!/[(n — 3)! 2"73] which for as few as 10 tips
(i.e., species) is well over 2 million.

Felsenstein (1981) has described a less ambitious
strategy in which the tree is built up by successively
adding species to it starting with a two-species tree.
When the kth species is being added to the tree there
will be 2k — 5 links from which it could arise. Each of
these is tried and the maximum likelihood within the
resulting topology is evaluated using either of the
techniques described above. The placement yielding
the highest likelihood is chosen. Before the next spe-
cies is added local rearrangements are carried out in
the tree to see if any of these improves the likelihood
of the tree. If any does, the resulting tree is chosen
and the rearrangement process continues until a tree
is found which no local rearrangement can improve.
This strategy is not guaranteed to find the optimal
topology but is considerably shorter computationally
than complete search and, according to Felsenstein
(1981), works well in practice.

For our probability model in which different tran-
sition probabilities are possible on each link of the
tree, this procedure will be particularly easy to apply.
Consider the example in Figure 7.

Starting from the tree with nodes 0-7 suppose we
add a new species (node 9) by joining it to the link
between 1 and 3 at node 8.

1. MPL. The transition probabilities on lmks other
than that joining 1 and 3 should be little affected by
this addition so we could leave them fixed and confine
attention to the subtree made up of {1, 3, 8, 9}. Then
having calculated the estimates of x3 and the transi-
tion probabilities on links 1 — 8,8 — 3 and 8 — 9 we
can calculate the likelihood obtained by adding the

‘new species at this link. Similar calculations may be

carried out for the other links and the one leading to
the optimal likelihood chosen. As a final step the MPL
routine should be applied to the complete tree.

4 5 6 7

F1Gc. 7. Adding a new species to the tree. Species 9 may be added to
the tree within each of the seven links of the old tree.
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2. MAL. Before adding the new species the like- On adding the new species the likelihood becomes
lihood is N ‘
N Li=T1 ¥ Y T Qus(x1:, x8:) Po(%si, X0:) P3(si, %3:)

L= [l 2 X Qua(xu, x3)P(G1 | x1)P(Gz | x3:) =1 xy; xy; xy; .
i=1 x, x3
. . . e . X P(G1 | 21)P(Gz | x3:)
where @, ; is the joint probability on the link 1 — 3;
P(Gy | xi;) is the conditional probability of the end where Pj is the transition probability on link 8 — 3.

nodes connected to 1 given x;;; P(G; | x3;) is similarly Fixing P(G, | x,;) and P(G, | x3;) at their values from
defined. the smaller tree, we can iterate to find @, s, Py and Ps.
A CHIMP B CHIMP ¢ CHIMP
4 —-—--—-I-—- GIB MAN—-——-——-—J-— GOR MAN————J— ORAN
GOR —1— ORAN GIB ~J1-— ORAN GOR——GIB
E CHIMP F CHIMP ¢ iHIMP
ORAN —-r——-L- GOR ORAN —————L- MAN GOR —— GIB
MAN —i_ GIB GOR —— GIB MAN —1— ORAN
H CHIMP I CHIMP ’ J CHIMP
GOR —-—-—J-— ORAN GOR —-‘L—MAN GIB —-———J— GOR
MAN GIB GIB — ORAN MAN —L_.. ORAN
X CHIMP L CHIMP M GIB
GIB —--————L— ORAN GIB——-’W—?—L-MA.\’ CHIMP—W""—L— GOR
MAN 1. GOR GOR ~—2— ORAN MAN —-4— ORAN
N GIB 0 GIB D CHIMP
CHIMP —-——1— ORAN CHIMP ———-L- MAN ORAN —~---——l-— GIB
MAN —1-GOR GOR “LORAN GOR —*~ ORAN

F1G. 8. Possible evoluutionary trees for five species.
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;Ilh”ls gives a likelihood value for adding the new species
%o this particular link. Likelihood may be similarly
‘calculated for the other links and the one leading to
the largest likelihood chosen. As a final step the MAL
routine should be applied to the full tree.

12. DATA ANALYSIS

The above techniques were applied to the sequences
of mitochondrial DNA from chimpanzee, gibbon, go-
rilla, orangutan and human. The 15 different possible
trees are shown in Figure 8 together with the labeling
scheme that will be used to identify them.

Each technique was applied to the full sequence of
length 896 and the results are shown in Table 13. In
both cases trees I, N and B, in that order, were picked
out as most likely. These are the trees for which gibbon
and orangutan are together as well as two from chim-
panzee, gorilla and human. Tree I (the most likely
tree) has chimpanzee and man on the same branch.

In order to test the sensitivity of these results ran-
dom subsamples were generated, each site having
probability 0.5 of being included. The techniques were
applied to each set of subsequences to calculate the
likelihoods of trees I, N and B. The results are shown
in Table 14. The log likelihood differences show huge
variation among subsamples and the order I, N, B is
maintained in only three of the five subsamples for
MPL and four of the five subsamples for MAL. The
reason for this instability becomes apparent when we
examine the synapomorphy counts in Table 15, Six
synapomorphies separating chimpanzee-human from
the rest are transversions. If a good number of these
transversions appear in a subsample, then the like-
lihood of I versus N, B will be high. If a small number
appear it will be low.

Hence the separation in the likelihoods of the dif-
ferent trees is brought about in large part by what

TABLE 13
Log likelihoods for 15 possible trees using full sequences (n = 896)

Most parsimonious Mazximum average

likelihood likelihood
A —2653.4 " —2621.0
.B —2613.8 —2582.6
C —2658.7 —2628.7
D —2656.7 —2622.7
E —2663.9 —-2627.4
F —-2647.0 . —2611.4
G —2648.7 —2628.6
H -2657.3 —2633.5
I —2597.5 —2571.5
J —2662.5 —2635.5
K —-2660.9 —2625.5
L —2648.0 -2611.3
M —2653.4 -2630.2
N —2609.0 —2580.5
(0] —2655.9 -2626.3

TABLE 14
Log likelihood for trees I, N and B using random subsequences

Tree I Tree N Tree B
Most parsimonious likelihood A
n =484 —-1382.5 -1392.5 —-1393.5
n = 458 —1334.3 —-1328.2 -1333.2
n =454 —-1297.7 —1298.7 -1303.3
n =449 —1323.3 —1328.2 -1335.3
n =428 -1195.3 —-1199.7 —1198.9
Mazximum average likelihood
n =484 -1369.7 —13774 —1378.9
n = 458 -1320.3 —-1316.1 -1320.3
n =454 —1285.4 —1287.3 —1289.1
n =449 —1308.8 —1315.3 —1317.2
n =423 —1182.7 —1184.0 —-1187.4
TABLE 15
Synapomorphy counts
Transitions Transversions
C Go 0 Gi C Go (] Gi
H 8 7 2 3 6 0 0 0
C 11 1 5 0 0 1
Go 6 9 0 0
(0] 24 4

happens at the few sites where synapomorphies occur.
If these sites are not included in a subsample, the
whole picture changes.

We saw earlier that substitution rates for silent
sites were much higher than those for replacement
sites. It may be that the probability structure for silent
sites differs from that for replacement sites. To test
this we fit separate models to silent and replacement
sites. The results are shown in Table 16. Based on
total likelihood values the best fitting tree is again
tree I. For both techniques the new model has an extra
87 parameters—3 marginal probabilities plus 7 X 12
conditional probabilities. For MPL the likelihood in-
crease for tree I is —2436.9 — (—2597.5) = 160.6 and

for MAL the increase is —2411.5 — (—2571.5) = 160.0,

both of which are highly significant when compared
with the values in a ¥2x ; table. Hence separate models
for silent and replacement sites leads to a significant
improvement in the fit. .

One of the referees points out that the models have
a rather large number of parameters; MAL has 87
parameters for the full data set and 174 for the silent
and replacement sites treated separately. The data
here consists of the joint distribution of nucleotides
at five end nodes, making 4° = 1024 counts in all; the
sum of these 1024 counts is 896. Certainly this is a
sparse table, since most counts occur in the four no
change cells of the tables; and certainly we would not
want to believe that the likelihood increase can be
accurately evaluated by Yax3;.
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TABLE 16
Log likelihoods for silent and replacement sites for each tree

MPL MAL
Silent Replacement Total Silent Replacement Total
A —858.0 -1632.9 —2490.9 —841.4 -1626.1 —2467.5
B —868.2 -1582.6 —2450.8 —839.7 -1573.8 —2413.5
C —-861.5 —1639.9 —2498.4 —840.6 —1630.5 —-2471.1
D -862.9 -1631.7 —2494.6 -839.9 -1627.2 —2467.1
E —869.0 —1626.4 —2495.4 —841.4 —-1622.6 —2464.0
F —864.4 -1623.9 —2488.3 -835.3 -1619.9 —2455.2
G —860.6 -1632.0 —2492.6 —843.4 —-1629.3 —2472.7
H —867.1 —1636.5 —2503.6 —841.9 —1634.6 —2476.5
I —854.4 -1582.5 —2406.9 -834.5 ~1577.0 -2411.5
d —867.7 —1625.7 —2493.4 —843.2 —-1622.1 —2465.3
K —865.0 —1635.0 —2500.0 —840.9 —1630.6 —-2471.5
L -861.9 -1623.5 —2485.4 -835.3 -1618.9 —2454.2
M —865.3 —1635.8 —-2501.1 —843.5 —1629.3 —2472.8
N -855.8 -1590.4 —2446.2 -836.7 -1580.7 —-24174
0 —864.7 —1636.3 —2501.2 —840.7 —1629.7 —2470.4
For the split model the log likelihood differences

among the trees I, N and B are considerably smaller

than those obtained previously. Thus using MAL with 20

the split model leads to a rather uncertain discrimi-

nation among trees I, N and B.

The results for the replacement sites are largely in 1o

agreement with those for the full sequence. However, Yk Onanavhon

the results for the silent sites are markedly different. o chimp *

Using MPL on silent sites, the range of log likelihood Homan

values obtained was —854.4 — (—869.0) = 14.6, while Peycent Gubbon

for replacement sites the range was —1582.5 — substitutions

(—1636.9) = 54.4. Using MAL the difference was even estmated All sstes R9}"'3“*""‘“* Silent

more marked: for silent sites —834.5 — (—843.5) = 9.0 sites sites

and for replacement sites —1573.8 — (—1634.6) = 60.8.

Thus replacement sites serve better to discriminate
among the various trees. There are so many changes
in the silent sites that they don’t offer much discrim-
ination between close species.

Replacement sites favor B (chimpanzee-gorilla)
over I (chimpanzee-human); silent sites do the oppo-
site. The overall likelihoods favor chimpanzee—human
slightly, but the results are still within the fuzz of
statistical error.

Figure 9 shows the estimated link lengths in the

"MAL case for tree 1. The distances for silent sites are
huge due to the relatively large substitution rates at
these sites. The replacement sites point to H, C and
Go having a common ancestor, while for the combined
data the distance between the ancestor of C and H
and that of Go is only 0.01, highlighting the uncer-
tainty, about which tree is best for describing the
relationship among C, H and Go. All trees show 0 and
Gi well separated from C, H and Go. All trees suggest
asynchronous evolution, with more evolution in the
gorilla line than the human-chimpanzee line.

We need more data to decide the tree for chimpan-
zee, human and gorilla. It would be good to avoid the

F16.9. Estimated substitutions. The transition matrices within each
link of the tree are estimated to maximize the average likelihood, and
the proportion of substitutions in each link is estimated by —Vs log
det of the transition matrix. The estimated substitutions for a stlent
site are about ten times those for replacement sites. There is
only slight evidence, mostly from silent sites, favoring the human-
chimpanzee branch. In every case, asynchronous evolution is
strongly suggested.

many parameters produced by a different transition
matrix on every link, by plausible assumptions such
as Felsenstein’s (1983); but in principle, and certainly
for large trees, the more general model should be one
of the candidates. Finally, there is the lurking problem
of dependency along the sequence; some kind of joint
model predicting the value at a position based on its
neighbors in the tree and along the sequence is needed.
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Comment

Stephen Portnoy

I wish to thank the authors for bringing some im-
portant statistical problems in molecular evolution to
the attention of statisticians. This is an area which
generates a large number of statistical modeling
problems requiring a very delicate balance between
sufficient complexity to explain the phenomena and
sufficient simplicity to carry out statistical inference.
I particularly appreciate the authors’ development of
Markovian models for the occurrence of specific base
pairs along the DNA molecule. The notion of an
“effective” sequence should have important conse-
quences. I would suggest, however, that since effec-
tives are most likely generated by biochemical causes,
they may be constant over very wide ranges of orga-
nisms. Thus it may be possible to pool all (or very
large parts of) the DNA sequence data to search for
effectives. With a sufficiently large data set, it should
be possible to fit arbitrary kth order Markov models
(for k = 4 or 5) against which one could legitimately
test whether or not a particular sequence is effective.
Once a set of reasonably short effective sequences is
found, it should be possible to build more appropriate
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models to analyze molecular evolution among species.

I do have a few technical quibbles about parts of the
paper. First I am bothered by the use of the F distri-
bution for analyzing the evolutionary distance mea-
sures in Section 2. It seems that the model underlying
the analysis represents each distance as the sum of
fixed parameters plus a (putative) iid normal error.
Although the F tests possess some robustness, I believe
such a model may be entirely inappropriate. Random
variation occurring along each link in the tree could

.produce very high correlations between distances for

closely related species. Clearly, the distance measures
are based on data most reasonably modeled as a (Mar-
kovian) process occurring along the tree. The depend-
ence in such a model could completely invalidate the
F distribution. This type of problem was first brought
to my attention by some colleagues here at the Uni-
versity of Illinois. A referee of a paper they had written
noticed just this problem in a very closely related
situation. I found the development and analysis of
appropriate statistical models to be extremely inter-
esting research (see Ferris, Portnoy and Whitt, 1979).

One other quibble is the use of x? approximations
in large, sparse situations. I would suggest that such
results need to be justified by appropriate asymptotics
(e.g., see Morris, 1975).



