STATISTICAL ANALYSIS OF ONE-DIMENSIONAL
DISTRIBUTIONS

By

RoBerT ScHMIDT

The present research is to be considered as a contribution to
a range of science in which the pioneer work has been done by K.
PearsoN. The method for analysing statistical distributions to be
developed here differs in principle—as far as the author can see—
from the known ones. The mathematical resources are all well
known and so simple that their deduction ab ovo could be carried
through on a few pages; hence this investigation is intelligible to
anyone who remembers his mathematical knowledge acquired at
school.

The main resource consists of the process of orthogonaliza-
tion, fundamental in the theory of integral equations. The central
idea characterizing the following is, not to deal with a frequency
function itself, nor with its integral function, but with the tnzerse
of the integral function. The general scope will be given in No. 3.

The author is indebted to his wife and to Mr. J. L. K. GiFForp,
M.A., of Queensland University for kind help in revising the
English text.

1. DESIGNATIONS AND GENERAL ASSUMPTIONS

A curve y=qp), (~oo{x{+o2) shall be called a “frequency

curve”, the function @&) a “frequency function”, if @) satisfies

the following conditions:

1. 9x)2o0 (—ooé)((—!—oo)
2. The moments u, = fx"q’a) dx exist for k=gt 1
3. A= .

For our purposes it is convenient—though not necessary—to

11n this paper we shall not have to make use of the second condition
(except in the special case K=o ); in further notes, too, the condition will

never be applied to its full extent.
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add a fourth condition which it 12 simplest to formulate by using
the function ¢(x) - [ ge)dt,

This function is constantly increasing in -0 {x{+e , and
we have xﬁ,:,:o ¢'(x) =0 xf)“::*o Py =1
The fourth condition is to guarantee that /(x) assumes every value
from a(aj( ! just once, so that @(x) possesses a unique inverse
function in the ordinary sense.

4. a) @(r) is continuous

b) At every x where ol P {1 , ¢(x) is in-

creasing (strictly speaking), that is: From x'(x{x" it always
follows that  F') { dex) { B(x").

When the conditions 1 - 4 are fulfilled, let us denote ¢(x) as
the “frequency integral” of the frequency function gig).

Then there exists one and only one function pj) in ofyl1 ,
satisfying  W[fr) = X (o< dw (1)
and y(y) is called the inverse function of ﬁ(ﬁ) . This function Y(y)
is continuous and constantly increasing (strictly speaking), and
therefore possesses a unique inverse, namely @) :

¢[‘P(7)]E 4 (o<%(1).

We give here some special examples of frequency curves.

I. 'The “Step Curve”.

- _ ! n o x4t
b Py = { o otherwise,

The moments are .4, = e (k=912 ).

The frequency integral is
o in -eo{x{o
¢(x) = X in o £ x<{!
I in | & x{+0

The inverse is

vy =y (o<30)
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II. The Normal Law of Error.

X
z

J= 99 ime 7,

with the moments

a@m!

Tl [T K= 2n

M F

0 for Kk=z2mr1  (m=g--- )

and the frequency integral X
-z

/(X) = ﬁ"-—,;__wf e dt.

There are a number of tables of the numerical values of this
function. Of course these tables can be used to compute the values
of ¥(y). Considering the fact that, for our purposes, the values of
¥(y) will often be required for simple rational arguments only, it.
seems useful to have tables which are converse to those just quoted,
that is to say, the tabulated entry of which is x= ¢(4) and the
argument Y= @) . Such tables have been calculated by KeLLEY
and Woop (Statistical Method, New York 1924; Appendix C).

III. The Laplace Curve. Il

y=9m=+fe
(@n)!=k{ for K=2m
/“—K =

o for k=zan+t (m=o0,1--")

fe in -0 {x{o
g = 1-te" in o0& x (+e0

(’a};.‘,ﬁ;z‘ in o<,<'/2_
'P(‘J)={—l$;(l-y)—6;z in 243400
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IV. The “Tine Curve”.
o in —oo{x{-!
1+x in gy {x{o
y=97(x)= 1/-,( n 0 § X{+1
o

in +1 { x{+00

s e

o in —ool{x({-I
¢(x)= 2(/+x) in. —-14&x<o
-5(1- x)* in o { x {+!

/ in +1 & X {4+

-I+Vzy  in 0yt
Vo) = vrag i m <

2. ExkEe’s “BesT VALUES”

A. EKKE, in his Kiel dissertation (to appear), deals with the
following question among others: Suppose a frequency function
@) and a natural number 7 given. Which one among all systems
of 7 values X,,--,%, might be considered the “best” 7—To give
an answer to this question, EXKE divides the total x- axis into 7z

parts Z, ---, I with the separatmg points e ...« in such

a manner that
/9’&)4"‘[4’690(1‘—” /4’(%)17“""

Evidently this is possxble in one and only one manner, and

(_"_'-’)) N = ‘P(—:'T.)) "'JYn-,= 'f(ﬂ'r:f,
Each of the parts Z, 0y I should contain exactly one value of
the system. Furthermore it seems reasonable to fix every point X,
within 1ts interval I, by the conditions
fd’m dy = /troc)dx, ---- f%c)dx /‘769 dx.
ThlS also can be done in one and only one way. Let us designate
these “best values” by §, -, g . We have

() & =94E), §&=.p(ﬁ)1....’§n=wz_%).

we have
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Concerning the best values, EKKE proves two theorems which
accentuate the rationality of the definition. If x, £ ----£ X, are
values arranged accerding to magnitude, and

0 in —RLEL X,
£ in %, L x L Xy Vet nel)

S(X; xl,....7xn) = 2R
{ in %, £ x £ +e0.
the following theorem holds:

“There is one and only one system x

+ a0
~°c,/ { o) - S(%; %, m}z ax
assuines a minimum, and this system is X, = §, PRI A 5» J
This theorem also holds if the exponent 2 is replaced by an arbi-
trary positive number.—Furthermore:
“There is one and only one set x, .-+, x.  for which the low-
est upper boundary of

-+05 X, for which

| #oy - 5(x; %5 x,) |

assumes a minimum, and this set again is identical with § .- 5, .
For normalizing purposes EXKE considers, together with a
given frequency function ¢y, the totality of the frequency func-
tions which result by linear transformations of the argument, i.e.
which result by translations and dilatations in the direction of the
x~ axis (or by choosing new origins and new units of measure-
ment). With an arbitrary /3 »and «) 0 , we have to form
gy = % g(x0r),
the first factor ;L being required in order to comply with con-
dition 3. The frequency integral corresponding to 3”(") is
éfﬂ = $(L0x),

~S .
Yiy)= > Yeyp)*/3.

Due to this simple relation between W(y)and ¥(y), we have
evidently, if § -+, §, designate the best values of Zf(x) ,

»

and the inverse

g':qrg'f/s, g1=-($1+ﬂ7 ,’é—»f «€u+ﬂ'
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This fact can be used to pick out from the multitude of functions
3”(1) a distinct specimen, and then to operate with its best values
only. It is easy to show in a direct manner that there is exactly
one specimen in the multitude which complies with the additional
conditions i, =0, x4, =1.

3. THE STARTING PoINT. GENERAL SCOPE.

But the proof of the fact just mentioned can be given indirect-
ly too by considering the inverses tfl(,), and it is this way which
gives the starting point of our further developments Indeed, if
we introduce — for simplicity — Stieltjes integrals, the conditions
A, =0, g, = 1 mean

<Q© —~ + 00 ~
_mfvc dguy =0 _mfxzd P =1

and by the substitution x= ;'F(‘I) we get
"v ~ 2
of‘rc,)dro, !‘P(;)dgp /

or
! !
of(/gf"’( ?(’))dyzo’ ‘;/'(/3,41 l’)(,))zdyz /.
Let us put
and e =1,  hlp =P

X (3)= % $(y)
X&) ALy += Y.

Then our conditions are equivalent to the following demand: Find
coeﬂiments °; A% (\;)o %;)0) in such a manner that

f Xy =1, JXt)Xeg)dyeo, / Xy dy=t.

We add: The functions ¥(g) and Y (y) are linearly indepen-
dent, ie. A Ycy) +X, Y(y)= 0 cannot hold except for A, =A, =0.

Now it is obvious that our demand represents a special case of
the general problem as follows: Given a set of linearly independent
continuous functions Yiy), Y, -, Gfi(t;) (0(7(0) . The scheme
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of coefficients

satisfying the additional conditions &4 »o, /3 o, ---, ﬁ“) o,
shall be chosen so that the functions

Zy) =, ¢
Z,ty) =/3, By +3, P)

I .

Zo(y) = B CD+By Wig)+r 9(y)

form a normalized orthogonal system, i.e.

! for =
Sz oy - {ow ey

It is well known that there is one and only one suitable scheme,
and it is furnished by the so-called process of orthogonalization.
Furthermore it is well known that the process of orthogonaliza-
tion is intimately connected with another problem: An arbitrary
continuwous function F(’) given, to determine the coefficients G-, 6

!
2
so that f{F(” —[q’ Yiy)y - - - +q lﬂ(uﬂ]} dy

assimes a minimum.

Concerning frequency functions, we are led — by pursuing
this line—to a general theory of curve types; an account of the
results to be obtained will be given in a future article.

Concerning our analysis of statistical data, we do not intend
to use. from a given frequency function more than its best values.
More precisely : e intend to replace the frequency function by its
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best values. Our modus procedendi now results by analogy: we
have to deal with systems of values (vectors)

(u'u ) u"lZ) TS LL,,")
(u'z’) 22 ) 5 l"’zn)
(um: u’xz:" Y u"\"")

which are linearly independent (see No. 5). We have to employ

the process of orthogonalization, which gives a normalized orthog-
onal system (see No. 6)

Wy s Wiz, o775 Win)

(Vl{", Wazy'' T Vl/z.n)

- o m ar et o - -

(WM ry Y T Wxn)
and we have to direct our attention to the stms of the form

" 3
/ - cen
n % { u, (C0 u,,+ +Cy u'mi)} 2
or better

!

" % {”’u'(iﬂ"‘/w*”" +g:<WKV)}

Finally we have to introduce the special set of vectors

(,),,....’ /)

2

e )

[} 2 o
where £, .- & designate the best values of a frequency function.

We ate now in the position to characterize the direction of
our research in general words: A statistical analysis of distribu-
tions as an application of the theory of orthogonal systems, based
upon the best values of a given frequency function.

4. 'VECTORS
For our purpose it 1s convenient to make use of the notations
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and simplest operations of vector analysis. If w;,u, - u, are a set
of numbers, we take the symbol (w, '+, Uy, ) as an individual, call
it a vector, and designate it by a gothic letter:
s (e, )
Equality of two vectors AL =(u v, w)yand = (v -, v,)
is defined by
W=V, W=V, o Uy,=Vs,
and is written .42 = 0 . The products of a number < with a vector
41 are defined by
cAl = (CU,,  CUy)
ALc=(we, - u.c) ;
the sum of two vectors 4 and 40 by
Mtz (wry oy Ut ).
Evidently we have
c AL = AL
and o
G +10) + M0 = M+ (R+2400) .
Hence we may omit the brackets, and the sum of three or more
vectors has a definite sense. More general, the meaning of the

expression o
[ %4
€, Ay o A My

is clear. The product of two vectors is (somewhat differently from
the customary way) defined as a NUMBER, viz.
A s Lyt U ),

and we have o -

M A = MO A
(AL +40) D = AL 410 +.40 MO .
But in general the vectors (4z.w)uo and 4'4/«00/%0) are entirely
different.

Let us put O = (gjo’...)o).

2
Every vector,lz satisfies A% =L 4% 20, and 420 is the only
vector for which 4% =8 holds. — Whenever the square root

of the square of a vector,

l/—/li:{ = lf--'--————--"“-"",-"';;_ru’L ’
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is met with, we always mean the positive value.
5. LINEAR INDEPENDENCE
A set of vectors jé’- - ,21& is said to be linearly independent
if the equation
"l”-"’/’l"-"'z’,;z +“”+)'KA7’K = 0
does not hold except for A = A =..-=A, = 0. Otherwise the
vectors are said to be linearly dependent. 1f the vectors

w [ , o
/ﬂ‘, Mz," a’“’x

are linearly independent, all the more the same is true for every
partial system. Especially:
’ﬁ?*’ﬂ; /"‘;i*’of)""r"zx#’o/'
TueoreM 1. “Let 4% KOS /171:( be linearly independent ; form
the vectors

(%4 o
M = A, M
X s %
(2) /{4{2 = a’zl ’ + agz 2
My, = Qg M Py My ot B My
and suppose
a,#0, A,#0,:---, a,*O0.
Then the vectors AL -« -, A‘i: are also linearly independent.”

In fact, if there were a relation of the form
¥ o ®
Q4L e A A =07
and the factors /l,,---, )K were not all equal to zero, then there
would be a last factor differing from zero, say XL , and we should
have * *
/\,/ﬂ“i«’ +..-+)‘_A‘4J1_=/0’ (ll_*o)
(2 3 wx .
1+f we were to replace #;,-:*, #; by the expressions (2), we
should get a relation of the form o
M oot Ay My, +a‘LL;lL'“i. =0
which is impossible on account of @,, # 0, A #0 and the presup-
posed linear independency of 4%, -, A%, -
In order to prove some further theorems it is convenient—

but not necessary — to make use of the following fundamental
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theorem concerning systems of homogeneous linear equations.
“A necessary and sufficient condition that the system of equa-
tions

a'llx/-r..‘."f-a‘l‘n’x‘n:o
Apy X5 + -0 FQyn ¥y =0

should have no other solution than X, = X, == X, =0 is

a'll.'.‘al

” o
+0.
a"l..-. a"n

From this statement at once follows:

THEOREM 2. “A necessary and sufficient condition that the
vectors
M = (u‘ur LL,Z,"")LL',")

- e g p—

/;i’,., = (unn WUpzr' " "D Upy)
should be linearly independent is
U, -+ Uy, o
# 0 .
Up " " Upn

In fact, linear dependence of 4% ,- -, 4% is equivalent to the
existence of values A, .-, L, not all equal to zero, satisfying

Lu, X w, +- -+ A u, =0
A Uy + A b b A, 0, =0
dnd the determinant of these equations is equal to the determinant
above.
Tueorem 3. “If /07,«,-“,% are linearly independent, the
number x of the vectgrs cannot exceed the number n. of the com-

pomnents: K £ m,
We prove this theorem by showing:

?
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“If mtt  wvectors

[ 2

M, = (u’u"")u’ln)
\vs
M= ( Waetyp 22 Umgy s m)
are given, they are linearly dependent.”
For obviously, the determinant of the equations

Auw +-+ A U =0
1% ,

A, +omk Ay Ysr,y = ©

A O+t -+ A, O
vanishes, hence the system possesses a solution A, yo A, dif-

> Tttt
0 , and with such values A,y Ay, the

n
o

ferent from 0.,

first 7 equations mean
’1:/‘;, Foooot A"HH A:;;m =0
6. NorMALIZED ORTHOGONAL SYSTEMS OF VECTORS

If 42% =/ , the vector 4% is said to be normalized. Every
vector 4% # 0 can be normalized by multiplying it by \/_'j,,ﬁ .

If 42.0=0 , the pair of vectors 4% and 0 is said to be
orthogonal. The vectors A:Z”- -, /tft’g‘ are said to form an or-
thogonal system, if every pair of them is orthogonals

Finally the vectors AZ, RS /tﬁt’z,( are said to form a normal-
ized orthogonal system, if they form an orthogonal system and each
of them is normalized. Accordingly a normalized orthogonal sys-

tem is characterized by the conditions

/ for 77 = Z_
~ (%4
o for p# #-
Vectors forming a normalized orthogonal system necessarily
are linearly independent. For, from

o~ A —
/\,,1,17 + f/lK/MQ—-/a/
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follows
v (o4 (4 -~
(Al’“’/ +.-- +AKMK)M7L = /0//1410:0 (7[:/,2)...,/()
or
A A Al b A Ay A = 0,
and from (3):

)”=0 (77= I,..Z‘,-*'7 K).
7. THE Process oF ORTHOGONALIZATION

THEOREM 4. “If the vectors jf;,. - 4'7« are lincarly inde-
pendent, there is one and only onc scheme of values

“ (3,50)
Bas ﬁzz (511 )o)
so that the/jg'tors Pz B (B ? ")
% :/1:‘” At [h2 M
4) AU

o/ -~ o
/’40“=ﬂ“/14/,+ﬂ’(2 ‘Mzz*...orkk/p‘,k

form a normalized orthogonal system.” 4
To prove this theorem, fundamental fot ouir analysis, let us

consider o
,{0,.-. A
J
A = AL+ M.
} . .
A= Ve M +7""z/kg+---+/wk-

From theorem 1 it follows that the vectors 4, ', 40 are
linearly independent. — Let us assume we have already proved that
there is one and only one system of values ¥ so that (5) is an
orthogonal system. Then it follows firstly that the coefficients /3
in (4) can be chosen in a¢ least one siitable manner. For we have

A"'/‘(,)z >0’...., l,(:‘//xokz )0,
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are suitable values, Secondly we can deduce th;_ unigueness of the
coefficients 3 in (4). For suppose /3 and /3 to be two suitable
systems of coefficients ; this suggests that we form
Ay B :
};Il.ﬁ——::‘,.n’l-—ﬂ—,;) Y.;z ﬂs 2 2 K1 B;';,‘ J'()o[(., ﬂkk P
associated with

=L . = -
AQ A, A7 )y % E S’y
and I *
* » * »
Y*= ._Hi/ T,rs ﬂ" ')"*-e ﬂ;z vest *:.é"_'.' Y*= ﬂ*’“‘"
21 *z 2 gy 6,; 7 I3, ﬂ* 2 2 Iy ﬂk Yook " ﬂkﬂ'
associated with 3 k "
» ' ”x » ! »
L RN ey M E A
{ K
The vectors 40, - - 47, as well a ,40'*, ceeen, Aq‘* form orthog-

onal systems of the type (2), hence
E.3
o R R
and furthermore x
w*‘:/“q)... 417 MOK=A40“.

[ %4

Finally, because of the linear independence of 4%, - «: 4% :

» . a* » * x
:6:'1 < /3, )ﬂz/’ﬂzn/‘?’tz’ﬂuV ) ,=ﬂm}7ﬂnn = Sk -

-Accordingly we may confine ourselves to proving the existence
and uniqueness of suitable coefficients ¥ in (5).

This proposition is true for k= / . Let k22 arbitrarily, and
assume the proposition to be proved up to k-7 . The vectors
A&,--, 42 therefore are orthogonal, and we have to show only:

/)' )

There 1s.o.ne and only one set of values | R );:H so that
the conditions

(6) MM =0, G A]=0, -, A M= O

are satisfied.

The vectors ¢ .- -, A%,., can be represented as linear com-

(24

) :

binations of A,

)-%( \§(
¥
312

My, 2C Mt l MO 4

vl K-2 K2
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We introduce this into 4, , and get

7 =
7 = C;“/n,-r +Cx,x—l

A\
A, + 2,
with
Cor= oy * Car Yozt Sy Y wet

(8) C'(2 = . Y&z o F JCK_”Z K’,K-'

ed s o a e
Vi k1

- Crwt
From the linear independence of 4+, 4, we have

/l(?l)o,‘-«-, ,q:,)o,and therefore we can deduce from (7):
Ay A, A 2,

(9) CK'=—_V52__;-‘,......,C“’k_’z_,/né ot

K-y
The coefficients )y .-, Yot having to satisfy the equations (8)
with the values (9) of C -, C,(' x-; » there can exist only
one suitable system 1‘.‘0)- R A

Conversely: if Cy, .-, C, 'K_' are chosen according to (9),
and then Y x"* , calculated from (8), evidently there re-
sults a vector 4, satisfying (6).

We add:

TreoREM 5. “If 4;,,---,4‘4’;‘ are linearly independent, and
M,y M, oS the corresponding normal:’fed ort}:)gomd system,
then the normalized orthogonal system 4, -- -, 40,  correspond-
ing to

» (%4
/"‘i’, = a, #, (qu>a)
[V o~ J
L = @y, At A, (a,,%0)
v ¥

7} % +.ta M (a )a)
% @y M+ G Mt al’lf kY
is identical with #Q + + 40, 7
Obviously the vectors 0™ are of the form
" < B, # (B,>0)
(B,;>0)

- -—- e -~

* ) )
M = B, M + B AL+t B AL (8, >0)
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The proof of theorem 5 now follows as an immediate application
of theorem 4.

8. CoMPLETE SySTEMS OF NORMALIZED
ORrTHOGONAL VECTORS
A system of normlized orthogonal vectors 4o, ,---, #0, s
said to be complete if, corresponding to every arbitrary vector 44,
there exist coefficients < .- <, so that
.« 2z
(10) {4~ (camgr - ro ug)} =0
holds. Evidently, (10) is equivalent to
Ao O MO S A,
THEOREM 6. “If the vectors m0,,#5, (xs=») form a nor-
malized orthogonal system, then this system is COMPLETE.”
Proof. According to theorem 3, the 7+/ vectors Aaq,-«,,w,,,i
are linearly dependent, i.e. there is an equality
-
A D+t A MO+ Al =0,
and l,,---,),u, A are not all equal to zero. The vectors #0 |,
being linearly independent, we have necessarily A # 0 . Hence
V s - l . o4 A'
A = —I‘ A - _x"l- A0,
The condition K= is also mecessary for completeness, but
we shall not have to make use of it.
9. APPROXIMATION IN THE MEAN
Let us consider a normalized orthogonal system MO, MOy
and an arbitrary vector 4. We wish to determine the coefficients

4

-+ e in such a way that  «
y )k y b 3
{4 - Z by
assumes a minimum. If there exists a suitable set of coefficients,
we say that the corresponding linear combination &,aﬁ, #o *J;‘ O,

gives a “best approzximation in the mean” to the vector 42,
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The following transformations will at once clear up the sit-

uation :
o ol 2 2 *
-2 bom}= i 2Z bmi+Z G4 g
K LY * ~,
= 43 Z i) & Z (#0i1) -2 2 baa ArZ b
«

and if we designate
« (%4
Q =M)A., QAy= MY, 0, Q= A
we have the fundamental equation

(11) {d~§(§w,‘} i - Zax-rxg’(&— x)

X3t

On the right hand, the coefficients 7 -+, & are not met with
but in the last sum, and this sum assumes a minimum for &x = @y
only. By that, we have:

THEOREM 7. “Among all linear combinations of the normal-
ized orthogonal vectors 4,.-, 145, there is one and only one which
gives a best approximation in the mean to the vector 41, and the
‘best coefficients’ are a,, @, ,-- Y Qe A

The equation (11) admits some important conclusions con-
cerning the coefficients a,,---, 4 . By putting

4:4 ‘.--’&Kaa'(

we derive
2 2
= Z a
2 i Z e} 2
The left side herein evidently is not negative, hence
z v 2
(13) a,"m‘»,.--. ra, & 4

Finally, if 49, .-, 40, is a COMPLETE system of normalized
orthogonal vectors, the preceding reasonings of course hold for

every K=/ Z,-+-5, 7 - But we can show more than (13), viz.

2 2
(14) a+at+a, =4
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Indeed, according to the definition of completeness we have
with suitable & -+, &, :

z éw.,}to

v=1

fi -

and a fortiori, by theorem 7,
o 7 2
fii- z am]=o,

which is, regarding (12), equivalent to (14).
10. TuE TcHEBYCHEF COEFFICIENTS

Let g'< €1<”"<€'»

be a set of best values corresponding to a given frequency function
@) (see No.2). We form

’g:(l, <o, 1

(4

)
/g,"' (é,, g,_)"') én)
€ - (&, &, &)

6»—:‘ (é:ﬂy %:H: ) é'::)

The vectors éo , €., are linearly independent. For

> kol

means ,10’6. R l,,_, ’é,H =_0

2 7~
"o*”l €,+11$v+--*+1"_l gv =0 (u=’)"'r7‘))
that is, the polynomial -’
P(x) = )o"- R'l Xt +-A‘)I-l x
of degree £ (m-1) possesses 73 different zeros %’,,'--, g,.
But the number of zeros of a polynomial cannot exceed its degree

(15)

unless all coefficients vanish. Hence A = A= - = A =0,
Let us designate the (complete) set of normalized orthogonal
vectors corresponding to f” tee, é,,., by 730 }’” )
When we have to deal with a set of observations x, ... x_,
there will not be any practical loss of generality if we assume these
values arranged according to magnitude,

x,< Yzé“' é¥n7
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and to be not all equal. Then we define the vector € by
,é = (%, %07, x,.),
and we. propose to call the coefficients
a,s ?.6, a,: ?é ;_,H/é
“T'chebychef Coefficients” of G .
The central position of the Tchebychef coefficients for analyz-
ing purposes is pointed out by the following theorems 8 and 9.
TueoreM 8. “The set Fo j, >y Ju-r and a fortiori the
Tchebychef coefficients a, , a,,- a,._, of the observations
X, %,y Xy do not depemi on the speaal frequency function 4fx),
but on the type only to which G0 belongs.”
To prove this theorem, let us consider, besides #6) , an arbi-

trary individual of its type,
The best values correspondmg to P00 are (see No. 2)
é Y&*ﬂ, ,é. —q'é,"’ﬂy
and we deduce, if g ,.) /é*_' designate the vectors (15) ob-
tained from f mstead of & ... ¢,
’ 'n 1) 2

”n

i -
’(’3 :ﬂ6+'r'é

% ﬂ‘é +1ﬁ°r/é+—\"é

-------

- -t

C =4 f& +("")ﬂ ﬁ‘f,f—-’f ~ ,, -
Hence, by an apphcatlon of theorem 5, the normalized orthogonal
vectors ?‘ PR g,,, are identical with 3, --« , y .

If we choose a new unit of measurement and a new origin,
that is to say if we perform a transformation

*

X rw w8, ELmv &8 (x79),
the vectors For* ) Fn-s do not change (by the reasoning just
finished). The vector £ changes into

*
E =€ (7= (l,/,---,/))’

and we have:
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THEOREM 9. “If a new unit of measurement and a new ori-
gin are introduced, say

X =X 'f’ﬁ (Do ) ’
then the Tchebychef coefficients change into .

* . *— *— o - -
a,=xa+3,; a=%a, Q=va, 4, T,

11. MgeaN aAND DispersioN. COEFFICIENTS

"

OF SKEWNESS AND KurTosIs
Preparatory to the definition in this chapter, let us consider
a, and a, especially. To begin with, we have
and therefore Je /60 = Chh ")
£ (X Kbt XKy).
‘The proof of theorem 4 furnishes a convenient way to com-
pute 2, . We put

2T ; 4°7¢ +€,
and determine y- so that 7 =0:

Fe - Bl g (ger S).
With the designations
e h(Err ) e i(470r8])

we obtain .
/é‘ Zo =7, Gy I

Hence

y“mﬁ 6/; ’},zm—"n"
@T;‘ﬁ ’/——_— ("mz /6)
f==—(% m, £,-m,, , &)
,’—-——mL(m'g'E ét)
K ;E(éxw €k )-m B (et %)

Yo, - m>
Concerning &, we have now to ‘deal with a theorem which is

of the greatest importance for our purposes.
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TueorEM 10. “The Tchebychef coefficient &, is always pos-
itive: "
2, 0.

For a proof we can proceed as follows: if we designate the
components of 3, by § -+, Gy We have

S <Sal{Gn md Geoe +G,

From this we deduce the existence of a subscnpt vV  so that

(S, {0 ¢ S‘w,< <{S.
Letusput .
t-gr i:z=§'+$1).°' )z.nt" 31*”"}?7!'

Then we have
.2'<o’“.’ 2,40 ; V+|< +z<-~-<2-"_=0,
which gives
%<0, Z{o,
On the other hand the ldentlty
St s Sk =2 04X )= B(x %)= =B (X K,)
holds. The differences x%-% .- % X areall )0, and
%,+* ) Xp being subjected to the condition not to be all equal, at
least one difference really is positive. Hence

a, =% (Gx+ 4G %) D0,

There are no restrictions for the Tchebychef coefficients dif-
ferent from @, as fakas their signs are concerned.
The reader, after having verified the truth of the following
statement, will now be prepared to accept the definition below.
“If the vector G is of the form
C=4C+6E+rGC.,
the sign of @, coincides with that of 6;. ; 1f it is of the form
5 - 46+ 66 +4 6 + GC,
the sign of @, coincides with that of 4 ; and so on.”
DEeFINITION. “A type of frequency function being given, the
Tchebychef coefficients a,, @,, a,, of the observations
Xy %X 00 X shall be called:

z-)

Z _<o.

Yy Faer
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a, =M =MEaN of the Observations

@, = 0 = DISPERSION of the Observations

Q, =  TceEBYCHEF COEFFICIENT OF SKEWNESS of the Ob-
servations

Q, = TcureeycHEF CorfrFICIENT OF KurTosis of the Ob-,
servations.”

We do not believe the Tchebychef coefficients with a higher

subscript than 3 to be of any practical interest.
12. MEASURES OF SKEWNESS AND KURTOSIS

No matter how the mean and the dispersion of a set of obser-
vations are defined, the dispersion will always have to depend on
the unit of measurement, and the mean furthermore on the origin.
But the case is a different one concerning the concepts of skewness
and kurtosis. Here it is reasonable to raise the question for meas-
ures in the strict sense. It is obvious that such measures will be
obtained if the set of observations is—by a convenient choice of a
new unit—brought to the dispersion 1; the new Tchebychef coef-
ficients of skewness and kurtosis will be suitable. This leads to the

DEFINITION. “With the destgnations of the preceding chap-
ter, the ratios %E and %—;’ shall be called:

=S '

MEASURE OF SKEWNESS of the Observations
= K = Mgasure or Kurtosis of the Observations.”

S s

There will be no misunderstanding if we use the words
“Skewness” and “Kurtosis” instead of “Measure of Skewness”
and “Measure of Kurtosis” —Utilizing theorems 8 and 9, we have

“at once:

TueoreM 11. “The measures of skeumess and kurtosis de-
pend on the type of frequency function and on the observations €
only; they are independent of origin and unit of measurement.”

13. MEANING OF SREWNESS AND KURTOSIS

To secure an idea of the mechanism of skewness and kurtosis,

let us construct some examples which show these phertomena in
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complete purity. We will use the step function, and we intend to
choose the values X, - - - -, X, so that they are affected—apart from
the inevitable dispersion—in the first place with skewness only, in
the second place with kurtosis only.

We take 7= 70, and for the convenience of the reader we
actually write down the vectors % ,--- -, 35 - We observe how-
ever that in practice one will never evaluate these vectors, but
rather compute the Tchebychef coefficients in the direct manner

described in No. 15.

We obtain

v 30 }r ?’- 33

1 1 -1.56670 | + 1.65145 | ~— 1.43388
2 1 ~1.21855]+ .55048 | + .47796
3 1 - 87039} — .27524 | + 1.1949%0
4 1 — .52223] — .82572 | + 1.05834
5 1 — 17408 | — 1.10096 | + .40968
6 1 + .17408) - 1.10096 | — 40968
7 1 |+ .52223| - .82572| - 1.05834
8 1 {+ .87039| - .27524 | - 1.19490
9 1 |+ 1.2185] + .55048 } —  .47796
10 1 [+ 1.56670]1 + 1.65145| + 1.43388

We shall have to come back to these vectors in No. 17. For
this reason they have been calculated more accurately than is neces-

sary here.
1a. Positive skewness.
1 .
'é = 3t%5 32 (a,’=1 ,a,1=+é ya,=0 otherwise).
1b. Negative skewness.
= -4 2 a-L- = ise).
’é = }' £3, ("7 I, a-%; a,=0 otherwise)
2a. Positive kurtosis.
! wale g o .
€ =3*153 (az1, a,=+;;;@%,=0 otherwise).

2b. Negative kurtosis.

L., L ;
< = 3, - _'Lo73 (av:’) a3=_75)a,u-o otherwise).
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The components of the different vectors § are put together

in the table below:
v L © -
3,*:}, 7,_ %5 ;1. 2,"/0 ¥ 21 7} 33

1 |- 1.23 1.897 |- 1.710 {- 1.423
2 |- 1.108 {- 1.329 |~ 1.171 ]- 1.266
3 |- .925 |- .815 |- .751 |- .990
4 |- .687 |- .357 |- ..416 |~ .628
S |- .39 |+ .046 {- .133 |- .215
6 |- .046 |+ .34 |+ .133 |+ .215
7 |+ .357 |+ .687 |+ 416 |+ gﬁ
8 |+ .815 j+ 925 |+ .75t |+ .

9 |+ 1.329 [+ 1.108 |+ 1.171 |+ 1.266
101+ 1.897 |+ 1.236 |+ 1.710 |+ 1.423

To illustrate the preceding, we compare the vectors & with
their corresponding “best systems of best values”, that is to say

with the vectors

—

=

23t NG,
and carry it through with some figures. We place the components
of € on a horizontal straight line I, the components of & on a
second straight line II below:

1t s . Positive Skewmess
1 e Fal ¥ &
, - 4 s i ~,
N /YN
1z g \. l 4 P & wi re by >
1b. TNegative Skowness
1 ¥ x; x
,/, / 1 Y ™, Y \ 1 / ,z‘/‘
g F; H Y \ AN \, ' o
1T e 4 Lf Lo o o A . d
2 & . Positive Eurtosis
! AR A U U A A A
s \ ‘._' 1 / 1 H Y
1 4 3 o b i l 4 { ‘.
2> Negative Dartosis
I
7 T NS
{ ! \ f
1 N 4L 4 Y o [
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The reader should settle his mind upon the fact that the gen-
eral behaviour of observations affected with skewness only or kur-
tosis only is always the same, 110 matter which type of frequency
function is considered.—The meaning of skewness and kurtosis
can be, generally speaking, expressed by:

Positrve Skewness = Querconcentration to the Left

Negative Skewness = Overconcentration to the Right

Positive Kurtosis — Owverconcentration near the Mean

Negative Kurtosis = Underconcentration near the Mean.

14. MEASURES OF APPROXIMATION

Let T be a type of frequency function, § = (%, - 5%,)a set
of observations, and €2/ a “degrce of approximation”, that is
the subscript in the sum «, 3 LR . The expression '

{€-(az. 0+ +ag)}

will give us a clue to the qualxty of approximation to the vector &
which is obtained on the basis of the type 7 and the degree of
approximation K . But the expression above of course is not yet
fit to be taken as a measure of the quality of approximation. There-
fore it will be necessary in the first instance to modify it so that it
will become not only independent of the origin, but also independent
of the unit of measurement.

Regarding theorem 9, and making reflections customary in
situations of this kind. we are almost compulsorily led to the

Derinttiox. “The values

'fa.
M J 1 (’(= /,Z)--',‘;f:?)

shall be called MEASURES OF ;\l’PROXIMATION OF THE DEGREES K

TueoreM 12, *“The measures of approximation My depend
on the type T and on the observations € only; they are independent
of origin and unit of measurement. Furthermore they satisfv

ol M &Ml L My, =t
All is clear if we write—-utilizing the relation (14) in No, 9—

t2d
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My in the form

2 2 2z

2 a +a, + +a, ,
Mk = z = ... z
a, +a,+ ta,,

paying attention to theorems 6, 8 and 9.

1f Mx is not much smaller than 1, the approximation of de-
gree K will be estimated to be good If T and T are two types
of frequency function, My and /‘1 the corresponding measures
of approximation, and if MK 2 M , we say: T s, for the de-
greeK , better than T (equlvalence not excluded). If M, *> Mo

MK 2 M, we say: T is, up to the degree K , better than T .

Clearly we may base upon these concepts a method of curve-
fitting. A full account will be given in a future note.

15. CoMmPUTATION OF THE TCHEBYCHEF COEFFICIENTS

If the vectors J,, -+, 4 are already known, the finding of
a,, -, a, is, according to their definition, very simple. But the
actual calculation of 3 ... F is embarrassing, especially if » is
large. We already mentioned that this can be and should be avoided,
‘and we recommend the following procedure.

We form, just as in the proof of theorem 4,

4, = = Co
7. %" K
’é +- K K-i ﬁk t 6'( ’
and to determme the coefficients 7’ we demand that the vectors ?

be orthogonal. Let 3 be an arbitrary subscript among 4/,
Then at léast it must be true that

(16) 71:?:::0) . ....,77(%.1_.:07

and a fortiori
71(&7.,*" K-I%() o

for arbitrary values ¢, --, G, But - ,-- ‘Y féx_' are linear
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combinations of } .. 7 , hence
2y )

(17) %ﬁ‘:a'.. e 7’(/ =0
For abbreviation let us designate the moments of the best
values é.. é. by
(€ +£,+ %,,) (4:0,/,---- ).
Obvmu%ly we have
éﬁ/g’i = Morg (g = ob--).

and the equation (17) produces
m,);o+m):,+--'+ml,7; t 7, =0

. = ¢
(18) 7 m, T;u + . + o, 7;,1 St Wy,

.....

y Y;o+ m, )’;I o tm );,7(—1* w1, =0

Conversely, from (18) follows (16) hence the equations (18)
must have exactly one solution ) - - A -

Concerning the normalizing factor in } -’7‘ , we have

)f%ﬁ()’;,’éa*):,’{,*' +r,,zx., &)
= (o Y ¢ ),’( mn )Y Yo

+( Y;o" S T xn)f
(-m +-
and from (18) Teo P Ty 7o) s
ll= ”’xﬁ.*"' zx—/x,,

With the abbreviations
)(:’;/go’f, . ...).)(’;: 6’(6

we have

Ky

R
L1
RS SR

2D
>|-
N~
=
e
-~
\‘
\x
-+
+
x
e
-
ot
\‘ -

x
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For the calculation of @,, &, - - we recommend operating
according to the following recipe, in the demonstration of which
we confine ourselves to the most important case x=3 . The modus
procedendi for other values of the degree x will be clear.

1. Compute

§=9(%), &,=YGR) -, &,-vCEH)
In the interest of the accuracy of the results it is advisable to
take care that the equations

—"'-i(i'+-~-+$,u)=o, %(é'lf"'+€”)=l

are precisely or approximately satisfied. This will be the case if
4=, Ayl hold ; otherwise introduce

* *
ﬁ.' ‘ng*/@; T €w=¥én"ﬁ
instead of &, £, » with convenient constants %) 9 , 2.
2. Compute 2
’”707' 7, T xof”; X; ) 6 .
Again it is useful to take care that the equations
L 3 2
st twy)eo; F(Be+ % )=t
are precisely or approximately satisfied. This will be secured if
X e+ Xy are distributed over nearly the same interval as

&U“”J é'n'

3. Form the scheme

Uoo Uy Xz %oy w, 7y Ya My
a,, ey a, a3 - m, o, ™My My
Qo Gy @z Qa3 | T m, My Ty 7
Az, Qy @y Ay m, my M5 M,

4a. To every element of the second, third and fourth row in
this scheme add the corresponding element of the first row multi-
plied by —%,_ %ﬁ , and - %.’—‘-:-’ respectively, so that there results
a scheme

a'po a‘m a’oz 0'63
o a'," af, a'l(3
‘
o ag, al, A&
o aj, af, af,
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4b. To every element of the second and third row in the
scheme
q’lll a’I’Z af

13
/
azl/ a'z/z ;3
{ { {
as, A32 a3,

add the corresponding element of the first row mudtiplied by
aj

and - 4 respectively, so that there results ¢ scheme

|

ar af
17 " ¢
a/t al'z al3
14
o a;, af,
«
o a'az ag,

dc.  T'o every element of the second row of the scheme

( az, 4is )
agq_ ag3 "
as,

add the corresponding element of the first row multiplied by - 3%,
so that there results a scheme 22

(sz au)
ur
o a,,
5. Extract
/\.,=Vaoo ’ )'l= ua"u ’ Ag"a;zr /1_?:"?.-';

6. Multiply the elements of the first, second and third row in

the scheme
aoo a'dl a'oz a‘"3 ¢
s I
° A G Yo
) 0 ’ o a,, Q,,
by Lo, —— and —— respectively, so that there results
yaﬂ” au ’ a;z P )
a schewe
! 53 7/ él g‘-’?
'B i / ’671_ {’;3
o o / 6;,3

und cxtract
Yo =~ {;’ .
7. To cvery clement of the first row in the scheme B add the
corresponding element of the second row multiplied by -K;, , $O
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that there results a scheme

! !

, ! o ‘&az 6’03

B =|o / 6, ‘673
o p) / 45 ,

and extract ,
fom= e, Y, =- e
8. To every element of the first and second row in the scheme
,B' add the corresponding element of the third row multiplied by
- -6';:2 and - @,z respectively, so that there resulis a scheme
" I o o Y
B = (0 ! o &,
o o 1 4
and extract

" ' p)
Y;o:—gi:s) 7;,""&'3) 7;,_:" 23’
9, Form

N
§
nx 0?‘ )
+
&
Nal
+
Mol

R AR AR RS A S T

e = N 2 *, S e G
M"%"’{;’: ('Cl,’;i) Y X, a, “')'_3;
L ay a

5’-5_-'-) K"—a_f'

_— — Y



60 ONE-DIMENSIONAL DISTRIBUTIONS

16. ConTrOLS OF COMPUTATION
It is easy to point out controls for the process of evaluation of
a,,a, a,, Q,, which do not require any considerable extra
work, and yet indicate every occurring miscalculation with almost
absolute safety. Such general controls, of course, can not bear
upon the ascertainment of é, Hy <‘§n.

A. Control of 77, 7, , m,, m,; i
3
W, + 3(m, p77,) + 771 = —,’? u’(H- y)

B. Control of m,, 21;, 177, 5 i
+3(my+rm, )4777—/'

C. Control of )( X:, )( )(' 7

N

- &1(18,).

+3()(+X“)+ X“— -*Z (1+€, ) X, .
D. Control of 6 ., .
/+szf % Z (+%).
E. Control of ) 5 f. Yar5 Veos r;’ I25
The operations indicated under 3 - 8 in No. 15 are essentially
nothing else than the solution of three systems of linear equations
for one, two and three unknowns respectively, contracted into one
uniform process of reckoning. Hence we can make use of the
method of control by sums, We have to add the sums

S‘q.::”a.bof... + Gyy
53 = a_’a e +
as elements of a fifth column: 33
Qoo ** - * Ry S,:,)

Q3o s
and to transform this expand’ed scheme in the way described in
No. 15. Then everywhere the sum of the first four elements of
each row must equal its fifth element. If this is true for the scheme
B" especially, it is.practically impossible that y- ,---, J;, should
have been wrongly computed.

F. Controlof o, %,%;
The computation of % ...+ «; should he performed by

starting from the scheme
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with the meaning 1+ Y, Voo + Vo = S.

Multsply the elements of the first, second, third and fourth
row by )(; , X:, X; and X; respectively, and form the sums of
the elements of each column. The sums of the first four columns
are %;,%,%;,%, ,and we have the control «,+¥, +Y,+Y; = R,
where K designates the sum of the fifth colump

17. EXAMPLES

I. Let the observations (77=30)

t =(-15-10,~7,-5 -3, 0, +3,+6, +10, +1.8)
be given, and let us first assume the normal type. The normal law
of error being symmetric, we have 7] = »77,= 7;=0, and in this case

we are able to write down the Tchel))échef coefficients requ;;;ed
-7, o =y ﬁ*"’&
a ) = 2 4‘_'_L- .
I A L R e
Nevertheless we will proceed, accordmg to No. 15. But we w111

confine ourselves to give the resulting data of the different steps
of computation only. A full reproduction of the complete process
of reckoning is to be found in No. 19, dealing with a somewhat
more general situation.
In the KELLEY-WooD tables we find

£a-10vy854 & =-1036433 & =-74470 & < 385320

== = ) » s . 490
&,=—125661 & - .125061° & 5 385320 & 76447

&, 130433 g, = 1644854
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We obtain =1 m =0 m,=+.87979 My=0
my=tl 1062 ™Ms=0  My=+4 22829

X=—03000 X=+371237 X=r.o757 X=4+173577
i

€ = .97700;
a, &, 4, a, 1 o +.87779 O
(o] a, a‘o; 013 - o *t. 87‘777 o +1. 1406 2.
° ° Ay a‘z; - 0 e "':‘76657 o
o ¢ o ay 0o ¢ 0 +,79456
A=t A=.93717 A,=.98315 A;=.85575
' ! o +.87979 ©
B=8 =|o ' 0 +1,.97845
o o / ]
Y.=05 Yoo = — 87979 Y, =05
] 1 o o o
B =|c° ! 0 +1.978%45
o o ! 0
Y, =¢ Y, =~ 197845 V=€ >

M=a ,=-03000 (=@=+93006 a,=+ .10127 as+ 01110

S =+ .10889 K=+ .0t193
M=.97382 M,= .99953 M,= .99959

For comparison we give the value which is furnished by the
traditional concept of dispersion:

V4 Z (1) =€~ = 93600

Let the same obhservations as above be given, but now let

us assume the step type. We can make use of the vectors in No. 13,
which give at once

II.

M=a =-03000 O=a=+92087 Q@,=+.10184 d,=+.12529

S=+.11059 K=+.136006
M=.98383 M= 98989 M,= 9994/

We note that for our observations ¢, the normal type is, up
to the degree 3, better than the step type.
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18. ANaLysis oF FREQUENCY Groups

In economic statistics, observations very often do not appear
in the form dealt with in the preceding chapters. Instead, they
usually are gathered into groups, so that there is given a set of
values x, {x, (- - {x, and a set of corresponding positive values
N, N, , not necessarily integers. If / means the sum of
)Vl+ . ~+/Vn , the ratios
are called the “frequencies” of the “observations” x, ... o Xpy ®
The frequencies satisfy

f>0, £30,- £ >0 ad Lo wf =

We shall now have to extend our developments to make them
applicable in situations as stated above. To anyone who is familiar
with integrals and sums in the sense of Stieltjes, it is clear that no’
special difficulty can arise.

Again we have to start from a frequency function i), and
to agree which values g, RN §,, should be designated as “best
values”. Reflections similar to those of No. 2 make it reasonable

to choose

&= 9(%4), SPErih), &wlrhrsf);
""" % ")(‘F";"' *7‘:7:—: 17[1:)

Apart from the best values. we only have to modify the defini-
tion of the product of vectors (No. 4). We define

M MO = LLVf-f'U-z z.;"' nJ[n
If these modifications are kept in mind, all the deﬁmtlons, theorems,

proofs and remarks of Nos. 4 - 16 remain unaltered. Of course,
the abbreuatlons m, and X (No. 15) must now be read

m, éf €f+—--+$,f = “).-.)
X' (A ixf, *‘ﬁ . f, (¥=q4--k),

and the controls A - D (No.

A. x.1o+3(m+m)+m—2[l+2:),[

Vsi
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B. 7y + 3(m,, + 7775) tom, = VZ:t (/f '5,,)3(,‘:){,
G X +a(X+X) X, = Z(1E Tn s
D. /+z)¢:+ﬁz = ‘%Cux‘,)‘fu.

We are now in the position to illustrate the mechanism of
skewness and kurtosis still more impressively than in ‘No. 13. For
this purpose we start from the frequency curve represented in Fig.
3; we choose 77= 9 and

/;5:1,2,3,4,5,4,3,2,1.

)

3.

<.8L—17-—1

:
le | i

2 >

-.8 * -;.6l P S— YR . +.6 ’ +.8
Then the best values become equidistant, and they are given by the
abscissae of the points marked by small circles:

-8 -6,-4, -2, 0, +2 +4 +6, +8
The ordinates 77,  of these points are proportional to /Vu , namely :

L f _ s/
’Zv 0.2 £ =5 Tvz )
The table below gives the corresponding vectors For 033

and also the vectors 3, * 7 3,  and 3t 5 33 as exam-
ples of distributions which show skewness or kurtosis in all purity.

Vi9z| & #a #s %,"'L‘f i 7/-#;1 ;:"'é‘}s 31'15 #3
1]1]~-2.01+2.582]~ 2.51 — 1.355 |-2.645 - 2.320 {- 1.680
211 -1.51+1.076|+ .116 —~ 1.231 {-1.769 || — 1.485{~-1.515
Jl11~1.0 L0001+ 1.048 -~ 1.000 |-1.000 - .869 |—1.131
4 11;~- .5}- .6451+ .815 - .661 (- .339 - .398 |- .602
511 0j- .861 .000 - .215 |+ .215 .000 .006
6 1]+ .51~ .645] - .815 +  .339 [+ .661 § + .398 |+ .602
7 11+1.0 L0001 - 1.048 + 1.000 1+1.000 | + .869 {+ 1.131
8 [1|+1.5]+1.076]- .116 + 1.769 |+1.231 | + 1.485 {+ 1.515
9 11 ]4+2.01{+ 2582+ 2.561 + 2.645 [+1.355 }+ 2.320 |+ 1.680
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As in No. 13, let us illustrate the relations between the vector
Jr and the vectors 3 ¢ § 3 and 3 t£ 3, by means of some fig-
ures. This time however, we shall not only consider the components
of the vectors, but also operate with the values J[u . We do that by
associating every vector (.- wu ) with the system of points

(u'o{'.)’ (u‘z’fz), e, (u'-n,);‘n)'

Thus, in the figures 4a - 5b, the vector 3/ is every time associated
with the system of points marked by crosses, whereas the system
of points marked by circles successively correspond to thé vectors

Zt"’?;z and 3, ¢ 3,

The statements in No. 13 concerning the meaning of skewness
as overconcentration to the left or to the right, and of kurtosis as
overconcentration or underconcentration near the mean should be

recognized.
Until now, the values #, were supposed to be really positive,
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but there is no difficulty in allowing some of them to equal zero.
Then, it is true, the formulation of some intermediary theorems
must be changed. Yet, the existence and the main properties of the
Tchebychef coefficients remain untouched, and their values are in-
dependent of those X, for which the corresponding £, are equal
to zero. To know this is sometimes useful in order to get a scheme
of computation of the highest possible uniformity.
19. ExXAMPLE

To conclude, we reproduce the reckoning of an example, fre-
quently discussed, concerning observations of the right ascension
of the pole star (see: A. L. BowLEy, Elements of Statistics, 4th
ed., p. 255). The given data are

*
Xy: <7 -6 -5{-4 -3 -2 -1] 0 +1 +2 +3) +4 +5 *6
N: 16 12121 36 61 731 82 72 63 3 16 5 1,

and the normal type shall be assumed.
Because the function . - J;f
Po) = = ©
satisfies 4, =0, &, = 1, it will be suitable to start from the best
values of this specimen. These best values f,,---, &w stretch from
-3 to+3 approximately. In order to have the values x, , with
which we intend to work, in coextension with {, RN £, . 2 WE
choose
»* . »
X, =+x, ie X, =2X, (v= l,u-,M)

(%4

Between the means M , *and the dispersions 6, @ * of the
. * . .

observations X, , X, there exist the connections (theorem 9)

M*'=2M, o%- 26,

whereas the measures of skewness and kurtosis as well as the

measures of approximation do not change at the transition from

X, to X (theorems 11 and 12).
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2

v év L iv.ﬁ %: £’ gi fy
1 |-3.08242 .00205 339 |-.00632 941 [ .01950 990 |- .03013 77
2 [-2.39028 8§ .01232 033 |-.02956 002 | .07092 300 |- .17016 47
3 |-1.93176 9 .02464 066 |-.04760 006 | .09195 232 |- .17763 06
4 [-1.54996 6§ .04312 11 |- .06683 62 .10359 38 - .16056 69
5 |-1.17951 6§ .07392 20 |- .08719 22 10284 46 |~ .12130 67
6 |- .77663 98 .125257 |-.09727 9 .07555 1 - .05867 6
7 |- .36846 6] .14989 7  |-.05523 2 .02035 1 ~ 00749 9
8 |+ .03861 3§ .168378  |+.00650 2 .00025 1 + .00001 0
9 |+ 44963 0f .14784 4 |+ .06647 5 .02988 9 + .01343 9
10 {+ .88571 7§ .12936 34 |+ .11457 94 .10148 49 |+ .08988 69
11 [+1.37743 5] .07802 87 |+.10747 95 14804 60 |+ .20392 37
12 [+1.89953 0] .03285 421 |+.06240 756 | .11854 503 |+ .22517 98
13 [r2.44778 6] .01026 694 {t .02513 127 | .06i51 597 |+ .15057 79
14 }+3.08242 .00205 339 1t.00632 941 | .01950 990 | + .06013 77
+1.00000=77, |-.00113=71, |+.96397=m, | -.01283=m,
[

4 &: fV iz £f J fl’

1 18536 96 | - .57138 7 1.76125 5

2 .40827 31 | - .97956 7 2.35026 3

3 234314 13 | - .66287 0 1.28051 2

4 248873 |- .38574 5 59789 2

5 .14308 3 |- .16876 9 .19906 6

6 .045370 |- .03539 1 .02748 6

7 .00276 3 |- .00101 8 .00037 5

8 .00000 0 |+ .00000 O .00000 0

9 .00604 3 |+ .00271 7 .00122 2

10 07961 4 |+ .07051 5 .06245 6

1 .28089 2 |+ .38691 0 .53294 3

12 42773 58 |+ .81249 7 1.54336 2

13 .36858 25 |+ .90221 1 2.20841 9

14 .18536 96 |+ .57138 7 1.76125 5

+2.72531=m, | — .05851=m, [+ 12.32651=m,
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X XE | EXE [ExE [EXL I XL
1]-3.5]-.00718 687] .02215 295 - .06828 47]  .21048 2]  .02515 4
2|-3.0{- .0369 .08868 006] - .21276 90|  .51049 4]  .11088 3
3|-2.5(- .06160 164] .11900 014} - .22988 08|  .44407 7|  .15400 4
4|-2.0{-.08624 23 | .13367 26 | - .20718 80|  .32113 4]  .17248 5
5|-1.5]- .11088 30 | .13078 83 | - .15426 69|  .18196 0Of  .16632 4
6/-1.0|-.12525 67 | .097279 |- .07555 1 .05867 6f  .12525 7
71- .5{-.074949 | .027616 |- .01017 6 .00374 9§ .03747 4
8| .0| .000000 | .000000 .00000 0 .00000 0  .00000 0
9f+ .5|+.073922 | .033238 |+ .014%4 5 .00672 0f  .03696 1
10{+1.0{+ .12936 34 | .11457 94 |+ .10148 49]  .08988 7}  .12936 3
11{+1.5|+ .11704 31 | .16121 93 |+ .22206 91|  .30588 6] .17556 5
12|+2.0 |+ ,06570 842] .12481 512| + .23709 01|  .45036 Of .13141 7
13|+2.5 |+ .02566 735| .06282 818| + .15378 99}  .37644 5| .06416 8
14}+3.0 |+ .00616 016{ .01898 820{ + .05852 96|  .18041 3| .01848 0
~ 085222 X, |+1.13486=X | - .17021-Xa| + 3.14028-X%f 1.34754-E"
Controls A - D.
3 3 3,3 3 2
v g, [(r8) [0e8)E [644)E, £ |80 £ CFr) L
1]-2.08242 |- 9.0304 |- .01854 3|+ .54306 5|+ .06490 0] .01283 4
2|-1.30928 8]- 2.73982| - .03375 5|+ .46622 O|+ .10126 6| .04928 1
3~ .93176 9|- .80896|- .01993 3|+ .14369 5|4+ .04983 3| .05544 1
4|- .54996 6]~ .16634|- .00717 3|+ .02670 9|+ .01434 6] .04312 1
51~ .17951 6{- .00579|~ .00042 8|+ .00070 2|+ .00064 2|  .01848 1
6{+ .22336 1|+ .01114+ .00139 6|~ .00065 4|- .00139 5]  .00000 O
7|+ .63153 4]+ .25188}+ .03775 6|~ .00188 9|- .01887 8| .03747 4
8l+1.03861 3|+ 1.12037|+ .18864 5{+ .00001 1]+ .00000 0] .16837 8
9]+1.44963 0|+ 3.04629}+ .45037 6+ .04093 9|+ .22518 8]  .33264 9
10+ 1.88571 7|+ 6 70548} 86744 3|+ .60273 4|+ .86744 4| .51745 4
11{r2.37743 5|+13.43773+ 1.04852 9] + 2.74027 2|+1.57279 4|  .48767 9
12}+-2.89953 0} 24.37714|+ 80089 2|+ 5.48924 0}+1.60178 3|  .29568 8
131r3.44778 6]+ 40.98462|+ .42078 7| + 6.17137 8}+1.05196 7| .12577 0
14/t4.08242 |+68.0382 [+ .13970 9| + 4.09166 2|+ .41912 6| .03285 4
+3.87570 |+ 20.31408 |+5.94902 | 2.17710
m,+3(mrm)tmy = 3.87569
myr3(my+mg)rm, = 20.31408
X,+ 3(X,+ %)+ X5 = 594901

12X+ & = 217710
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'

-, a,"; (twice underlined)

Computation of 4y,,"*", 4,,; @, ,°
andof A,,----; A, , with control by sums.
1 - .00113 +.96397 -.01283] +1.95001
- ,00113 +.96397 -.01283 +2.72531} +3.67532
-.00000 +.00109 - .00001| + .00220
+.96397 - .01174 +2.72530} +3.67752
+.96397 - .01283 +2.72531 - .05851| + 3.61794
+.00109 - .92924 + .01237] -1.87975
- 01174 +1.79607 - .04614] +1.73819
~.01283 +2.72531 - .05851 +12.32651) +14.98048
- .00001 +.01237 - .00016| + .02502
+2.72530 - .04614 +12.32635]| +15.00550
+.96397 —.01124 +2.72530) +3.67752
~.01174 +1.79607 ~ .04614] +1.73819
~ .00014 + .03319] + .04479
+1.79593 - .01295] +1.78298
+2.72530 - .04614 +12.32635 | +15.00550
+ .03319 - 7.70486 | -10.3969%4
- .01295 + 4.62149 | + 4.60856
+1.79593 — 012905 | +1.78298
~ 01295 +4.62149 | + 4.60856
- .00009 | + .01286
+4.62140 | + 4.62142
/\o =1
A, =.98182
A, =1.34012

AS =2.14974

69
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Computation of Yios" " s Yy » With control by sums.

ONE-DIMENSIONAL DISTRIBUTIONS

Y, = +.00113
1 -~ .00113 + .96397 - .01283 | +1.95001
4+ .00113 - .00001 + .00319 | + .00431
1 0 + 96396 -~ .00964 | t+1.95432
1 - 01218 + 282716 | + 2.81497
1 - .00721 | + .99279
Yzo = — 9639
Yo, = +.01218
1 0 + .9639% — .00964 | +1.95432
~ 96396  +.00695 | - .95701
10 0 - 00269 | + .90731
1 —.01218  +2.82716 | + 3.81497
+ .01218 — .00009 | + .01209
1 0 + 2.82707 | + 3.82706
1 - 00721 | + .99279
Yo =+ .00269
Y, =-2.82707
Yy, =+ .00721
Computation of «;,----,~, , with control by sums.
1 + .00113 - .96396 + .00269| + .03986
1 + .01218 —2.82707 | - 1.81489
1 + .00721 | +1.00721
1 + 1.00000
—.08522 -~ .00010 +.08214 ~ .00023{ - .00340
+1.13486 +.01382 - 3.20833 | - 2.05965
—.17021 -~ .00123 | - .17144
+3.14028 | + 3.14028
—-.08522 +1.13476 —.07425 ~.06951 | + .90579
:q’o .—.qf‘ -0(,_ =t=r3
Y+ oty = +.90578
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Finishing computations.

M=’ a.‘=,08522 ‘=a7=1'15577 aiz_.osﬁl a3= — 03234
M= 104 = 23156  S=-.0479% K=— 02799

£= 14154 & =1.33580 Mz 99666 M, = 99833
a = 00726 a = 00307
£-a = 134028 aa* = 1.33887 A’z 99895 M : 99947
a, = .00105

abraied = 133992 M= 99973 M,= 99987

So long as we pay regard to the Tchebychef coefficients a ,

- 4, only, the purport of our results is that the observations

are somewhat overconcentrated to the right, and somewhat under-

concentrated near the mean. The sum of the squares of the Tcheby-
chef coefficients with higher subscripts than 3 is

2 - ' 2-
a""+,....+a,la = 6 - (ﬂ~°+---+a3) =.(X)036;
it is small compared with @, = .00307 and @, = .00105. The
vectors g, ) 2o being normalized, we are sure that the

influence of a,, --, @, cannot essentially disturb our statements.
Finally we give an illustration by computing and drawing the

“best curve” of the normal type, cortesponding to the observations
X, . With it we mean that curve y= 9( E;r.’? ) , the best values
of which are the components of the vector a, Ft X F - The
values &, 3 (see No. 2) have to satisfy

PE+ ~E = %jt
substituting

’ '

?05 A, g" ’ Zl’ x(foaf/é)

we get

8- (e 32N e [ 21E -
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72
hence

~= % =+1.17717

= -?'X‘-o + Y, 9.-}'-' = - .08389.

With these values % and /3 , the curve in Fig. 6 represents the
2.

- (iwz

e

function
‘

\7= Vg

The abscissae of the points marked by circles are the observations
X, , their ordinates are equal to the corresponding ;f, divided by

the length 0.5 of the group intervals.

University of Kiel, Germany.



