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The annual and seasonal trend analysis of different surface temperature parameters (average, maximum,
minimum and diurnal temperature range) has been done for historical (1971–2005) and future periods
(2011–2099) in the middle catchment of Sutlej river basin, India. The future time series of temperature
data has been generated through statistical downscaling from large scale predictors of CGCM3 and
HadCM3 models under A2 scenario. Modified Mann–Kendall test and Cumulative Sum (CUSUM) chart
have been used for detecting trend and sequential shift in time series of temperature parameters. The
results of annual trend analysis for period of 1971–2005 show increasing as well as decreasing trends
in average (TMean), maximum (TMax), minimum (TMin) temperature and increasing trends in Diurnal
Temperature Range (DTR) at different stations. But the annual trend analysis of downscaled data has
revealed statistically significant (95% confidence level) rising trends in TMean, TMax, TMin and falling trend
in DTR for the period 2011–2099. The decreasing trend in DTR is due to higher rate of increase in TMin

compared to TMax.

1. Introduction

The Himalayan mountain range consists of the
youngest and loftiest mountain chains in the world.
It stretches over 3000 km from the Pamir in west
to the Purvanchal in east and is arcuate in shape.
It covers a vast area of ∼750,000 km2 that mainly
consists of northern Pakistan, Nepal, Bhutan and
the northwestern and northeastern states of India.
The region is characterized by a variety of cli-
matic conditions varying from tropical to polar.
The Himalayan glaciers, the source of many major
river systems (Indus, Ganga, Brahmaputra) are
exposed to climate change as snow accumulation
and snowmelt processes are greatly dependent on

temperature and precipitation (Immerzeel et al.
2010). This region has been described as a hot spot
of climate change because of the fact that perturba-
tion occurring due to increased temperature have
shown greater impacts on hydrologic system here
than elsewhere in the world (Kulkarni et al. 2013).

The studies of Intergovernmental Panel on
Climate Change (IPCC) have revealed rise in sur-
face mean annual temperature over Himalayan
region in the 20th century (IPCC 2007). The warm-
ing rate has been found higher than the global
average (0.74◦C±0.18/100 year). It is not uniform
either spatially or temporally over the Himalayan
region. A positive relationship between altitude and
warming rate has been observed over the Greater
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Himalayan region (New et al. 2002). Shrestha
et al. (1999) have also analyzed maximum tem-
perature data from 49 stations in Nepal for the
period 1971–1994. Further, this study has revealed
increase in trend of mean maximum temperature
in most of the Middle Mountain and Himalayan
regions ranging from 0.06◦C/year to 0.12◦C/year,
whereas this has been found less than 0.03◦C/year
in Terai (southern plains) regions. Similar patterns
in warming have also been reported over Indian
Himalayan region (Borgaonkar et al. 1996; Sharma
et al. 2000). A rise of about 1.6◦C in mean annual
temperature over northwestern Himalayan region
by the end of last century has also been reported
by Bhutiyani et al. (2007). This rapid warming
has accelerated rate of retreat in the Himalayan
glaciers. It is predicted that at this present rate of
retreat, glaciers in the region will vanish within 40
years and the flow of Himalayan rivers will reduce
drastically, resulting in widespread water shortages
(WWF Nepal Program 2005).

The energy exchange processes over the earth’s
surface can be explained precisely through surface
temperature. So, it is considered as an important
signal of state of climate (Bhutiyani et al. 2007).
The historical records as well as modelled values
of temperature can be used to evaluate the pat-
terns of behaviour that the climate has exhibited
in the past and will show in the future in order
to determine whether recent climate behaviours
are normal or anomalous (Xu et al. 2008). A
proper assessment of likely future temperature and
its variability is to be made for various climate
scenarios so that its impact on hydrological pro-
cesses and water resources can be studied (Anandhi
et al. 2009). The future time series of temperature
data can be generated from Global Climate Models
(GCMs). However, GCM simulations offer informa-
tion at coarse spatial resolution and direct appli-
cations of their outputs in climate change impact
studies at regional and local scales have shown
poor results. An alternative option is to downscale
GCM’s climate output. In downscaling, large-scale
climate information are applied to predict local
metrological conditions (Maurer and Hidalgo 2008;
Wilby and Dawson 2013). The techniques of down-
scaling are grouped into two categories; dynamical
and statistical (Ghosh 2010).

In statistical downscaling (SD), a statistical/
empirical relationship is established between GCMs
simulated large scale atmospheric variables (pre-
dictors) such as specific humidity, temperature,
geo-potential height, etc., with station (local)-
scale meteorological variables (predictands) such as
temperature and precipitation (Kim et al. 1984).
Based on these statistical/empirical relationships,
local scale predictands such as temperature can
be downscaled at specific site or station. SD has

shown advantage over dynamical downscaling (DD)
approach as it is faster and simpler in use, less com-
putationally expensive and applicable for uncer-
tainty and risk analyses (Wilby et al. 2000; Yarnal
et al. 2001). However, the requirement of long time
series of historical weather stations data is a serious
drawback of this approach (Mahmood and Babel
2013). SD approach has been classified into three
subcategories; weather typing, weather generator,
and regression/transform function. The strength
and weakness of each approach has been reviewed
in more detail by various authors (Hewitson and
Crane 1996; Wilby and Wigley 1997; Wilby et al.
2002; Fowler et al. 2007).

A limited number of studies on temperature
trends has been performed over the Indus basin
particularly in the Sutlej basin. This has been
attributed to inaccessibility and scarcity of
well distributed meteorological stations and non-
availability of past records of temperature data in
the basin. The basin is sensitive to climate change
and increase in mean annual temperature has been
found in lower and middle elevation ranges of the
basin (Jain et al. 2009). It has been concluded
from the studies that future increase in temper-
ature would bring significant change in seasonal
distribution of stream flow. Reductions in stream
flow have been expected in summer season and
increase in spring season. The decrease in stream
flow during summer season may have repercus-
sions on water supply, irrigation, and hydropower
production in the basin. However, studies on
recent temperature trends over the region are still
lacking.

The increased regional significance of Sutlej river
basin has motivated the present study. The main
objectives of the study are: (1) to analyze tempo-
ral and spatial trends in average (TMean), maximum
(TMax), minimum (TMin) temperature, and Diurnal
Temperature Range (DTR) from 1971–2005 (his-
torical) and 2011–2099 (future period) in a part of
Sutlej river basin (NW Himalayan region), India;
(2) statistical downscaling and future projection
of TMax and TMin from predictors of third gene-
ration Canadian Coupled Global Climate Model
(CGCM3) and Hadley Centre Coupled Model,
version 3 (HadCM3) under A2 scenario; (3) to
quantify shift in thermal regime and discuss feasi-
ble causes of variation in TMean, TMax, TMin, and
DTR. The remaining part of this paper has been
arranged as follows: geographical settings have
been described and shown in section 2. The types
of data and their sources have been discussed in
section 3. Methodology has been elaborated in
section 4. Results have been shown in section 5.
Finally, discussion of the results and conclusion
drawn from this study have been presented in
section 6.
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2. Geographical settings

The study has been carried out in middle part
of the Sutlej river basin. It is confined to the
hilly state of Himachal Pradesh, India. The state
shares its boundary with four Indian states namely,
Jammu and Kashmir from north, Punjab from
west, Haryana from south, Uttarakhand from
south-east and has international border with China
(Tibet). It has covered parts of Simla, Kullu,
Mandi, Bilaspur, and Solan districts of Himachal
Pradesh. This has a spread of 2457 km2 and lies
between 31◦05′00′′ and 31◦39′26′′N latitudes and
76◦51′11′′ and 77◦45′17′′E longitudes (figure 1).
The altitude in the basin ranges between 502 and
5128 m. The elevation and slope aspects control
temperature and also have strong impact on spa-
tial and temporal distribution of precipitation in a
mountainous region.

The major characteristics of prevailed climate in
the basin have been illustrated in figure 2. The
mean annual temperature and precipitation have
been recorded as 21.23◦C and 103 cm respectively.
The mean monthly TMax varies between 18.59◦ and

35.77◦C and mean annual TMax is 28.26◦C. The
mean monthly TMin ranges from 4.26◦ to 22.81◦C.
Sometimes temperature below 1◦C is recorded in
the study region. The hottest months are May and
June with mean TMax of around 35.5◦C. December
and January are the coldest months with mean
TMin of around 4.5◦C and 5.5◦C. The diurnal

Figure 2. Climatic characteristics prevailed in the study
area.

Figure 1. Location map of the study area.
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difference (on annual basis) between the TMin and
TMax is in the range of 4.5◦–16◦C.

The identified hydropower potential in this basin
is 9226.75 MW. The major hydropower projects
installed on the Sutlej river within the study area
are Sunni Dam Project of 1080 MW, Rampur
Hydroelectric Power Project (RHEP) of 412 MW,
and Nathpa Jhakari Hydro-electric Power Project
(NJHEP) of 1500 MW. They contribute to the
economy of India by supplying water and electricity
for agriculture and to various industrial sectors in
the states of Himachal Pradesh, Punjab, Haryana
and Rajasthan. Change in future climate will alter
patterns of flow in river and could further affect
water resources and hydroelectric power produc-
tion. Therefore, the present study will provide
useful insight to devise a better strategy for the
management of water resources in the Sutlej basin.

3. Datasets description

3.1 Data availability and sources

The meteorological data used in the present study
are: (1) long-term observed time series of TMean,
TMax, TMin, and DTR data. TMean is average of TMax

and TMin and DTR is derived by subtracting TMin

from TMax data; (2) the observed large scale predictors
of National Centre for Environmental Prediction/
National Centre for Atmospheric Research (NCEP/
NCAR) reanalysis datasets; and (3) the modelled
predictors of third-generation Canadian Coupled
Global Climate Model (CGCM3) and Hadley Centre
Coupled Model, version 3 (HadCM3) under A2 sce-
nario. The selection of CGCM3 and HadCM3 is
made on the basis of literature review and avai-
lability of data in SDSM compatible format. Fur-
ther, these two models have been extensively used
in statistical downscaling of climate variables over
Indian subcontinent (Anandhi et al. 2008, 2009;
Meenu et al. 2012; Mahmood and Babel 2013;
Srinivas et al. 2013).

The observed records of daily TMax and TMin

have been collected for three hydro-meteorological
stations namely Kasol, Sunni, and Rampur from
Bhakra Beas Management Board (BBMB). The
details of stations have been described in table 1.
The gridded predictor variables of NCEP/NCAR,

CGCM3 and HadCM3 for the nearest grid in study
area have been directly downloaded from the web-
sites of Data Access Integration (DAI) (http://loki.
qc.ec.gc.ca/DAI/predictors-e.html) and Canadian
Climate Impacts Scenarios (CCIS) (http://www.
cics.uvic.ca/scenarios/index.cgi) respectively. The
predictors are simulated under historical GHG and
aerosol concentration experiment (20C3M) as well
as Special Report on Emission Scenarios (SRES)
A2 for future run for CGCM3 model and HadCM3
model, respectively. A2 emission scenario repre-
sents a heterogeneous world characterized by high
concentration of CO2 (850 ppm) gas and region-
ally oriented economic development. There is a
probability of the highest rise in temperature com-
pared with other scenarios. This is considered as
the worst among the entire scenarios. The study
has been performed to observe plausible future
change in patterns of various temperature param-
eters under highest concentration of CO2 in the
atmosphere.

The NCEP/NCAR reanalysis datasets are avail-
able on grid spacing of 1.9◦ latitude × 1.9◦ lon-
gitude whereas CGCM3 and HadCM3 modelled
predictors (under A2 scenario) are available on
grid resolution 3.75◦ latitude × 3.75◦ longitude
and 2.5◦ latitude ×3.75◦ longitude respectively.
The NCEP/NCAR reanalysis predictors have to
be re-gridded to conform to the grid-spacing of
CGCM3 and HadCM3 models. The re-gridded
and standardized predictors are supplied within
the zip file. The predictor variables are available
for period 1961–2100 for CGCM-3 model, 1961–
2099 for HadCM3 model and 1961–2001/2003 for
NCEP/NCAR respectively. All the predictor vari-
ables are available on daily time step and these
have been normalized over 1961–1990 period.

3.2 Validation and screening of observed data

These stations are installed at an altitude of
varying height and physiographic conditions. The
minimum linear distance between two nearest sta-
tions is approximately 25 km and maximum 72 km
respectively. The limitations of well distributed sta-
tions within study area has necessitated performing
homogeneity test with data of individual stations
and other stations in order to ensure spatial and

Table 1. Location details of the stations considered for the study in Sutlej basin.

Average annual Standard Coefficient of

Elevation temperature (◦C) deviation (◦C) variance (◦C)

Station Latitude Longitude (m) TMax TMin TMax TMin TMax TMin

Kasol (1970–2005) 31◦21′25′′ 76◦52′42′′ 662 28.55 16.79 0.90 0.57 0.03 0.03

Sunni (1970–2005) 31◦14′15′′ 77◦06′30′′ 655 29.02 12.27 1.05 1.02 0.03 0.08

Rampur (1970–2005) 31◦27′15′′ 77◦38′40′′ 976 27.17 13.66 1.22 0.53 0.04 0.03

http://loki.qc.ec.gc.ca/DAI/predictors-e.html
http://loki.qc.ec.gc.ca/DAI/predictors-e.html
http://www.cics.uvic.ca/scenarios/index.cgi
http://www.cics.uvic.ca/scenarios/index.cgi
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temporal compatibility in observations (Mutreja
1986; van der Made 1987). This has been done by
adopting established meteorological techniques like
double mass-curves, simple linear correlation and
regression analyses (Bhutiyani et al. 2009). The
plotted graphs of double mass-curves performed
for the three stations with each other have shown
straight lines (figure 3). This reveals high temporal
and spatial uniformity in the interannual variabi-
lity of temperature parameters at all three stations.
Further, these results are supported by positive
bivariate correlations (statistically significant at
95% confidence level) in linear regressions. Thus,
the data has been found to be of reasonably high
quality and used in investigating long-term trends
in different surface temperature parameters in mid-
dle catchment of the Sutlej river basin, India. For
the analysis, daily values of TMean, TMax, TMin and
DTR are summed to obtain annual and seasonal
values at each station.

The monthly data series of observed TMean,
TMax, TMin and DTR have been inspected at each
station for all the years. The Grubbs method has
been used for detecting outliers (Grubbs 1969).
The suspicious values have been removed and
replaced by normal ratio methods. Besides, to
confirm whether the recorded values are out-
liers or true events, regression through the origin
has been performed. The standardized tempera-
ture indices (STI) for different temperature data
(TMean, TMax, TMin and DTR) have been derived by

subtracting their mean and dividing by their stan-
dard deviation averaged over the period 1971–2005
from the time series (Pant and Rupa Kumar 1997).
In this way, annual and seasonal STI of TMean,
TMax, TMin and DTR have been computed for all
three stations.

4. Methodology

4.1 Nonparametric test methods

Parametric, nonparametric, Bayesian, time series,
and nonparametric with resampling approaches are
generally used for performing trend analysis over
time series data. In literature, the strength and
weakness of each method has been discussed in
detail (Sonali and Kumar 2013). The two non-
parametric test methods; modified Mann–Kendall
(MK) test and Cumulative Sum (CUSUM) chart
have been used for detecting trend and sequential
shift in time series of TMax and TMin in the study
region.

4.1.1 Mann–Kendall (MK) test

MK test is a nonparametric rank based test and has
been used widely for analyzing trend in hydrologic
and climatologic variables (Mann 1945). It has an
advantage over other tests as it is distribution-
free and robust against outliers (Hess et al. 2001).
It assumes that the time series under research

Figure 3. Homogeneity test of observed time series data (TMax and TMin) using double mass-curves method.
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are stable, independent, and random with equal
probability distribution (Zhang et al. 2005).

In MK test, null hypothesis (H0) of no trend
is checked with the alternative hypothesis (Hi) of
increasing or decreasing trend. The S statistics of
MK test is defined as (Mann 1945; Kendall 1975):

S =
n−1
∑

i=1

n
∑

j=i+1

sgn(xj − xi), (1)

where n is the number of data points, xj is the
observed value at time j and xi is the observed
value at time i. The value of sgn(xj − xi) is
computed as shown in equation 2:

sgn(xj − xi) =

{

+1, (xj − xi) > 0
0, (xj − xi) = 0

−1, (xj − xi) < 0
. (2)

For samples (n ≥ 10), MK test is conducted
using a normal distribution and variance of S
statistic is defined by:

Var(S) =

n(n− 1)(2n + 5)

−∑n

i=1 ti(i)(i − 1)(2i + 5)

18
(3)

in which ti denotes the number of ties to extent i.
The test statistic Z is estimated as:

Z =

⎧

⎪

⎨

⎪

⎩

S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
. (4)

H0 is rejected at α level of significance in a two-
sided test if the value of |Z| is greater than Zα/2

(Xu et al. 2008). The statistical interpretation of
the rejection of H0 at given α level of significance
implies that a probability α trend is falsely iden-
tified. The significance level is taken as a criterion
in hypothesis testing for rejection of H0. The level
of significance is a subjective issue and has been
found between 1% and 10% level (mostly 5% level)
in several research studies (Patra et al. 2012). In
this study, H0 is tested at 5% level of significance
(Z0.025=1.96).

MK test is applied to uncorrelated data because
presence of serial correlation may increase or
decrease probability of detecting significant trends
(Helsel and Hirsch 1992; Kulkarni and von Storch
1995; Yue et al. 2002; Yue and Wang 2002; Yue and
Pilon 2003). In case of serial correlation, correlation
is computed between one time series and the same
series lagged by one or more time units. The serial
correlation coefficient (ρk) which describes corre-
lation between time series xi (i = 1, 2, . . . , n− k)
of first (n − k) observations and last (n − k)

observations, i.e., xi+k (k = 2, 3, . . . , n) is derived
from the equation (5):

ρk =

∑n−k

i=1 (xi − xi) (xi + k − xi + k)
⎛

⎜

⎝

[

∑n−k

i=1 (xi − xi)
2
]1/2

×
[

∑n−k

i=1 (xi + k − xi + k)
2
]1/2

⎞

⎟

⎠

(5)

where x̄i is the mean of first (n − k) observations
and x̄i+k is the mean of last (n − k) observations.
Generally, correlation coefficient lagged by 1 day
(lag-1) is used for detecting serial correlation struc-
ture within time series as physical systems depen-
dence on past values is likely to be strongest for
the most recent past (Cunderlik and Burn 2004).
The null hypothesis (H0: ρ1 = 0) of serial inde-
pendence is tested against alternative hypothesis
(Hi : |ρ1| > 0) using equation (6):

t = |ρ1|
√

n− 2

1− ρ1
(6)

where test statistic t has a Student’s t-distribution
with n–2 degrees of freedom. If |t| > tα/2, the null
hypothesis about serial independence is rejected at
significance level α.

Pre-whitening is being used for detecting a trend
in a time series in the presence of serial correla-
tion (Cunderlik and Burn 2002). Nonetheless, pre-
whitening is stated to reduce the rate of detection
of significant trend in the MK test (Yue et al. 2002).
To take this into account, Hamed and Rao (1998)
proposed a modified MK test for serially correlated
data based on a correction of the variance (S) for
the effective number of observations. The corrected
variance (S) is given by:

Var(S) =
[n(n− 1)(2n + 5)]

18

n

n∗
(7)

where

n

n∗
= 1 +

2

n(n− 1)(n − 2)

×
n−1
∑

i=1

(n− k)(n− k − 1)(n − k − 2)ρk

n* stands for the effective number of observa-
tions to account for autocorrelation in the data,
whereas ρk is the serial correlation between ranks
of the observations for lag-k respectively. In the
present study, modified MK test method has been
employed for detection of trends in STIs.

4.1.2 Sen’s slope method

Sen’s slope method is used to compute magnitude
of trend line. This is defined as the median of all
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combination of data pairs for the whole dataset.
It is given as follows (Sen 1968):

Q = Median

(

xj − xi

j − i

)

for i = 1, 2, . . . ., n (8)

where xi and xj are data values at time i and j
respectively. Q is an estimate of the trend mag-
nitude. Positive value of Q indicates an upward
(increasing) trend and negative value ofQ indicates
a downward (decreasing) trend in time series.

4.1.3 Cumulative Sum (CUSUM) chart

The CUSUM chart introduced by Page (1961) is
a nonparametric test based technique and is used
to study sequential changes in one or more vari-
ables. It is cumulative sum of the deviations of
a time series about a target value (mean of time
series) (Mansell 1997). The CUSUM is widely used
because of its ability to detect unusual patterns,
simplicity and better graphical representation of
results (Sonali and Kumar 2013). Kattel and Yao
(2013) have described procedures for constructing
CUSUM charts. Let us consider x samples, each
of n size with mean µ0 and standard deviation σ.
Then, cumulative sum of deviation (Si) from target
value (mean) is calculated such as:

Si =

i
∑

j=1

(xj − µ0) (9)

where xj is the mean of jth sample. The Upper
Control Limit (UCL) and Lower Control Limit
(LUC) of the CUSUM chart is defined by a statis-
tical parameter H (decision interval) which should
not exceed five times of sample standard deviation.
The shift in mean is detected in CUSUM chart
by reference or allowable value (k). It is selected
as halfway between target µ0 and shift of mean
(xj − µ0). In this study, limits of UCL and LCL
have been estimated between ±2*σ and k = 0.5,
respectively.

4.2 Statistical downscaling model (SDSM)

Statistical downscaling model (SDSM) is a com-
bination of Multiple Regressions (MLR) and
Stochastic Weather Generator (SWG) based down-
scaling methods (Wilby et al. 2002). SDSM has
shown advantage over other statistical downscaling
approaches such as weather generators and weather
typing because of its better ability in describing
interannual variability. It has widely been used
throughout the world to downscale single-site sce-
narios of daily surface weather variables from pre-
dictors of GCMs for assessing hydrologic responses

in climate change scenarios (Dibike and Coulibaly
2005; Gagnon et al. 2005; Aherne et al. 2008; Com-
balicer et al. 2010; Huang et al. 2011; Goyal et al.
2012). A couple of studies, one by Meenu et al.
(2012) and another by Mahmood and Babel (2013)
have been conducted using SDSM in Indian sub-
continent. They have downscaled daily TMax,
TMin and precipitation (PCP) from predictors of
HadCM3 under A2 and B2 scenarios to access
hydrological impacts of climate change in Tunga-
Bhadra river basin, India and in Jhelum basin,
Pakistan respectively.

In SDSM, the generation of station scale
weather parameters is linearly conditioned by
observed large scale predictors of atmosphere (j =
1, 2, . . . , n). In case of unconditional process like
temperature, a direct linear relationship is estab-
lished between the predictand Ui and selected
NCEP/NCAR predictors Xij on individual station
such as:

Ui = γ0 +
n
∑

j=1

γj Xij + ε1 (10)

where Ui is temperature on day i andXij is selected
NCEP/NCAR predictors on day i. γj are regression
coefficients estimated for each month using least-
squares regression and ε1 is a model error. It is
generated stochastically using a series of serially
independent Gaussian numbers and is added to the
deterministic components on daily basis.

The relevant predictors are selected based on
explained variance, correlation analysis, partial
correlation analysis, and scatter plots. The physical
sensitivity between selected predictors and predic-
tands has also been taken into account for the sta-
tion (Khan et al. 2006). Monthly percentages of
explained variance demonstrate the capability of
a given predictor to give details of local climate
variability (Gagnon et al. 2005). In the present
work, the model has been structured as monthly
model for downscaling of TMax and TMin. This
derives 12 regression equations between predictors
and observed TMax and TMin for each station, one
for each month. After establishing the model, the
daily data of NCEP/NCAR and GCMs is implied
to generate current and future daily weather series
(Wilby et al. 2002; Wilby and Dawson 2007).

4.3 Spatial interpolation method

Spline interpolation is used to interpolate smoothly
varying surfaces of phenomenon like tempera-
ture. This method has been widely used to show
spatial distribution of climate variables (Xiangsheng
et al. 2013). In this study, this interpolation
method has been used to show spatial patterns
of changes in magnitude (trend) of different STI
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(TMean, TMax, TMin and DTR) in Sutlej river basin
during 1971–2005 and 2011–2099 periods. The
station-based values of Sen’s slope derived from
annual trend analysis of temperature parameters
have been interpolated using this method under
ArcGIS 9.3 environment. Spline interpolation de-
termines values using a mathematical function that
in general, minimizes surface curvature.

5. Results

5.1 Stationwise trends in annual and seasonal STI
using modified MK test for 1971–2005

The results showing annual trend analysis of STI
(TMean, TMax, TMin and DTR) for 1971–2005 have
been presented in table 2. The increasing as well
as decreasing trends in TMean, TMax and TMin have
been observed at different stations. Statistically
insignificant decreasing trend in annual TMean has
been found at Kasol and Sunni opposite to Rampur
which shows increasing trend for the same period.
An upward statistically significant trend (95% con-
fidence level) in TMax at the rate (Q) of 0.04◦C/year
has been observed at Rampur and downward trend
in TMin at Kasol (0.02◦C/year) and Sunni (0.06◦C/
year) respectively. The increasing trend in DTR
has been noticed at all the three stations but results

are statistically significant at Sunni (0.05◦C/year)
and Rampur (0.04◦C/year) only.

Table 3 provides the summary of the seasonal
trend analysis of STI (TMean, TMax, TMin and DTR)
for 1971–2005. During winter season (December,
January, February), downward trends have been
reported in TMean, TMax and TMin at Kasol and
Sunni opposite to Rampur, which shows upward
trends during this period. The results are sta-
tistically significant at Kasol (0.04◦C/year) and
Sunni (0.06◦C/year) for TMin and Rampur for TMean

(0.05◦C/year) and TMax (0.05
◦C/year) respectively.

In spring season (March, April, May), only for TMin

statistically significant decreasing trend has been
found at Sunni and rate of change is 0.05◦C/year.
Statistically insignificant increasing trends in TMean

and TMax have been observed at Kasol and Ram-
pur respectively. No statistically significant trends
in TMean, TMax and TMin have been noticed during
summer season (June, July, August) except at
Sunni, which shows upward trend in TMax at the
rate of 0.04◦C/year. In autumn season (September,
October, November), at 95% confidence level, de-
creasing trends in TMean, TMax and TMin have
been reported at Kasol (0.05◦C/year, 0.04◦C/year
and 0.03◦C/year) and Sunni (0.04◦C/year) for
TMin respectively. In case of DTR, generally all the
stations have shown increasing trends throughout
all the seasons.

Table 2. Annual trend analysis of STI for 1971–2005 performed at all stations.

TMean TMax TMin DTR

Station Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year)

Kasol (–) −0.02 (–) −0.01 (–)* −0.02 (+) 0.01

Sunni (–) −0.03 (+) 0.01 (–)* −0.06 (+)* 0.05

Rampur (+) 0.03 (+)* 0.04 (+) 0.02 (+)* 0.04

* indicates that values are statistically significant at 5% level of significance.

Table 3. Seasonal trend analysis of STI for 1971–2005 performed at all stations.

TMean TMax TMin DTR

Station Season Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year)

Kasol Winter (–) −0.03 (–) −0.02 (–)* −0.04 (+) 0.01

Spring (+) 0.01 (+) 0.01 (–) −0.01 (+) 0.02

Summer (–) −0.01 (+) 0.01 (–) −0.01 (+) 0.07

Autumn (–)* −0.05 (–)* −0.04 (–)* −0.03 (–) −0.01

Sunni Winter (–)* −0.05 (–) −0.01 (–)* −0.06 (+)* 0.04

Spring (–) −0.02 (+) 0.01 (–)* −0.05 (+) 0.03

Summer (+) 0.03 (+)* 0.04 (–) −0.03 (+)* 0.05

Autumn (–) −0.02 (+) 0.01 (–)* −0.04 (+) 0.02

Rampur Winter (+)* 0.05 (+)* 0.05 (+) 0.01 (+)* 0.05

Spring (+) 0.01 (+) 0.01 (+) 0.01 (+) 0.03

Summer (+) 0.02 (+) 0.02 (+) 0.02 (+) 0.03

Autumn (+) 0.01 (+) 0.01 (+) 0.01 (+) 0.01

* indicates that values are statistically significant at 5% level of significance.
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5.2 Thermal regime shift in annual STI
using CUSUM charts for 1971–2005

The sequential shift in observed time series
(annual) of TMean, TMax, TMin and DTR has been
shown for all the stations in figure 4 with the help of
CUSUM charts. According to Shapiro et al. (2010),
regime shift is evaluated based on the change in
the slope of CUSUM charts. The cumulative devi-
ation from target mean should be zero if the vari-
ables are uniformly distributed for each year and
random if it is above (C+) or below (C−) the tar-
get mean (Mansell 1997). A non-random pattern
of temperature variability can be estimated from
the chart if it is beyond ±2σ (Upper CUSUM and
Lower CUSUM).

The interpretation of CUSUM charts has
revealed a sharp positive regime shift beyond the
limit of Upper CUSUM (+2σ) in TMax at Sunni
from 1988 to 1997 followed by Rampur and Kasol
from 2001 to 2005 respectively. A negative regime
shift beyond the limit of Lower CUSUM (–2σ) has
occurred on two occasions at Kasol (1982–1985
and 1997–2000) and Sunni (1978–1980 and 1997–
2000), whereas no such negative regime shift has
been noticed at Rampur. The positive shift (C+)
signifies a period when a value of TMax is above
the climatic average and for negative shift (C−),
it is below the average. This explains why cer-
tain stations have shown increasing or decreasing
annual trends in TMax for the period of 1971–
2005. The annual statistically insignificant down-
ward trend in TMax at Kasol has been observed
because of supremacy of cooling (1982–1985 and
1997–2005) instead of recent warming (2001–2005).
In case of Sunni, the prolonged warming (1988–
1997) with high rate has shown domination over
cooling (1978–1980 and 1997–2000). Therefore,
statistically insignificant increasing annual trend in
TMax has been experienced at Sunni. Statistically
significant trend in TMax at Rampur is the result of
recent warming (2001–2005).

Similarly for TMin, a positive regime shift has
been observed at Kasol from 1979 to 1983 followed
by the negative shift from 2003 to 2005. The sta-
tistically significant decreasing trend in TMin at
Kasol may be because of continuous cooling pre-
vailing after 2003 to 2005. At Sunni, the sharp
negative shift after 1994 to 2005 has resulted in
statistically significant downward trend in TMin.
However, continuous positive regime shift has been
noticed at Rampur for TMin from 2003 to 2005. In
DTR, the negative shift at Kasol has occurred after
1997 and persisted till 2001 followed by positive
shift, which persisted from 2002 to 2005. Sunni and
Rampur have also shown positive regime shift in
DTR, which occurs from 1990 to 2004 and 2001 to
2005. Due to these reasons, statistically significant
increasing trend in DTR has been found at Sunni
and Rampur, respectively.

5.3 Decadal change in annual and
seasonal STI for 1971–2005

Decadal (annual and seasonwise) change in TMean,
TMax, TMin and DTR has been computed to deter-
mine whether the warming/cooling rate at a par-
ticular station during the period of 1971–2005 is
uniform or not. Figure 5 shows nonuniform annual
decadal change in TMean, TMax, TMin and DTR for
all the three stations in Sutlej river basin. At Kasol,
warming in TMean, TMax and DTR has occurred in
the decades of 1971–1980 and 2001–2005 followed
by cooling in the decades of 1981–1990 and 1991–
2000 respectively. Contrary to this, continuous
cooling in TMin has been observed at Kasol starting
from the decade of 1971–1980 to present (2001–2005).
Other two stations show high variability in rate
of change in TMean, TMax, TMin and DTR with a
common similarity; warming in the recent decade
(2001–2005). Nonuniformity in rates of change at
all the stations may be due to variation in physio-
graphic characteristics of the areas they represent.

Figure 5. Decade to decade change in annual TMean, TMax, TMin and DTR (◦C/year) in Sutlej river basin (1971–2005).
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Similarly, the results of inter-decadal (season-
wise) change in TMean, TMax, TMin and DTR have
been shown in figure 6. Generally, warming in
TMean, TMax, TMin and DTR have been observed at
all the stations in the decade of 2001–2005 during
winter and spring seasons. At Sunni, continuous
warming with varying rates have been observed in
TMax during winter, spring, summer, and autumn
seasons from the decades of 1971–1980 to 2001–
2005, followed by continuous fall in TMin in the
decade of 1991–2000, respectively.

5.4 Generation of future time series
for TMax and TMin

The generation of future time series for TMax and
TMin data at each station has been performed
with the aid of SDSM. The screened sets of daily
NCEP/NCAR predictors and predictands (TMax

and TMin) have been employed for model calibra-
tion using 21 years data (1970–1990). The model
has been validated using the remaining 10 years’
data (1991–2000) of NCEP/NCAR reanalysis

Figure 6. Decade to decade change in seasonal TMean, TMax, TMin and DTR (◦C/year) in Sutlej river basin (1971–2005).
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datasets and simulation data, i.e., 20C3M sce-
nario for CGCM3 and HadCM3 model respectively.
During the calibration process, monthly submodel
has been developed and downscaling process has
been selected as unconditional process. A total
of 20 ensembles are produced and mean of these
ensembles have been used.

The statistical indicators such as the monthly
average percentage of explained variance (%E) and
the monthly average standard error (SE) have been
used to describe downscaling results of daily TMax

and TMin at each site in the basin. The monthly
average value of E (%) for TMax ranges from 41.40%
to 54.80% and SE (◦C) from 1.99◦ to 2.73◦C,
whereas this lies in between 52.10% to 56.50% and
1.48◦ to 1.74◦C for TMin during calibration period
for CGCM3 model. For HadCM3, the monthly
average value of E (%) varies from 41.20% to
53.20% and SE (◦C) from 2.03◦ to 2.73◦C for the

TMax, while this is found between 53.70% to 62.60%
and 1.50◦ to 1.74◦C for TMin. The percentage
of explained variance (E%) for several research
studies has been found between 67% and 90%
(Gagnon et al. 2005; Combalicer et al. 2010; Meenu
et al. 2012). The results obtained in the present
study are closer to such a level.

The graphs have been plotted against observed
and downscaled mean monthly values of TMax and
TMin for calibration period. Figure 7 shows exis-
tence of a good agreement between observed and
downscaled TMax and TMin for CGCM3 model.
However, comparatively lower agreement has been
recorded between observed and downscaled TMax

and TMin for HadCM3 model (figure 8).
Similarly, the graphs have been plotted against

observed and downscaled mean monthly values of
TMax and TMin for validation period and it has
been shown in figures 9 and 10. On the whole,

Figure 7. Comparing observed and simulated values of TMax and TMin during calibration period for CGCM3 model.

Figure 8. Comparing observed and simulated values of TMax and TMin during calibration period for HadCM3 model.
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downscaled TMax and TMin have showed a good
agreement with the observed data. It can be
observed from the figures that the simulated prop-
erties acceptably describe the observed statistics
but deviation of value is noticed between them.

A comparison between SDSM downscaled TMax

and TMin and observed series of TMax and TMin has
been carried out in terms of the bias for validation
period and details are provided in table 4. The bias

is the difference between the NCEP/NCAR down-
scaled value and the observed value of the statistic.
In case of CGCM3 model, SDSM has yielded
slightly higher estimates of mean TMax at Kasol
(1.48◦C) and slightly lower at Rampur (–0.23◦C)
compared with observed values. However, SDSM
model has produced higher estimates of mean for
TMin at Sunni (2.20◦C) and lower estimates at
Rampur (0.26◦C) compared with those recorded

Figure 9. Comparing observed and simulated values of TMax and TMin during validation period for CGCM3 model.

Figure 10. Comparing observed and simulated values of TMax and TMin during validation period for HadCM3 model.

Table 4. Bias between statistics of observed and downscaled NCEP/NCAR TMax and TMin during validation (1991–2000).

CGCM3 HadCM3

TMax mean (◦C) TMin mean (◦C) TMax mean (◦C) TMin mean (◦C)

Station OBS NCEP Bias OBS NCEP Bias OBS NCEP Bias OBS NCEP Bias

Kasol 27.99 29.47 1.48 16.69 17.15 0.46 27.99 29.47 1.48 16.69 17.04 0.35

Sunni 28.88 28.49 −0.39 11.07 13.27 2.20 28.88 29.11 0.23 11.07 13.54 2.47

Rampur 27.2 26.97 −0.23 13.38 13.64 0.26 27.2 26.79 −0.41 13.38 13.53 0.15
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in study area. A similar pattern of bias has been
noticed for HadCM3 model respectively.

Further, the performance of these two models
in simulating temperature (TMax and TMin) under
A2 scenario for 20th century (20C3M) have been
compared with station based observed time series
of temperature data for validation period (1991–
2000). In case of CGCM3 model, the value of R2

(correlation coefficient) and RMSE (Root Mean
Square Error) has been found to be 0.80 and 2.67◦C
for TMax and 0.92 and 1.83◦C for TMin, respectively.
Similarly for HadCM3 model, the value of R2 and
RMSE has been found to be 0.77 and 2.80◦C for
TMax and 0.89 and 2.29◦C for TMin respectively. The

higher value of R2 has been obtained for TMax and
TMin under 20C3M scenario of CGCM3 model as
compared to HadCM3 model.

The calibrated model has further been used to
generate future scenarios of TMax and TMin data
using scenario Generator function. The future sce-
narios of daily TMax and TMin data have been gen-
erated from predictors of CGCM3 and HadCM3
model under A2 scenarios. These data have been
generated on daily time steps for 89 years from
2011 to 2099. The remaining temperature parame-
ters such as TMean and DTR have been derived from
projected TMax and TMin as discussed in section 3.1
for 2011–2099.

Table 5. Annual trend analysis of STI for 2011–2099 performed at all stations.

TMean TMax TMin DTR

Station Model Scenario Zs Q (◦C/year) Zs Q (◦C/year)) Zs Q (◦C/year) Zs Q (◦C/year)

Kasol CGCM3 A2 (+)* 0.03 (+)* 0.02 (+)* 0.03 (–) −0.00

HadCM3 A2 (+)* 0.01 (+)* 0.01 (+)* 0.01 (–)* −0.01

Sunni CGCM3 A2 (+)* 0.03 (+)* 0.01 (+)* 0.03 (–)* −0.02

HadCM3 A2 (+)* 0.06 (+)* 0.03 (+)* 0.04 (–) −0.00

Rampur CGCM3 A2 (+)* 0.01 (+) 0.01 (+)* 0.03 (–)* −0.01

HadCM3 A2 (+)* 0.04 (+)* 0.01 (+)* 0. 10 (–)* −0.03

* indicates that values are statistically significant at 5% level of significance.

Table 6. Seasonal trend analysis of STI for 2011–2099 performed at all stations.

TMean TMax TMin DTR

Model Scenario Season Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year) Zs Q (◦C/year)

Kasol A2 Winter (+)* 0.02 (+)* 0.02 (+)* 0.02 (+) 0.01

CGCM3 Spring (+)* 0.02 (+)* 0.02 (+)* 0.02 (+)* 0.01

Summer (–)* −0.01 (–)* −0.03 (+)* 0.01 (–)* −0.02

Autumn (+)* 0.02 (+)* 0.01 (+)* 0.02 (–) −0.00

HadCM3 A2 Winter (+)* 0.01 (+)* 0.01 (+)* 0.01 (+)* 0.01

Spring (+) 0.00 (+) 0.00 (+)* 0.01 (–) −0.00

Summer (–)* −0.02 (–)* −0.03 (+) 0.00 (–)* −0.02

Autumn (+)* 0.02 (+) 0.00 (+)* 0.03 (-)* −0.01

Sunni A2 Winter (+)* 0.02 (+)* 0.01 (+)* 0.02 (–)* −0.01

CGCM3 Spring (+)* 0.03 (+)* 0.01 (+)* 0.03 (–)* −0.01

Summer (–)* −0.01 (–)* −0.02 (+)* 0.03 (–)* −0.04

Autumn (+)* 0.03 (+)* 0.01 (+)* 0.04 (–)* −0.01

HadCM3 A2 Winter (+)* 0.05 (+)* 0.03 (+)* 0.01 (+)* 0.01

Spring (+)* 0.05 (+)* 0.04 (+)* 0.04 (+)* 0.01

Summer (+)* 0.02 (+)* 0.01 (+)* 0.05 (–)* −0.01

Autumn (+)* 0.05 (+)* 0.01 (+)* 0.05 (–)* −0.01

Rampur A2 Winter (+) 0.00 (–) −0.00 (+)* 0.01 (–) −0.01

CGCM3 Spring (+)* 0.01 (+)* 0.01 (+)* 0.02 (–) −0.00

Summer (+) 0.00 (–)* −0.01 (+)* 0.02 (–)* −0.02

Autumn (+)* 0.02 (+)* 0.01 (+)* 0.04 (–)* −0.01

HadCM3 A2 Winter (+)* 0.03 (+)* 0.01 (+)* 0.04 (–) −0.00

Spring (+)* 0.02 (+)* 0.01 (+)* 0.05 (–)* −0.02

Summer (+)* 0.03 (–) −0.00 (+)* 0.10 (–)* −0.05

Autumn (+)* 0.04 (+)* 0.01 (+)* 0.07 (–)* −0.01

* indicates that values are statistically significant at 5% level of significance.
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5.5 Stationwise trends in annual and seasonal STI
using modified MK test for 2011–2099

The modified MK test has been applied on future
time series (2011–2099) of temperature data which
has been generated under A2 forcing of CGCM3
and HadCM3 models as discussed in section
5.1 respectively. Similar method as discussed in
section 3.2 has been adopted for deriving STI for
future temperature data (TMean, TMax, TMin and
DTR). The results of modified MK test show-
ing annual trends in TMean, TMax, TMin and DTR
have been given in table 5. The study reveals
statistically significant increasing trends in TMean,
TMax and TMin at all the three stations under A2
scenario of both the models at different rates.
Except at Kasol, the highest rate of increase in
TMean, TMax and TMin has been reported under
HadCM3 model for the period of 2011–2099.
The magnitude of increase under A2 scenario
for CGCM3 model in TMean, TMax and TMin

are 0.03◦C/year, 0.02◦C/year, 0.03◦C/year at
Kasol, 0.03◦C/year, 0.01◦C/year, 0.03◦C/year at
Sunni and 0.01◦C/year, 0.01◦C/year, 0.03◦C/year

at Rampur respectively. Similarly for HadCM3
model, the rate of increase are 0.01◦C/year,
0.01◦C/year, 0.01◦C/year at Kasol, 0.06◦C/year,
0.03◦C/year, 0.04◦C/year at Sunni, and 0.04◦C/year,
0.01◦C/year, 0.10◦C/year at Rampur respectively.
The rate of increase is higher for TMin compared to
TMax. The annual downward trends in DTR have
been reported at all the three stations under both
the models at different rates.

Table 6 provides the summary of the seasonal
trend analysis of projected STI (TMean, TMax, TMin

and DTR) under A2 scenario of CGCM3 and
HadCM3 models for 2011–2099. Both the models
have revealed similar patterns of trends in TMean,
TMax and TMin at all the three stations for all the
four seasons except at Sunni which shows obvious
differences in trends during summer season. Sta-
tistically significant upward trends in TMean, TMax

and TMin have been found during winter, spring,
and autumn seasons for both the models at all
the three stations. During summer season (CGCM3
model), statistically significant decreasing trends
in TMax have been observed at Kasol, Sunni, and
Rampur stations followed by TMean at Kasol and

Figure 11. Spatial distribution of annual TMean, TMax, TMin and DTR for 1971–2005.
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Sunni, respectively. In contrast, statistically sig-
nificant increasing trends in TMean and TMax have
been noticed at Sunni during summer season under
A2 scenario of HadCM3 model. The seasonal trend
analysis of DTR has revealed decreasing trends at
Rampur and increasing as well as decreasing trends
at Kasol and Sunni, respectively.

5.6 Spatial patterns of change in STI
during 1971–2005 and 2011–2099

The spatial patterns of temporal trends in STI
(TMean, TMax, TMin and DTR) in terms of magni-
tude for the period 1971–2005 have been shown
in figure 11. Approximately half area of the
basin extending from centre to south–west shows
decrease (0.03◦C to 0.01◦C/year) in TMean followed
by increase in remaining parts of the basin with
highest increase (0.009◦C to 0.03◦C/year) in the
eastern region. The highest rise (0.02◦C to 0.04◦C/
year) in TMax has been observed in the eastern part

of the basin followed by a modest increase (0.006◦C
to 0.02◦C/year) in the central region, and fall in
the western region of the basin. Most parts of the
basin, except the eastern part have revealed decline
in TMin and it is maximum in the south and south-
western parts of the basin. The entire basin has
witnessed increase in DTR with varying rates.

Similarly, the temporal trends in TMean,
TMax, TMin and DTR for the future period (2011–
2099) under A2 scenario of CGCM3 and HadCM3
models have been shown in figures 12 and 13,
respectively. Both the models show obvious dif-
ferences in patterns and rate of change with a
common similarity; increase in TMean, TMax and
TMin and decrease in DTR throughout the basin.
The lowest rise under CGCM3 model in TMean has
been observed in the eastern region and the highest
in central and western regions of the basin. Con-
trary to this, under HadCM3 model the modest
rise in TMean has been observed in the eastern
region followed by the highest rise in central and
southcentral regions of the basin.

Figure 12. Spatial distribution of annual TMean, TMax, TMin and DTR for 2011–2099 under A2 scenario of CGCM3.
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Figure 13. Spatial distribution of annual TMean, TMax, TMin and DTR for 2011–2099 under A2 scenario of HadCM3.

6. Discussions and conclusions

In the present study, a comprehensive trend analysis
(annual and seasonwise) of TMean, TMax, TMin and
DTR has been performed using 35 years (1971–
2005) observed data. The analysis of decadal
change and interpretation of CUSUM charts has
shown enhanced warming during the period 2001–
2005. A sharp positive regime shift in annual TMax

has been observed at Kasol from 2001 to 2005,
Sunni from 1988 to 1997, Rampur from 2001 to
2005, and in DTR at Kasol from 2002 to 2005,
Sunni from 1990 to 2004, Rampur from 2001 to
2005, respectively. To see the change in patterns of
future data, plausible scenario of temperature data
for future periods (2011–2099) has been generated
using SDSM from large scale predictors of CGCM3
and HadCM3 models under A2 scenario.

The results of annual trend analysis have
revealed statistically insignificant (at 95% confi-
dence level) decreasing trends in TMean at Kasol
and Sunni followed by increasing trend at Ram-
pur during 1971–2005. As per the analysis of future
scenarios, there is strong probability that all the

stations would exhibit statistically significant
increasing trends in TMean. The increase in TMax

at Sunni and Rampur is expected to be continued
in future while at Kasol, earlier it was decreasing
trend but for future data it is increasing trend.
During 1971–2005, statistically significant decreas-
ing trends in TMin have been observed at Kasol and
Sunni and increasing trend at Rampur (statisti-
cally insignificant). While using future scenarios,
there is likelihood of rise in annual TMin at all
the stations as trends (increasing) are statistically
significant. In case of DTR, there was rise dur-
ing 1971–2005, while there is a fall using future
scenarios. This may be attributed to the fact
that predicted increase in TMin is more than the
corresponding increase in TMax during the same
period.

Similarly, seasonal trend analysis of projected
data has revealed that rise in TMean, TMax and TMin

would occur during winter, spring, and autumn
seasons for both the models at all the three sta-
tions. During summer season for CGCM3 model,
decrease in TMax would exhibit at Kasol, Sunni,
and Rampur stations followed by TMean at Kasol
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and Sunni, respectively. In contrast, there is prob-
ability of rise in TMean and TMax at Sunni during
summer season under A2 scenario of HadCM3
model. The results obtained from CGCM3 model
are expected to be more reliable than HadCM3
because of higher R2 for CGCM3 model during
validation period. These warming patterns may
have significant impacts on water resources and
hydropower generation in the Sutlej river basin,
India.
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