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Statistical analysis of longitudinal 
data on tumour growth in mice 
experiments
Ioannis Zavrakidis1, Katarzyna Jóźwiak1,2 & Michael Hauptmann1,2 ✉

We consider mice experiments where tumour cells are injected so that a tumour starts to grow. When 

the tumour reaches a certain volume, mice are randomized into treatment groups. Tumour volume is 

measured repeatedly until the mouse dies or is sacrificed. Tumour growth rates are compared between 
groups. We propose and evaluate linear regression for analysis accounting for the correlation among 

repeated measurements per mouse. More specifically, we examined five models with three different 
variance-covariance structures in order to recommend the least complex method for small to moderate 

sample sizes encountered in animal experiments. We performed a simulation study based on data 
from three previous experiments to investigate the properties of estimates of the difference between 
treatment groups. Models were estimated via marginal modelling using generalized least squares 

and restricted maximum likelihood estimation. A model with an autoregressive (AR-1) covariance 
structure was efficient and unbiased retaining nominal coverage and type I error when the AR-1 
variance-covariance matrix correctly specified the association between repeated measurements. When 
the variance-covariance was misspecified, that model was still unbiased but the type I error and the 
coverage rates were affected depending on the degree of misspecification. A linear regression model 
with an autoregressive (AR-1) covariance structure is an adequate model to analyse experiments that 
compare tumour growth rates between treatment groups.

Animal experiments are an invaluable tool for biomedical research, because they allow evaluation of hypotheses 
by randomization of nearly identical subjects, they can usually be conducted much faster than corresponding 
human studies (if those are at all ethically feasible), and biological mechanisms in animals are o�en, however not 
always, similar to those in humans. Nevertheless, animal studies require careful design and state-of-the-art sta-
tistical analysis to ensure robust conclusions with proper control of type I and II error, e�cient use of resources, 
and justi�able use of animals.

Guidelines are available for design, statistical analysis and reporting of animal experiments (ARRIVE1), 
and the UK-based National Center for Replacement, Refinement & Reduction of Animals in Research 
(http://www.nc3rs.org.uk) provides various resources. These guidelines describe the general princi-
ple of conducting studies, ethical conditions in working with animals but also statistical considerations. 
In a recent series of articles in prominent journals, a plea was made to raise attention to the design and 
analysis of animal experiments in order to improve the outcome of biomedical research (http://www.
nature.com/news/web-tool-aims-to-reduce-flaws-in-animal-studies-1.19459, http://www.nature.com/
news/poorly-designed-animal-experiments-in-the-spotlight-1.18559, http://www.nature.com/news/
uk-funders-demand-strong-statistics-for-animal-studies-1.173182–4.

Despite the availability of guidelines, the design, statistical analysis and reporting of animal experiments need 
improvement. A recent survey found, that more than 95% of 48 studies did not report on statistical power and 
55% of 180 studies used inappropriate statistical methods5,6. Underpowered studies may fail to detect an e�ect 
that truly exists or observe an e�ect larger than the true e�ect7,8. On the other hand, overpowered studies might 
detect a small e�ect which is not relevant. In both cases, researchers may report erroneous conclusions and waste 
animal lives, time and money. Most importantly, follow-up studies, such as clinical trials, might fail because they 
are based on incorrect assumptions8–13.
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A commonly investigated outcome is tumour growth a�er treatment induction. For example, patient-derived 
tumour xenogra�s (PDX) are an important preclinical tool for cancer biomarker discovery and drug develop-
ment. During such longitudinal experiments, animals are injected with human tumour cells and treated a�er the 
tumour reaches a certain volume. Tumour size is measured several times per week. Many investigators compare 
average tumour size between treatment groups at arbitrary time points and therefore ignore the majority of the 
data. �ese separate tests have lower statistical power in comparison to a method that uses all of the available data 
and individual changes within mice are not taken into account while they are accounted for in methods that use 
all repeated measurements within mice. �e importance of the issue was recently highlighted by a report compar-
ing separate analyses at individual time points with analyses of all repeated measurements together in preclinical 
animal experiments14. �e authors concluded that the latter indeed yields higher statistical power for detecting 
a treatment e�ect and maximally exploits data obtained from animals used in research experiments, which is 
an ethical obligation. In addition, as Heitjan et al.15 have shown, performing tests at arbitrary time points leads 
to in�ated type I errors because multiple testing is performed. Linear regression using all of the available data, 
instead, should be used to estimate tumour growth over time per treatment group and compare the rate of growth 
between groups. Statistically, this is assessed by an interaction term of time and treatment group. In these mod-
els, there are several ways to incorporate the dependence between repeated tumour size measurements within a 
mouse. If this dependence is not taken into account, point estimates and standard errors of regression coe�cients 
may be incorrect leading to incorrect conclusions with respect to the e�ect of treatment.

�e use of regression methods for the analysis of longitudinal data has been a topic of active research for many 
years16,17, and several articles have investigated the application of these models to small studies in general18–20, and to 
mice experiments of tumour growth in particular15,21–27. However, many of these articles described complicated mod-
els, and only one article evaluated properties of estimates of the interaction term for small to moderate sample sizes22, 
which is relevant for tumour growth experiments. Our aim is to evaluate several methods to handle the dependence of 
repeated tumour size measurements within mice in a linear regression setting for the comparison of tumour growth, 
in order to recommend an easy to use method that is appropriate for small to moderate sample sizes. We perform a 
simulation study based on data from three previous experiments to investigate the properties of estimates of the treat-
ment group by time interaction term which addresses the di�erence in tumour growth between two treatment groups.

Methods
Data from previous tumour growth experiments. We used data from three previous tumour growth experi-
ments conducted in collaboration with researchers from �e Netherlands Cancer Institute. In these experiments, length 
and width of tumours were measured with a digital calliper 1–3 times per week and tumour volume was calculated as 
0.5 × length (in mm) × width (in mm)2. �ese experiments have been published and are brie�y described below.

Figure 1. Correlation between measurement at each time point and �rst measurement, for four correlation 
matrices. (a) ρ = 0.5 (b) ρ = 0.9.
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DNA damage tolerance (DDT) de�ciency in lobular breast carcinoma treated with cisplatin. Buoninfante et al.28  
evaluated the sensitivity of two mammary tumour cell lines, one DDT-pro�cient, DDTp (Wap–Cre;Cdh1F/F;SB;PcnaK164) 
and the other DDT-de�cient, DDTD (Wap–Cre;Cdh1F/F;SB;PcnaK146R), to cisplatin. Tumour cells were transplanted 
orthotopically into the fat pad of the mammary gland of NMRI mice. When tumours reached a volume of 100 mm3, 
both groups of mice were treated with cisplatin (6 mg/kg). Mice were killed either when tumour volume exceeded 1,500 
mm3 or when the tumour had metastasized and the animal was severely distressed.

Treatment of cervical cancer with an AXL antibody. Boshuizen et al.29 studied the anti-tumour activity of the 
antibody-drug conjugate AXL-107-MMAE in patient-derived xenogra�s, including melanoma, lung, pancreas and 
cervical cancer. Nude mice were inoculated subcutaneously at the right �ank with one tumour fragment (2–3 mm 
diameter). Before treatment, mice were divided into groups of 6–8 mice each, with equal tumour size distribution (aver-
age and variance). Randomization occurred in a blinded fashion. Mice were treated intraperitoneally or intravenously 
with solutions containing the AXL-107-MMAE antibody in two di�erent doses as well as several control antibodies, 
adjusted to actual body weight, according to the schedule speci�ed at each experiment. �e experiment ended for indi-
vidual mice either when the tumour size exceeded 1500 mm3, the tumour showed ulceration, the mouse was seriously 
ill, tumour growth blocked the movement of the mouse, or end of study a�er 60 days. For this report, we focused on 
data from xenogra� tumour model CV1664 for cervical cancer and treatment by the antibody-drug conjugate AXL-
107-MMAE 2 mg/kg and the unconjugated isotype control antibody IgG1-b12 4 mg/kg.

Inhibition of SHP2 in KRAS-mutant non-small cell lung cancer. RAS mutations are frequent in human cancer, espe-
cially in pancreatic, colorectal and non-small-cell lung cancers (NSCLCs). Mainardi et al.30 focused on SHP2 (also 
known as PTPN11) to inhibit the RAS oncoproteins. Wild-type and PTPN11-knockout cells of the AZD6244 (selu-
metinib)-resistant lung cancer cell line H2122 were injected subcutaneously into the right �anks of 8-week-old immu-
nocompromised CD1 nude female mice. Mice were randomized when the tumour reached a volume of approximately 
200–250 mm3. AZD6244 was administered daily by oral gavage for a 34-day period. �e control group was treated at 
the same schedule with the vehicle of AZD6244. For this report, we used the data on the H2122 wild-type cells only.

Statistical analysis. To evaluate whether the rate of tumour growth di�ers between two treatment groups, 
we used the linear regression model:

α β β= + + +− −y t x tlog , (1)ij i j i i j ij10 1 ( 1) 2 ( 1)

where y
ij
 was the tumour volume of the i-th mouse (i = 1, …, n) at the j-th measurement (j = 1, …, m), xi indicated the 

treatment of the i-th mouse ( =x 0i  for treatment A, =x 1i  for treatment B) and −ti j( 1) was the time since randomiza-
tion of the i-th mouse at the j-th measurement (ti0 represented time of the �rst measurement and −ti m( 1) represented 
time of the m-th measurement). Since at the time of randomization average tumour volume was expected to be the 
same between treatment groups, a term representing the average di�erence in volume at baseline between treatment 
groups, i.e., the main treatment e�ect, was omitted from the model. ij was a normally distributed residual for the j-th 
measurement of the i-th mouse with expectation zero and variance σ2, i.e.,  ~ σN(0, )ij

2 , and the m residuals for 
mouse i were stacked into a vector = … ′( , , , )i i i im1 2     which had a multivariate normal distribution with a vector 
of m zeroes as mean and variance-covariance matrix Σi, i.e.,  Σ~ N(0, )i i . Log-transformed tumour volume was used 
as the outcome to ensure normally distributed residuals and homogeneity of variance over time. We assumed that the 
number of measurements was the same for each mouse and the association between time and tumour volume on the 
logarithmic scale was approximately linear. Parameters α, β1 and β2 did not vary by mouse. �e intercept α denoted 
the overall average log-volume at the time of randomization, β1 was the linear change in log-volume across time for 
treatment A, while β2 was the di�erence between the linear change in log-volume across time between treatment A and 
B. �us, a statistical test of the null hypothesis β = 02  addressed the main question whether the tumour growth rates 
di�ered between the two treatment groups.

�e variance-covariance matrix of the full vector with all residuals ij in the data had a block structure with a 
separate block for each mouse, i.e.
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Since all matrices in this report were symmetric, we only provided the cell entries above the diagonal. We 
assumed that all Σi were identical. In order to accommodate possible dependence between longitudinal measure-
ments, we evaluated the following three di�erent variance-covariance structures of matrix Σi.

�e �rst model assumed an independent (IND) variance-covariance structure of matrix Σi which had the 
form:
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All observations in the data were assumed to be independent, even measurements on the same mouse.
�e second model used a compound symmetry (CS), also called exchangeable, variance-covariance structure 

of matrix Σi of the form:

∑ σ

η η
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where η was the correlation among measurements within each mouse. �is correlation was assumed to be the 
same for any pair of measurements from the same mouse.

�e variance-covariance structure of matrix Σi of the third model had an autoregressive (AR-1) form:

σ
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where ρ was the correlation between two measurements on consecutive days from the same mouse. �e correla-
tion between two measurements decreased as the time di�erence between them increased.

In the fourth model, the rates of tumour growth between treatment groups were also evaluated using the lin-
ear model (1) with the independent variance-covariance structure and an additional dummy variable Ii indicating 
observations from mouse i ( =I 1i  for mouse i and 0 otherwise; i=1, …, n-1). �is model, called a �xed-e�ects 
model31, had the form:

γ β β β= + + + +− −y t x t Ilog
ij i j i i j i ij10 1 ( 1) 2 ( 1) 3i

One of the mice was chosen to be the reference and γ was the log-volume of the tumour of that mouse at ran-
domization. �en, β3i

 was the di�erence in log-volume at the time of randomization between mouse i and the 
reference mouse.

As the ��h model, we investigated the linear model (1) with AR-1 variance-covariance structure, which addi-
tionally included a random error term for the intercept. �is mixed-e�ects model had the form:

α β β= + + + +− −y u t x tlog ( ) ,
ij i i j i i j ij10 0 1 ( 1) 2 ( 1) 

where the term u i0  represented unexplained variability with respect to the log-volume at the time of randomiza-
tion between mice. It was assumed normally distributed with zero mean and variance σu0

2 , and independent from 
the error term at the repeated measures level.

Parameters in the four linear regression models were estimated via marginal modelling using generalized least 
squares (GLS)32,33 and restricted maximum likelihood (REML) estimation34,35. Estimation of the mixed-e�ects 
model was also based on REML.

DDT de�ciency 
(Buoninfante et al.)28

AXL antibody 
(Boshuizen et al.)29

SHP2 inhibition 
(Mainardi et al.)30

Treatment groups WT & K164R
lgG1-b12 4 mg/kg & AXL-
107-MMAE 2 mg/kg

AZD6244 & Vehicle

Number of mice/
group

15 & 15 6 & 6 7 & 10

Average number 
of measurements/
mouse

18 & 21 16 & 17 8 & 6.2

α (95% CI) 1.982 (1.933, 2.031) 2.115 (1.839, 2.392) 2.433 (2.332, 2.534)

β1 (95% CI) 0.025 (0.023, 0.028) 0.016 (0.009, 0.022) 0.017 (0.013, 0.020)

β2 (95% CI) −0.0096 (−0.011, −0.007) −0.022 (−0.030, −0.014) −0.008 (−0.012, −0.003)

σ (95% CI) 0.174 (0.158, 0.191) 0.487 (0.342, 0.691) 0.213 (0.168, 0.270)

ρ (95% CI) 0.852 (0.819, 0.880) 0.990 (0.980, 0.995) 0.969 (0.946, 0.982)

Table 1. Results of statistical analysis of three tumour growth experiments. Abbreviation: CI, con�dence 
interval. Note: A linear model α β β= + + +− −log y t x t

ij i j i i j ij10 1 ( 1) 2 ( 1)   with an autoregressive (AR-1) 

covariance matrix was used. α denotes the overall average log-volume at the time of randomization, β1 is the 
linear change in log-volume across time for the reference group (WT, IgG1-b12 4 mg/kg, Vehicle), while β2 is 
the di�erence between the linear change in log-volume across time between the reference group and a 
comparison group (K164R, AXL-107-MMAE 2 mg/kg, AZD6244), σ~ N(0, )ij

2  and ρ is the autocorrelation 
between adjacent measurements.
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Simulation study. We used the third model with an autoregressive (AR-1) variance-covariance structure 
and empirical data from the three experiments to generate hypothetical data with known e�ects under realistic 
circumstances. We generated similar numbers of mice and measurements as in the original experiments. 
Treatment groups were equally sized and all mice had the same number of measurements, leading to a completely 
balanced design. For parameters α, β1, and σ2 we used values estimated from the original data using GLS and 
REML with an autoregressive (AR-1) covariance matrix (Table 1). For parameter β2 we used the estimated value 
and one other value that either re�ected a smaller or larger e�ect than the observed one. For parameter ρ we used 
the estimated value as well as 0 and 0.5 to evaluate scenarios with uncorrelated and moderately correlated 
repeated measurements. �erefore, for each experiment, 6 scenarios were simulated (two values of β2 and three 
values of ρ, Table 2). For each scenario, 3000 datasets were generated under a model with an autoregressive covar-
iance matrix. Each dataset was analysed with the �ve regression models listed above. For each model, the 3000 
results were summarized by calculating the average and the �rst and third quartiles of estimated β2, the propor-
tion of studies where the 95% con�dence interval (CI) around the estimate of β2 included the true value (cover-
age), and the proportion where the 95% CI around the estimate of β2 did not include zero (statistical power). For 

β = 02 , the latter proportion was the type I error. Type I error and coverage were considered nominal if close to 
0.05 and 95%, respectively.

Analyses and simulations were performed using R version 3.4.436 including the nlme package37 and were 
veri�ed using STATA version 1538.

Scenario ρ True β2 Model Mean estimated β2 (IQR) Coverage Power Type I error**

1 0 −0.002

Ind −0.0020 (−0.0025, −0.0015) 0.9460 0.7307 0.0520

AR-1 −0.0020 (−0.0026, −0.0015) 0.9490 0.7243 0.0480

CS −0.0020 (−0.0025, −0.0015) 0.9360 0.7300 0.0570

IND-I −0.0020 (−0.0030, −0.0009) 0.9490 0.2767 0.0520

Mixed AR-1* −0.0020 (−0.0026, −0.0014) 0.9567 0.6648 0.0389

2 0 −0.0096

Ind −0.0096 (−0.0102, −0.0091) 0.9430 1.0000

AR-1 −0.0096 (−0.0102, −0.0091) 0.9460 1.0000

CS −0.0096 (−0.0102, −0.0091) 0.9370 1.0000

IND-I −0.0095 (−0.0106, −0.0086) 0.9510 1.0000

Mixed AR-1* −0.0096 (−0.0101, −0.0091) 0.9570 1.0000

3 0.5 −0.002

Ind −0.0020 (−0.0027, −0.0014) 0.8760 0.6830 0.1160

AR-1 −0.0020 (−0.0027, −0.0014) 0.9450 0.5320 0.0457

CS −0.0020 (−0.0027, −0.0013) 0.9090 0.5910 0.0840

IND-I −0.0020 (−0.0033, −0.0008) 0.8630 0.3350 0.1340

Mixed AR-1* −0.0020 (−0.0027, −0.0013) 0.9523 0.4848 0.0429

4 0.5 −0.0096

Ind −0.0096 (−0.0103, −0.0089) 0.8743 1.0000

AR-1 −0.0096 (−0.0103, −0.0089) 0.9510 1.0000

CS −0.0096 (−0.0103, −0.0089) 0.9180 1.0000

IND-I −0.0096 (−0.0108, −0.0083) 0.8760 1.0000

Mixed AR-1* −0.0096 (−0.0103, −0.0089) 0.9550 1.0000

5 0.85 −0.002

Ind −0.0020 (−0.0031, −0.0009) 0.6437 0.6337 0.3560

AR-1 −0.0020 (−0.0031, −0.0009) 0.9483 0.2447 0.0523

CS −0.0020 (−0.0034, −0.0006) 0.6867 0.5040 0.3070

IND-I −0.0020 (−0.0038, −0.0002) 0.6340 0.4887 0.3590

Mixed AR-1* −0.0020 (−0.0030, −0.0010) 0.9554 0.2199 0.0458

6§ 0.85 −0.0096

Ind −0.0096 (−0.0108, −0.0084) 0.6240 1.0000

AR-1 −0.0096 (−0.0107, −0.0085) 0.9413 1.0000

CS −0.0096 (−0.0111, −0.0081) 0.6757 0.9990

IND-I −0.0096 (−0.0115, −0.0077) 0.6227 0.9947

Mixed AR-1* −0.0096 (−0.0107, −0.0085) 0.9488 1.0000

Table 2. Results of simulation study for the DDT de�ciency experiment with 15 mice per group and 18 
measurements per mouse28. Covariance matrix structures include independence (Ind), autoregressive (AR-1) & 
compound symmetry (CS). IND-I corresponds to the model with independence covariance structure and a 
mouse indicator (�xed-e�ects model). Mixed AR-1 corresponds to the mixed-e�ects model with random 
intercept. *�e percentage of datasets for which the model did not converge was 1.3, 2.1, 5.5, 9.6, 8.7, 14.7 for 
Scenario 1, 2, 3, 4, 5, 6, respectively. For the scenarios for type I error evaluation, the associated percentages were 
1.4, 5.2 and 6.8 for ρ of 0, 0.5 and 0.85, respectively. **Type I error is derived from corresponding scenarios with 

β2 = 0. §Scenarios in bold face re�ect parameter values actually observed in the experiment.
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Sensitivity analysis. Since the data was generated using the AR-1 variance-covariance matrix, our simula-
tion study results might have favoured the AR-1 model. �erefore, as a sensitivity analysis, we generated data with 
another variance-covariance matrix. Speci�cally, we assumed that the correlation between two measurements 
decayed with increasing time between the measurements, but in contrast to AR-1 where correlation declined 
quadratically, we used a structure where it declined linearly:

σ
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Parameter θ de�ned the slope of the decline with higher values leading to steeper slopes. We used three di�erent 
values for θ, namely 0.02, 0.05 and 0.08. For ρ, we used the estimated value as well as 0.5 and for all other param-
eters, we used the same values as in our main simulation study. �erefore, for each experiment, we simulated 12 
scenarios since we used three values of θ, two values of ρ and two values of β2.

Scenario ρ True β2 Model Mean estimated β2 (IQR) Coverage Power Type I error**

1 0 −0.01

Ind −0.0100(−0.0132, −0.0069) 0.9537 0.5720 0.0600

AR-1 −0.0100 (−0.0132, −0.0069) 0.9567 0.5570 0.0507

CS −0.0100 (−0.0133, −0.0068) 0.9247 0.5837 0.0857

IND-I −0.0099 (−0.0156, −0.0043) 0.9517 0.2120 0.0593

Mixed AR-1* −0.0100 (−0.0131, −0.0068) 0.9628 0.4965 0.0379

2 0 −0.022

Ind −0.0218 (−0.0249, −0.0187) 0.9467 0.9967

AR-1 −0.0219 (−0.0249, −0.0186) 0.9510 0.9963

CS −0.0219 (−0.0250, −0.0186) 0.9163 0.9963

IND-I −0.0218 (−0.0275, −0.0160) 0.9507 0.7207

Mixed AR-1* −0.0219 (−0.0250, −0.0188) 0.9579 0.9908

3 0.5 −0.01

Ind −0.0100 (−0.0138, −0.0061) 0.8777 0.5580 0.1157

AR-1 −0.0100 (−0.0139, −0.0061) 0.9417 0.4073 0.0497

CS −0.0100 (−0.0143, −0.0059) 0.8900 0.4783 0.0973

IND-I −0.0102 (−0.0175, −0.0030) 0.8627 0.2983 0.1383

Mixed AR-1* −0.0100 (−0.0138, −0.0061) 0.9590 0.3617 0.0501

4 0.5 −0.022

Ind −0.0220 (−0.0259, −0.0181) 0.8787 0.9823

AR-1 −0.0220 (−0.0259, −0.0181) 0.9443 0.9567

CS −0.0219 (−0.0260, −0.0179) 0.8950 0.9593

IND-I −0.0220 (−0.0290, −0.0147) 0.8630 0.7057

Mixed AR-1* −0.0218 (−0.0257, −0.0181) 0.9584 0.9377

5 0.99 −0.01

Ind −0.0102 (−0.0202, −0.0007) 0.4337 0.6403 0.5730

AR-1 −0.0101 (−0.0149, −0.0053) 0.9373 0.3323 0.0620

CS −0.0101 (−0.0154, −0.0051) 0.4787 0.7840 0.5120

IND-I −0.0101 (−0.0154, −0.0051) 0.4810 0.7790 0.5153

Mixed AR-1* −0.0096 (−0.0141, −0.0049) 0.9306 0.3024 0.0642

6§ 0.99 −0.022

Ind −0.0217 (−0.0317, −0.0117) 0.4247 0.8300

AR-1 −0.0221 (−0.0266, −0.0174) 0.9420 0.9017

CS −0.0221 (−0.0273, −0.0169) 0.4817 0.9900

IND-I −0.0221 (−0.0274, −0.0168) 0.4787 0.9890

Mixed AR-1* −0.0215 (−0.0264, −0.0171) 0.9254 0.8657

Table 3. Results of simulation study for the AXL inhibition experiment with 6 mice per group and 15 
measurements per mouse29. Covariance matrix structures include independence (Ind), autoregressive (AR-1) & 
compound symmetry (CS). IND-I corresponds to the model with independence covariance structure and a 
mouse indicator (�xed-e�ects model). Mixed AR-1 corresponds to the mixed-e�ects model with random 
intercept. *�e percentage of datasets for which the model did not converge was 1.3, 1.8, 5, 8.5, 25, 34.2 for 
Scenario 1, 2, 3, 4, 5, 6, respectively. For the scenarios for type I error evaluation, the associated percentages were 
0.7, 5 and 22 for ρ of 0, 0.5 and 0.99, respectively. **Type I error is derived from corresponding scenarios with 

β2 = 0. §Scenarios in bold face re�ect parameter values actually observed in the experiment.
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Results
Observed data from previous growth experiments. For the DDT de�ciency experiment, data on 585 
measurements in 30 mice yielded α = .ˆ 1 98 ( . .CI95% 1 933, 2 031), β = .ˆ 0 0251  ( . .CI95% 0 023, 0 028), 

β = − .ˆ 0 00962  ( − . − .CI95% 0 011, 0 007 ) ,  σ = .ˆ 0 175  ( . .CI95% 0 158, 0 191 )  a n d  ρ = .ˆ 0 852 
( . .CI95% 0 819, 0 880), indicating that tumour size on a logarithmic scale increased under cisplatin treatment by 
0.025 mm3 per day among DDT-pro�cient mice and by β β+ =ˆ ˆ

1 2  0.016 mm3 per day among DDT-de�cient mice. 
�e di�erence between these two rates was statistically signi�cant (p < 0.001).

�e AXL antibody experiment included 6 mice per group with an average of 17 measurements per mouse. 
Estimated parameters are α=ˆ  2.115 ( . .CI95% 1 839, 2 392), β = .ˆ 0 0161  ( . .CI95% 0 009, 0 022), β = − .ˆ 0 0222  
( − . − .CI95% 0 030, 0 014), σ = .ˆ 0 487 ( . .CI95% 0 342, 0 691) and ρ = .ˆ 0 99 ( . .CI95% 0 980, 0 995), indicating 
that tumour volume on a logarithmic scale increased by 0.016 mm3 per day among mice in the lgG1-b12 4 mg/kg 

group and decreased by β β+ | = .∣ ^ ^ 0 0061 2  mm3 per day among mice in the AXL-107-MMAE 2 mg/kg group. 
�ere was a signi�cant di�erence between tumour growth in the two treatment groups (p < 0.001).

In the SHP2 inhibition experiment, 17 mice with a total of 118 measurements were used. �e parameters of 
the models were estimated as α=ˆ  2.433 ( . .CI95% 2 332, 2 534), β = .ˆ 0 0171  ( . .CI95% 0 013, 0 020), β = − .ˆ 0 0082  
( − . − .CI95% 0 012, 0 003), σ = .ˆ 0 213 ( . .CI95% 0 168, 0 270) and ρ = .ˆ 0 96 ( . .CI95% 0 946, 0 982), indicating 
that tumour volume on a logarithmic scale increased by 0.017 mm3 per day among mice in the vehicle group and 
by β β+ = .ˆ ˆ 0 0091 2  mm3 per day among mice in the AZD6244 group. �e two growth rates were signi�cantly 
di�erent (p < 0.001).

Note that in all three experiments the autocorrelation ρ was rather high, suggesting that two consecutive 
measurements from the same mouse were highly correlated.

Simulated data based on previous growth experiments. �e average across estimates of β̂2 from the 
generated datasets per scenario were almost identical to the true value of β2 for all evaluated scenarios and all 5 
models. �erefore, we obtained unbiased estimates for the di�erence in tumour growth between two di�erent 
treatments with all 5 models.

For the model with an independent variance-covariance structure, i.e., no correlation between repeated vol-
ume measurements (ρ = 0), coverage was close to 95% and type I error close to 5% for all evaluated β2 values, all 
three experiments and three of the investigated models. �e model with CS showed coverage slightly below 95% 
and a type I error above 5%, while the AR-1 mixed-e�ects model with random intercept showed coverage slightly 
above 95% and type I error below 5%. For non-zero values of ρ, the AR-1 model was the only one which retained 
nominal coverage and type I error in all scenarios. �e AR-1 mixed-e�ects model with random intercept also 
resulted in nominal Type I error, while for the other 3 models, type I error was seriously in�ated. Note that the 
observed data from the three experiments showed a high correlation between repeated tumour volume measure-
ments, i.e., high values of ρ.

For AR-1, the only method controlling the type I error at the nominal level in all scenarios, power was highest 
for scenarios with a small ρ and a large β2. For scenarios re�ecting the actually observed parameter values in 
previous experiments, estimated power was high except for the SHP2 inhibition experiment where it was 25%.

All results of our simulation study are presented in Tables 2–4. �e numbers are based on the 3000 generated 
datasets for all models except the AR-1 mixed-e�ects model with random intercept, since this model was not 
estimable for all datasets. �e percentage of datasets for which the model did not converge varied between 1 and 
50 depending on the scenario.

Sensitivity analysis. Judging from the results above, the AR-1 model was favoured in our main simulation 
study. �is may have been partly due to the fact that in the data generating mechanism we used an AR-1 corre-
lation structure as well. However, when data were generated under autocorrelations not exactly AR-1, unbiased 
estimates of the interaction e�ect were obtained under all scenarios but the type I error rates were in�ated and 
the coverage rates were de�ated, depending on the magnitude of the misspeci�cation of the variance-covariance 
matrix (Table 5, Fig. 1). If the alternative correlation pattern used to generate data was not very di�erent from 
AR-1, which was true for speci�c numbers of measurements per mouse and parameter values θ and ρ that de�ned 
the association between two measurements on consecutive days, then its performance was acceptable under all 
examined scenarios. Nonetheless, we observed larger type I error and smaller coverage with larger misspeci�-
cation of the association between repeated measurements using the AR-1 model. When data generated under 
correlation decreasing linearly with time were analysed with compound symmetry or independent correlation 
structures, coverage and type I error were severely non-nominal (data not shown).

Discussion
We demonstrate that in tumour growth experiments unbiased estimates of the di�erence in tumour growth rates 
by treatment group, i.e., the interaction term, and con�dence intervals with nominal coverage can be obtained 
using a linear regression model with an autoregressive (AR-1) variance-covariance structure. �ese conclusions 
hold for a wide range of realistic scenarios based on three previous experiments with small numbers of mice and 
highly correlated longitudinal measurements. Although we recommend this method, which is relatively simple 
and implemented in all major statistical so�ware packages, results need to be interpreted with care because type I 
errors could be somewhat in�ated due to misspeci�cation of the covariance structure.

Longitudinal data is usually analysed using mixed-e�ects models, where repeated measurements are nested 
within subjects. Many researchers apply random intercept only models, where the intercept is the only parameter 
that varies between subjects while all other parameters, e.g., the time slope, are �xed. However, in our simulation 
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study we experienced that such models do not always converge. In some of the evaluated scenarios, we detected 
non-convergence problems in up to 50% of the simulated datasets. Since experimental mice are genetically iden-
tical and share the same environment, there is a small variability of the log-volume at the time of randomization 
between mice suggesting very similar estimations of individual mouse intercepts.

Guerin and Stroup22 performed a simulation study on repeated measures data and analysed them with ran-
dom intercept only models with several variance-covariance matrix structures. �eir study is very similar to ours 
in terms of the research goal, and it was the only study that evaluated properties of the interaction term. Exploring 
type I error rates, convergence and several model selection criteria, they concluded that the Kenward-Roger cor-
rection should be used with small sample sizes. However, they also experienced non-convergence problems with 
the random intercept model. �e authors proposed dropping the between subject random intercept if its variance 
is approximately zero, i.e., using a model with only �xed parameters.

Wang and Goonewardene23 explored the use of random intercept only models for repeated measures data 
in animal experiments and recommended a model with the �rst order ante dependence (ANTE(1)) covariance 
structure, which allowed for unequal variances over time and unequal correlations and covariance among dif-
ferent pairs of measurements. �is recommendation was based on small sample behaviour of typical animal 
experiments conducted in animal health and agricultural settings however where animals are not identical, e.g. 
steers or cows.

Using example data on BT-20 human breast tumour in nude mice, Heitjan et al.15 compared the most com-
monly used statistical methods to analyse tumour growth experiments in vivo, including ANOVA, t-test, and 
Mann-Whitney methods. �ey concluded that these approaches could be misleading due to severely in�ated type 
I errors. Instead, multivariate models, like MANOVA or a random e�ects model with AR-1 covariance structure 

Scenario ρ True β2 Model Mean estimated β2 (IQR) Coverage Power Type I error**

1 0 −0.008

Ind −0.0080 (−0.0118, −0.0041) 0.9477 0.3020 0.0520

AR-1 −0.0080 (−0.0117, −0.0041) 0.9503 0.2907 0.0483

CS −0.0080 (−0.0117, −0.0041) 0.9320 0.3180 0.0590

IND-I −0.0082 (−0.0145, −0.0020) 0.9540 0.1347 0.0543

Mixed AR-1* −0.0079 (−0.0115, −0.0042) 0.9659 0.2638 0.0385

2 0 −0.015

Ind −0.0150 (−0.0187, −0.0114) 0.9510 0.7690

AR-1 −0.0150 (−0.0187, −0.0114) 0.9550 0.7593

CS −0.0150 (−0.0187, −0.0113) 0.9410 0.7783

IND-I −0.0151 (−0.0213, −0.0090) 0.9570 0.3620

Mixed AR-1* −0.0148 (−0.0186, −0.0110) 0.9605 0.7125

3 0.5 −0.008

Ind −0.0079 (−0.0123, −0.0034) 0.8967 0.3323 0.1067

AR-1 −0.0079 (−0.0123, −0.0035) 0.9490 0.2187 0.0537

CS −0.0078 (−0.0125, −0.0033) 0.9090 0.2780 0.0907

IND-I −0.0077 (−0.0151, −0.0000) 0.8717 0.2063 0.1150

Mixed AR-1* −0.0076 (−0.0118, −0.0033) 0.9564 0.1891 0.0609

4 0.5 −0.015

Ind −0.0149 (−0.0195, −0.0104) 0.8947 0.7220

AR-1 −0.0150 (−0.0196, −0.0103) 0.9500 0.6040

CS −0.0150 (−0.0198, −0.0101) 0.9143 0.6510

IND-I −0.0150 (−0.0225, −0.0075) 0.8853 0.4163

Mixed AR-1* −0.0147 (−0.0194, −0.0101) 0.9511 0.5772

5§ 0.96 −0.008

Ind −0.0083 (−0.0157, −0.0010) 0.6522 0.4582 0.3427

AR-1 −0.0082 (−0.0128, −0.0037) 0.9507 0.2534 0.0523

CS −0.0082 (−0.0134, −0.0032) 0.6776 0.5605 0.3047

IND-I −0.0082 (−0.0136, −0.0031) 0.6742 0.5462 0.3093

Mixed AR-1* −0.0076 (−0.0119, −0.0032) 0.9280 0.2139 0.0597

6 0.96 −0.015

Ind −0.0148 (−0.0222, −0.0073) 0.6547 0.6523

AR-1 −0.0148 (−0.0192, −0.0103) 0.9413 0.6230

CS −0.0148 (−0.0198, −0.0099) 0.6847 0.8423

IND-I −0.0148 (−0.0200, −0.0097) 0.6787 0.8220

Mixed AR-1* −0.0144 (−0.0190, −0.1000) 0.9272 0.5857

Table 4. Results of simulation study for the SHP2 inhibition experiment with 10 mice per group and 7 
measurements per mouse30. Covariance matrix structures include independence (Ind), autoregressive (AR-1) & 
compound symmetry (CS). IND-I corresponds to the model with independence covariance structure and a 
mouse indicator (�xed-e�ects model). Mixed AR-1 corresponds to the mixed-e�ects model with random 
intercept. *�e percentage of datasets for which the model did not converge was 20.7, 24.7, 32.6, 37, 48, 50 for 
Scenario 1, 2, 3, 4, 5, 6, respectively. For the scenarios for type I error evaluation, the associated percentages were 
18.5, 32 and 44 for ρ of 0, 0.5 and 0.96, respectively. **Type I error is derived from corresponding scenarios with 

β2 = 0. §Scenarios in bold face re�ect parameter values actually observed in the experiment.
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should be used, because they retained the nominal type I error rates in various sample sizes, achieving also rea-
sonable levels of statistical power.

Interesting approaches were developed by Zhao et al.39 to model tumour pro�les of mice that had an almost 
total tumour regression due to initial e�ciency of treatment followed by a re-growth phase, and by Laajala et al.25 
to distinguish between growing and poorly growing tumours in mice experiments, thus to model the tumour 
heterogeneity. �ere are also other studies that have evaluated small sample properties of methods for the anal-
ysis of correlated data, but these were focused on hierarchical data instead of longitudinal data40,41. McNeish 
and Stapleton18 compared twelve methods, including Bayesian alternatives, for analysing hierarchical data with 
small to moderate sample sizes. Using the results from a real life study from educational psychology, they con-
ducted a broad and comprehensive simulation study to assess the statistical properties of the regression coe�-
cient estimates as well as those of the variance component estimates. Even with less than ten clusters and less 
than 14 observations per cluster, some methods resulted in e�cient parameter estimates. Simulations showed 
that mixed-e�ects models estimated with Markov chain Monte Carlo algorithm and an inverse gamma prior 
performed well with such small samples. With a half-Cauchy prior for a slightly larger number of observations 
per cluster, up to 34, a somewhat better performance could be achieved. �e study also showed that �xed-e�ects 
models performed well and should be considered as an alternative approach in similar studies. However, the 
investigation was not focused on longitudinal data but clustered data where each individual had only one meas-
urement and individuals whose outcome could be correlated were clustered together.

Pekar and Brabac42 compared generalized least squares regression with mixed-e�ects models using �ve data 
examples from behavioural research, including longitudinal data, and suggested that the former was an e�ec-
tive alternative method for analysing correlated data in that �eld and when the random e�ects were not of the 
researcher’s particular interest.

Our study has a number of strengths. First of all, we use real data from previous experiments in order to 
understand the characteristics of the methods in relevant circumstances. Our simulations are also based on these 
data and therefore re�ect realistic scenarios, tailored to mice experiments. Moreover, the methods we investigate 
are very simple and therefore accessible to non-statisticians. Finally, the methods are implemented in most sta-
tistical so�ware.

Our study has also several limitations. (1) We assume that log-transformed tumour volume is linearly 
associated with time. This assumption seems adequate, since tumours commonly grow slowly during the 
first days of treatment, before they become resistant, and then grow much faster. However, tumour vol-
ume may sometimes initially decrease due to treatment efficacy and eventually increase when the tumour 
becomes resistant to the treatment. Even in this case, a linear approximation of the growth patterns should 
allow detection of substantial group differences. The alternative, namely using complex flexible relation-
ships has the drawback that it involves many parameters resulting in tests with low power. (2) We generate 
equal numbers of tumour volume measurements for all mice in a study. This means that we do not allow 
for the fact that some mice are sacrificed before the end of the study, i.e. when they suffer too much or their 
tumour exceeds a threshold size. We assume that using these additional data, which are not available in real 
experiments, does not add any new information about the tumour growth over time. Therefore, it does not 
influence the point estimate of tumour growth, although power might be slightly overestimated. The com-
parison of different methods based on the same generated data is unlikely to be affected. (3) We generate 
data using the AR-1 variance-covariance matrix although in reality other correlation patterns for longitudi-
nal data are possible. We perform sensitivity analyses generating data under a covariance matrix where the 
correlation between measurements within mice decays linearly with time, using three different scenarios. 
The results show that a misspecification of the covariance matrix might have an effect on the inference but 

Experiment ρ True β2

Coverage Type I error**

θ=0.02 θ=0.05 θ=0.08 θ=0.02 θ=0.05 θ=0.08

Buoninfante et al.28 §

0.5
−0.002 0.8370 0.9147 0.9417

0.1627 0.0847 0.0597
−0.0096 0.8387 0.9167 0.9460

0.85
−0.002 0.9110 0.9250 0.9457

0.0873 0.0613 0.0447
−0.0096 0.9107 0.9300 0.9547

Boshuizen et al.§,29

0.5
−0.01 0.8243 0.9093 0.9373

0.1710 0.0923 0.0683
−0.022 0.8353 0.9137 0.9407

0.99
−0.01 0.9307 0.9257 0.9563

0.0757 0.0743 0.0503
−0.022 0.9377 0.9197 0.9530

Mainardi et al.30 §

0.5
−0.008 0.9100 0.9250 0.9330

0.0890 0.085 0.070
−0.015 0.9120 0.9237 0.9353

0.96
−0.008 0.9727 0.9367 0.9160

0.0263 0.053 0.079
−0.015 0.9660 0.9410 0.9190

Table 5. Results from simulation study with data generated under a linearly decreasing correlation structure*. 
*Variance-covariance matrix with non-diagonal elements ρ-θ*∆(t) where ∆(t) is the time di�erence between 
measurements (see paragraph on sensitivity analysis in methods section). **Type I error is derived from 
corresponding scenarios with β2 = 0. §Scenarios in bold face re�ect parameter values actually observed in the 
experiment.
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not on the estimate of the interaction effect. Although the AR-1 model performs best in our simulation, its 
performance depends on the magnitude of the misspecification, as well as on the true value of correlation 
between measurements. High type I errors lead to more false positives results and, therefore, results should 
be interpreted with caution, particularly if p-values are borderline significant. (4) Finally, our models, as 
those of others43–45, do not include a main effect of treatment which results in a slightly higher power level 
for the interaction term between time and treatment in comparison to a model which includes this effect 
(data not shown). The omission of the main effect is reasonable in mice experiments since any difference 
between treatment groups at the time of randomization is due to chance. Mice are genetically identical, 
they share the same environment and are randomized to treatment groups when they reach similar tumour 
volume. I.e., there are no specific reasons why the average tumour volume between the treatment groups at 
the beginning of the study could differ.

Our results demonstrate that the generalized least squares regression (GLS) with an autoregressive (AR-1) 
variance-covariance matrix provides e�cient and unbiased results as well as nominal coverage and type I error 
for a broad range of realistic scenarios and for sample sizes as low as 6 mice per group and a moderate number 
of measurements. �e method is, however, somewhat sensitive to misspeci�cation of the correlation structure, 
with moderately sub-nominal coverage and type I error if the true underlying correlation structure is not too 
di�erent from AR-1. �e use of correlation structures such as compound symmetry or independence when the 
true underlying correlation structure is similar or close to AR-1 results in severely in�ated type I error. �e AR-1 
model with random intercept can lead to convergence problems. �ese methods should therefore not be used in 
mice experiments on tumour growth.

Although we focused on one particular outcome, the recommended model can be implemented to evaluate 
other outcomes studied in preclinical animal experiments. For example, as recently reported by Zhao et al.14, a 
repeated measurements design is common in studies on body weight change over time collected in mice experi-
ments. Authors reviewed 58 manuscripts assessing this outcome and found that less than half of the studies were 
analysed with a method that fully utilized all collected data. In addition, the authors stressed the importance to 
incorporate statistical methods for repeated measurements when multiple measurements per mouse are available. 
�erefore, we hope our recommended model will be considered to study various outcomes collected in preclinical 
animal experiments.
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