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Abstract

We have developed a fully automated method, InterProSurf, to predict interacting amino acid
residues on protein surfaces of monomeric 3D structures. Potential interacting residues are predicted
based on solvent accessible surface areas, a new scale for interface propensities, and a cluster
algorithm to locate surface exposed areas with high interface propensities. Previous studies have
shown the importance of hydrophobic residues and specific charge distribution as characteristics for
interfaces. Here we show differences in interface and surface regions of all physical chemical
properties of residues as represented by five quantitative descriptors. In the current study a set of 72
protein complexes with known 3D structures were analyzed to obtain interface propensities of
residues, and to find differences in the distribution of five quantitative descriptors for amino acid
residues. We also investigated spatial pair correlations of solvent accessible residues in interface and
surface areas, and compared log-odds ratios for interface and surface areas. A new
scoringmethodtopredict potential functional sites on the protein surface was developed and tested
for a new dataset of 21 protein complexes, which were not included in the original training dataset.
Empirically we found that the algorithm achieves a good balance in the accuracy of precision and
sensitivity by selecting the top eight highest scoring clusters as interface regions. The performance
of the method is illustrated for a dimeric ATPase of the hyperthermophile, Methanococcus

jannaschii, and the capsid protein of Human Hepatitis B virus. An automated version of the method
can be accessed from our web server at http://curie.utmb.edu/prosurf.html.
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Introduction

Protein-protein interactions play an important role in many biological processes in the cell,
e.g., formation of active sites of oligomeric enzymes and maintenance of their effective
conformation, regulatory processes including signal transduction, electron transport systems,
DNA synthesis, antibody antigen interaction, formation of inter cellular structures [1,2]. In
order to understand how proteins recognize their partner or how these interactions build
molecular complexes, it is important to examine the role of amino acid residues present in the
protein interface. A protein interface consists of 6–30% of the monomer surface area that vary
from 500–5000 Å2 and the average value of the contact surface area in a monomer is about
800 Å2 [3,4]. Earlier studies have shown that the hydrophobic interaction between amino acid
residues plays a major role in binding of the protein interfaces [5]. These residues were found
to form small patches on the protein surface that includes both polar and charges residues [6,
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7]. The hydrogen bonding and the pairing of the polar residues also plays a significant role in
binding the protein interfaces but this complementary nature of electro-static interaction varies
from protein to protein interfaces [8].

A number of databases are available today to study the structural basis of protein-protein
interactions [9–12], however, the basic problem to characterize intrinsic properties of interfaces
which distinguish them from other surface areas has not yet been solved. Alanine scanning of
protein-protein interfaces has shown that the free energy is not uniformly distributed in protein
interfaces and only few residues contribute to the bulk of the binding energy called hot spot
residues [13–16]. ASE-db [9] is a database for alanine mutation that provides information about
hot-spots of amino acid residues on the protein surface. These residues are found to be clustered
at the center of the interface and surrounded by a small subset of residues. It has been found
that a single residue can contribute a large fraction of binding free energy despite the large
binding interface [17]. We show how propensities for hot spots are correlated to a large extent
with our propensities for interface residues.

Early statistical studies [7,18–20] showed that interfaces have few statistically significant
differential characteristics, yet some trends were observed. More recent methods tried to
implement prediction methods for interaction surfaces including additional information from
evolutionary information, such as profile methods or correlated mutations. These methods
include patch analysis [21–23], clustering methods [24,25], computational alanine scanning
[26–28], prediction from sequence profile [29], prediction based on machine learning algorithm
[22,30–32], hydrophobic moment [33], structure based method [34,35] and the phylogenetic
information [36,37]. In addition, shape and size of the protein also play an important role in
deciding the functional sites on the protein surface [35,38–40] and few prediction methods are
publicly accessible as web servers [23,41–44].

Based on a statistical analysis of 72 known protein complexes we have developed two new
methods to predict potential interface regions on the surface of a monomeric protein. The two
methods, a patch analysis and a cluster method, locate regions on the surface of monomers
with a high proportion of residues with high interface propensities, but differ in the
computational techniques to decompose the monomeric protein surface. In the patch analysis,
a patch of radius R was drawn around the central surface exposed residue. In the cluster method,
the entire protein surface was partitioned into n clusters. Score functions were developed to
rank clusters or patches according to their preferences to be in an interface. The number of
high ranking clusters or patches were empirically determined to obtain a good balance between
sensitivity and precision. Our InterProSurf method was tested for a training set of 72 protein
complexes as well as a test data set of 21 protein complexes. This accuracy of the method is
in the same range as recently published methods [22,23,41,42].

In addition we identified differences in physical chemical properties of residues present in
interfaces as compared to other surface residues subunits. The discriminating properties of
interface and surface regions are quantified by five physical-chemical descriptors developed
previously by our group [45]. We investigated spatial pair correlations of these descriptors in
interface and surface areas, and compared log-odds ratios for interface and surface areas. These
observations might help to understand the physical-chemical nature of interfaces and to
improve prediction algorithms for hot-spots and for potential binding sites on the protein
surface. Our prediction method InterProSurf was already successfully used to design entry
sensitive mutants of the E1 envelope protein of the Venezuelan Equine Encephalitis Virus
[46], and an automated version of the method can be accessed from our web server at
http://curie.utmb.edu/prosurf.html.
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Material and methods

Propensity scale

A final set of 72 protein complexes was selected from the protein data bank to derive propensity
values for residues being in interfaces or on the surfaces of complexes. A different set of 21
different complexes was used to assess the accuracy of our prediction method (Table 1a,b).
These sets do not contain redundant protein complexes as protein complexes with similar
sequences (>37% sequence identity) were discarded using psiblast [47] and clustalw [48]
sequence alignment. Interface residues in these complexes were identified by the change in the
solvent accessibility area (δASA) of the residues in the complex and in the monomeric form.
The surface areas of the amino acid residues in the protein complex were compared to those
of the monomeric form using the GetArea program [49] with a probe radius of 1.4 Å. We
considered residues as being buried in a structure, complex or monomeric form, as residues
where the ratio of the side-chain surface area to the "random coil" value per residue is less than
20%. The remaining residues in the complexes were then separated into surface and interface
residues depending on the absolute value of the change in the solvent accessibility area, δASA.
If δASA is larger than 15 Å2 then the residue was classified as an interface residue, otherwise
the residue was considered as a surface residue in the complex. The random coil value of a
residue X in the tripeptide Gly-X-Gly was calculated as the average value in an ensemble of
thirty random conformations [49].

The propensity of an amino acid residue being in a protein interface (Pinterface) and on the
protein surface (Psurface) was calculated by using the following two equations:

(1)

(2)

Here ni , i=1, 2 ...20, is the number of residues of type i at the interface and si is the number of
residues of type i in the surface. Σni is the total number of residues at the interface and Σsi is
the total number of residues in the surface. ni is the total number of residue of type i at the
protein interface and on the protein surface; N is the total number of the residue at the protein
interface and on the surface, respectively. Interface propensity greater than one indicates that
the residue is more frequent at the protein interface while surface propensity greater than one
indicates that residue is more frequent on the protein surface.

The interface residues were identified by calculating the distance between each atom of amino
acid residues in different chains of the protein complex. Two atoms across the protein interface
were assumed to be interacting with each other, if the cartesian distance between them was
less then the sum of their van der Waals radii plus a constant of 1 Å, i.e.,

(3)

Where dist(ri, rj) is the distance between atom ri and rj and r(vwd)i and r(vwd)j are van der
Waals radii of the atom ri and rj, respectively. Once the interface residues on the protein surface
were identified, then the environment around the interface and surface residues can be
determined by defining a sphere of radius 5 Å around the interface and surface residues. Any
residue inside this sphere was assumed to be interacting with its neighbors and a frequency
table was developed for amino acid residues interacting with each other with in this distance
range.
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Prediction algorithm

(A) Clustering method—To identify regions on the protein surface with many residues of
high interface propensities, we first decompose the set of surface residues in clusters of spatially
related residues [25,50,51]. All amino acid residues of the protein surface are represented by
their Cβ atom (Cα atom in the case of the Gly residue). These residues represent a set of points
in the three dimensional space. This new three dimensional space is then partitioned into n
clusters (Ωn) by a clustering method that is frequently used in data compression techniques
and known as Linde, Buzo, and Gray (LBG) algorithm [52–57]. Each cluster contains a certain
number of surface residues near in space and is represented by the centroid cn of its cluster.

The LBG algorithm partitions the input space of k m-dimensional vectors into n non-
overlapping regions (Ωn), such that each vector of a region Ωn is nearest to its centroid (cn)
and the average squared distance of all input vectors to their centroid is minimal. Each vector
belongs to a particular region Ωn, which is represented by its centroid cn.In this way the whole
protein surface is partitioned into n clusters where each cluster of the protein surface is
represented by the centroid of the cluster. The boundary of each region Ωn is defined such that
each vector in Ωn is nearest to its own centroid cn:

(4)

If |Ωn| is the total number of elements in the encoding region (Ωn), then the centroid position
is given by Eq. (5)[53,54]

(5)

The LBG algorithm build the codebook vector in an iterative procedure and guarantees that
the distortion d(x,cn) from one-iteration to next will not increase [53]. Empirically we found
that a fixed number of clusters (n=32) gives a satisfactory clustering of the protein surface.

(B) Patch analysis—In patch analysis, the interface residues are predicted by defining a
spherical patch around each surface exposed residue in the protein. The amino acid residues
are represented by their Cβ atom (Cα atom for Gly residue). A surface patch is defined as the
central surface solvent exposed residue surrounded by n-nearest neighbors within a sphere of
radius R in the unbound protein. Therefore for a protein having n surface exposed amino acid
residues, we have n surface patches. Patch sizes were varied from 8 to15 Å and score of each
patch was calculated by Eq. (6). A patch is predicted to be part of the protein interface if its
score is greater than χ% of the maximum patch scored on the protein surface. This hypothesis
was tested for χ=88, 89...94. Once a high scoring surface patch is predicted, the residues in the
patch are counted and the predicted residues in each patch are compared with the actual amino
acid residues present in the protein interface.

Scoring function

Each cluster or patch of surface residues is evaluated by a scoring function to find surface
regions of a protein with many residues of high interface propensities. We used the average
propensity of a cluster or a patch as a scoring function. The average values, Score, are calculated
with weighting factors proportional to the solvent accessible surface area (ASAi), as both,
propensity and solvent accessible surface area of an amino acid residue at the protein interface
are influencing the protein interaction:

(6)
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Here pi is the interface propensity (Pinterface) or surface propensity (Psurface) of an amino
acid residue in a cluster or in a patch. The final scores were sorted in increasing order and the
highest scoring patches or clusters for interface propensities were predicted to be part of an
interface. We varied systematically the number of high scoring clusters in the clustering method
and the patch size in the patch analysis to find empirically the optimal parameters for prediction
in each method. Our analysis showed that the optimal range is eight to ten high ranking clusters
in the clustering method, and that the optimal patch size is 11 to 12 Å with a score cutoff greater
than 92% of the maximum patch score. This scoring scheme was tested for our training set of
72 protein complexes that have been used to derive the propensity values, and for 21 new
independent test proteins.

Assessment of the prediction accuracy

The two prediction methods were assessed by counting the number of true positives, TP, i.e.,
interface residues which were correctly predicted as interfaces residues; false positives, FP,
surface residues wrongly predicted as interface residues (overpredicted); true negatives, TN,
surface residues correctly predicted as surface residues; and false negatives, FN; not predicted
interface residues (underpredicted). The overall accuracy (QTotal), sensitivity (QSensitivity) and
precision (Pprecision) of the prediction methods were assessed with standard measures, reviewed
by Baldi et al. [58] for bioinformatics studies:

(7a)

(7b)

(7c)

Results and discussions

Propensity of the amino acid residues and correlation with experimental data

In the current work 72 different protein complexes derived from the protein data bank (shown
in Table 1a) based on their solvent accessible surface area, distribution of the amino acid
residues, their physical chemical properties and distribution of amino acid across the protein
interface and on the protein surface were analyzed. Our results show that the propensities of
most amino acid residues at protein interfaces are significantly different from the values on the
protein surface (Fig. 1). As expected high values are found for hydrophobic residues, such as
Phe, Trp, Ile, Leu, Met, Pro and Val, however, Ala does not have a particular preference for
interfaces. In addition, some residues with polar or charged functional groups, such as Tyr,
Cys, His and Arg are also found more frequently at protein interfaces as expected by chance.

High propensities of Leu, Trp, Tyr, and Phe at interface regions were also found in other studies
[7,59]. However, some major differences are found to the recently published values of Ma et
al., e.g., the values of Ile (1.41 versus 0.23) and Asp (0.72 versus 1.55) reverse the preferences
for interfaces in our and their conservation propensity scales. Our values are qualitatively
similar to the study by the Thornton group [19]. Interestingly the residues Ser and Thr which
are capable of forming hydrogen bonds to side chains, are less frequently found in interfaces
which is also consistent with the low enrichment factors of these residues as hot spot residues
[16]. Overall, our values correlate with the hot spot enrichment factors to a similar extent as
the conservation propensity values [59](r=0.35 versus r=0.36) if we include all amino acid
residues. The r factor between our values and the enrichment factor increases to 0.50 as

Negi and Braun Page 5

J Mol Model. Author manuscript; available in PMC 2009 January 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



compared to 0.43 between the conservation propensity values and the enrichment factors, if
we exclude the three residues Cys, Leu and Val with zero enrichment factors.

We believe that the low values of these three residues in the Ala scanning experiments [16]
underestimate the importance of these residues in forming interfaces as the hydrophobic residue
Ala is used as a reference point, and not for example a polar residue. For cysteine residues, not
forming disulfide bridges, the sulfhydryl group (-SH) is inactive toward the water molecule
and does not form hydrogen bond [60,61], thus its physical chemical properties are similar to
hydrophobic residues. The high propensity of Cys found in our study is partially due to its
ability to form a disulfide bond across the protein interface. This is confirmed by a statistical
analysis of short distances across interfaces. If we analyzed all short distances of atoms of the
same type, restricted to distances less than 2.5 Å, the probability of SG atom was the highest
(data not shown). If we increase the distance range to 2.5–3 Å, the pairing frequency of the
oxygen and nitrogen atoms was prominent due to the formation of hydrogen bonds across the
interface [15]. Beyond the range greater than 3 Å, the Cα and Cβ interactions were found to be
increasing, and finally the overall distributions of same atoms interacting with each other
showed that the Cβ Cβ interaction has the highest frequency across the protein interface. Thus
we chose Cβ interactions as one of the criteria to define interacting residues (Appendix 1.1).

Distribution of amino acid residues from their physical chemical properties

In our study we would like to quantitatively characterize physical-chemical characteristics of
interfaces which make them unique as compared to surfaces not involved in protein-protein
interactions. Thus we analyzed the distribution of general physical chemical properties of
interface residues using physical-chemical property scales derived in our previous work [45,
62]. In that work we have constructed five vectors, E1, E2, E3, E4 and E5, each representing
a property with specific values for each amino acid. The vectors were generated by
multidimensional scaling of a large number of 237 physical chemical properties, and we
demonstrated that the distribution of the 20 amino acids in the 5-dimensional vector space is
similar to the distribution in the original high dimensional property space. The new five
properties have a clear physical interpretation and correlate well with the hydrophobicity (E1),
size (E2), frequency of amino acid in α-helix (E3), number of degenerate codons (E4) and
frequency of residue in β-strands (E5). Each vector gives a different decomposition of amino
acid residues into five groups of amino acid residues namely, E1(α11(VLIMFW), α12(CY),
α13(AH), α14(PTQR), α15(GSNKDE)), E2(α21(KRE), α22 (MFWQYHD), α23(AVLITCN),
α24(PS), α25(G)), E3(α31 (A), α32(VLME), α33(GISTQKHD), α34(FCNR), α35 (WPY)), E4
(α41(VLIPKR), α42(AGFSTY), α43(WNQE), α44(MHD), α45(C)) and E5(α51(VTCR),
α52(IYQS), α53 (NKH), α54(AGLMFD), α55(WPE)) [45]. In this quantitative scheme of
property analysis the hydrophobic/hydro-philic separation of residues, for example, is shown
in vector E1, with the hydrophobic residues in bin E1(α11) and the polar and charged residues
in bin E1(α15).

Figure 2 shows the distribution of amino acid residues in each of the property vectors E1 and
E2 at the protein interface and on the protein surface. In this figure the distribution of the E1
vector clearly shows the high propensity of hydrophobic residues across the interface relative
to the protein surface (bin E1(α11)), and the high propensity of hydrophilic residues on the
protein surface (bin E1(α15)). These bins represent distinct quantitative finger prints for
distinguishing surface from interface regions. Further inspections of bins of other vectors reveal
additional markers, for example, bin E2(α21) and bin E2(α22) in the vector E2 show also
remarkable differences. The group of amino acid residues in bin E2(α21) of vector E2 is highly
populated with surface residues due to the large residues K, R and E, and bin E2(α22) of E2 is
highly populated by interface residues and reflects the high propensities of Phe, Met, Trp, Tyr
and His residues for protein interfaces. Other bins with large differences are bin E3(α33) of
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vector E3 and bin E5(α53) of vector E5 (data not shown, see Appendix 1.2). Not all vectors
contribute to a distinction between surface and interface areas to the same extent, as seen in
the similar distributions of surface and interface residues in the bins of vector E4. Our analysis
is different from a simple correlation analysis of physical chemical properties and interface
propensities, as can be seen for the distributions of vector E3. We find no particular preferences
for helical residues in interface regions, as the distributions of the bins with helix formers (bin
E3(α31), bin E3(α32)) and helix breakers are fairly similar, however a distinct difference is
found for bin E3(α33).

Our analysis also allows to quantitatively describing the nature of protein interfaces by
calculating the pair frequencies of the groups of amino acid residues. The amino acid residues
in interface and the surface regions are grouped into bins for each of the five vectors mentioned
above, and we determined how often a residue of each group is near a residue of the same or
another group in the some interface or on the surface. This statistics is different from evaluating
interactions across the surface. A patch of radius 5 Å around each residue as described in the
method section is used for this statistics. We calculated the distribution of pair-frequencies of
residues around the interface residues PI [Ei (αi j, αi j’)] Interface and around the surface residues
PS [Ei (αij, αij’)] Surface. The pair distributions of interface and surface residues are shown in
Fig. 3 for the property vector E1, and the pair-frequencies of interface and surface regions are
compared by the log-odds ratio ξ, given in Table 2.

(8)

Figure 3 clearly shows that hydrophobic/hydrophobic pairs dominate in interfaces as compared
to surface regions. The pair-frequency of bin1 residues interacting with residues of bin1 in
interfaces is more than twice as compared to surface regions. Hydrophilic/hydrophilic pairs
dominate in surfaces (bin5-bin5, Fig. 3b). This can also be seen in Table 2, where large and
positive values of ξ indicate that pairing among these groups of residues is more often in protein
interface while a negative value of ξ indicates that the pairing among residue group is more in
the protein surface.

A large value of ξ shows that groups of amino acid residues having high propensity at protein
interface (e.g., F, W, Y, C, M), often interact with each other. This can be seen from Table 2
that the value of ξ for a group of residues in bin1 interacting with bin1 (=1.1811), bin1 with
bin2 (=1.4687) and bin2 with bin2 (=1.593) of vector E1 is greater than its value for group of
residues in bin5-bin5 (=-0.7612). Bin1 and bin2 in E1 is dominated by the hydrophobic,
including Cys and large residues while bin5 is dominated by the charge and hydrophilic
residues. Similar results are also found for ξ in bin2-bin2 of E2 vector. A large value of ξ for
Cys and Tyr in bin2 of E1 indicates that these residues are often found in protein interface and
confirms high propensity of Cys residue at protein interface, see also Fig. 1. On other hand,
low value of ξ=-0.7612 in bin5-bin5 of vector E1, ξi,j=-0.612 for bin1-bin1 of E2, ξ=-0.5932
for bin1-bin1, ξ=-0.54 for bin3-bin3 and ξ=-0.4914 for bin1-bin3 of E3 vectors shows that
protein surface is mainly dominated by charged and hydrophilic residues. Also, the low value
of ξ=0.0044 for interaction between the residues in bin1-bin5 of E1 vector clearly shows that
the interaction between hydrophobic and hydrophilic residues at protein interface is smaller
than protein surface.

Prediction of the functional sites and accessing the performance

We have calculated the performance of our scoring method using patch and cluster analysis as
discussed in the previous sections. The performance of the method is based on the size of the
patch or cluster used in the scoring function to predict the interface residues on the protein
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surface (Fig. 4a,b). The overall accuracy of the method was found to be about ∼70% when
tested against the training and test data set. For smaller protein interfaces it has been shown
that hydrophobic nature of amino acid residues plays an important role in binding protein
interfaces together while for large interfaces both polar and hydrophobic residues contribute
largely [3, 40]. Each patch or cluster on the protein surface contains approximately two to four
amino acid residues if the size of the protein is small and four to eight residues if the size of
protein is large. Empirically we find that in practice we achieve a good balance between
precision and sensitivity by choosing the number of clusters to be eight and the patch size to
be 12 Å, Fig. 4a,b. Patches or clusters predicted on the protein surface may include the residues
present in close vicinity of the interface residues. In some cases we also observed that a high
ranking cluster contained residues close to the interface. These residues can play an important
role in stabilizing the protein interfaces.

In our study, we have found that most of the predicted residues were either present in the actual
interface or close to the interface residues as shown in the following examples. Our analysis
shows that the characteristic of the interacting sites also depend on the nature of interacting
residues as well on the geometry of the protein surface because the geometry of the protein
surface carries more information about its function at the molecular level. The performance of
the prediction method can be increased by including the environment of the residue at the
interface which may varies from protein to protein [31]. Since a limited number of methods
are available online [23,41,42,44], we hope the method described here will provide users a new
interface to predict the functional sites on the protein surface based on the structural information
of the protein only. In our future work we are also planning to introduce the role of five amino
acid descriptors in the scoring function and compare the performance of our prediction method
against other available methods.

Comparison of the predicted and observed interface for a dimeric ATPase

The crystal structure of the dimeric ATPase MJ0577 of the hyperthermophile Methanococcus
jannaschii (PDB id: 1MJH) consists of a five stranded parallel beta sheet and two helices on
each side of the beta sheet [63]. The crystal structure of the protein shows different ATP binding
motifs that are shared among many homologous protein of this family. The amino acid residues
present at the actual protein interface are calculated by a change in ASA and shown by blue
color in the protein surface, Fig. 5a. The amino acid residues predicted by clustering and patch
analysis are shown by red and yellow color in protein surface, Fig. 5b,c. In case of 1MJH, the
extra prediction comes from the cluster number 9 (contain residue V66, E67, E70, N71, L73,
having interface score 1.04 and surface score 0.99 calculated by Eq. (7)) and cluster number
10 (contain residue no: T30, L31, K32, A33, Interface score=1.01 and surface score=1.00).
Based on the scoring scheme, one can predict these two clusters as part of protein interface or
the part of protein surface. Therefore, if we exclude these two clusters as part of the predicted
protein interface, than we have found that the predicted residues are located in the same region
of the actual dimeric interface, Fig. 5. However, the amino acid residues in these two clusters
may involved in interactions with some other proteins.

We tested the performance of InterProSurf method against two previously published popular
methods: ProMate [42] and ConSurf [41] by analyzing the interface residues in the dimeric
structure of ATPase. First, we determined the experimentally observed interface residues by
calculating the change in the solvent accessible surface area of amino acid residues upon
complexation as described in the methods section. These interface residues were then compared
with the residues predicted by the InterProSurf, ProMate and ConSurf webservers using default
parameters (Fig. 6). All methods predict the experimentally observed interface to some extent,
however, the predictions are far from perfect. Most high scoring residues of InterProSurf are
within the observed interface regions. In practice it might be useful to use a consensus
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prediction to improve the prediction, as the basis for the three prediction methods implemented
in InterProSurf, ProMate and ConSurf are different.

Illustration for the capsid protein of the human hepatitis B virus

The crystal structure of the human hepatitis B virus capsid protein [64] (PDB id: 1QGT) shows
that two alpha helical hairpins form the dimer interface and the spikes on the capsid surface.
The capsid contains a highly conserved C-terminal having amino acid residues from R112 to
E127 followed by an irregular proline rich loop (residue no T128 to N136). These residues
were found to be highly conserved in their sequence alignment and play an important role in
inter-subunit interaction of the virus capsid. The Cys61 residue in each of the monomer protein
forms a disulphide bridge at the dimer interface and is predicted correctly by our method, Fig.
7. The amino acid residues contributing to the antigenic site around the residue A80 form the
dimer spikes were also predicted. Tyr132 was found to be fully exposed in the isolated dimer
and buried in the protein complex also predicted. In addition, the predicted residues P129, P130
and I139 play an important role in the stability and inter-subunit packing [64]. The amino acid
residues predicted by our method are also found to be highly conserved in their sequence
alignment. As an illustration for the quality of our prediction in comparison to other publicly
available webservers, we show the predictions for the human hepatitis B virus capsid protein
of InterProSurf, ProMate and Consurf in Fig. 8. The quality of the prediction of InterProSurf
is similar or slightly better than those methods.

Conclusions

For many protein complexes three-dimensional structures of the monomeric units are available,
however the 3D structures and molecular details of the complexes are not known and require
a large experimental effort. Our statistical analysis and the prediction tools we provide on our
website can help to elucidate these unknowns. Our method is different from other studies using
evolutionary information or correlated mutations across interfaces, however can be combined
with these methods in practice to achieve a higher reliability. Our results also give some insights
of hot spot residues without any prior knowledge of thermodynamic analysis. The protein
interfaces are not found to be uniform in terms of amino acid residue properties. We found a
characteristic difference in the pair frequencies of residues in interface and surface regions in
terms of their physical chemical properties which can be used to further characterize hot spots
in quantitative terms from sequence information.

The new method for predicting the interacting residues has been implemented in a completely
automated procedure and is publicly available through our web site at
http://curie.utmb.edu/prosurf.html. The prediction method described here does not include any
information about the partner protein and is solely based on the solvent accessible surface area
of the monomer protein and propensity of amino acid residues [46]. In defining the scoring
function, we assumed that the contribution of each amino acid residue in binding protein
interfaces is independent and therefore their contribution can be summed. The performance of
the method was tested for a dataset of 21 protein complexes independent from the complexes
used in deriving the propensity values of the algorithm. We showed that the overall accuracy
obtained from both patch analysis and cluster analysis is about 70%. The accuracy of the
method can be further increased by combining our method with evolutionary information or
choosing more detailed scoring functions using the statistical analysis of pair frequencies we
present. We already used the methods in practice to guide experimental mutations of the
envelope protein E1 of the Venezuelan Equine Encephalitis Virus to help in designing of new
drugs [46].
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Fig. 1.

Propensity of amino acid residues at protein interface (■) and on the protein surface (■).
Propensity greater than 1 at the interface or on the surface indicates that the amino acid residues
are more frequent at the interface or surface respectively
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Fig. 2.

Distribution of amino acid residues at the protein interface (blue) and on the protein surface
(red) based on their physical chemical properties. The error bar in each bin represents the
standard error calculated by , where, n=72 and Σ is the standard deviation calculated
from the average value of a) E1 and b) E2 vector in all protein complexes
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Fig. 3.

a) Distribution of amino acid residues around the interface residues in E1 vector, and b) on the
protein surface in E1 vector
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Fig. 4.

Prediction accuracy for training and test data set obtained from a) cluster analysis and b) patch
analysis

Negi and Braun Page 15

J Mol Model. Author manuscript; available in PMC 2009 January 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5.

Comparison of the actual and predicted residues in ATPase using InterProSurf. a) Actual
interface residues present in crystal interface (blue). b) Predicted residues using cluster analysis
(red). c) Predicted residues by patch analysis (yellow)
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Fig. 6.

Comparison of interface residues predicted for ATPase using the web servers InterProSurf,
ProMate and ConSurf. The experimentally observed interface residues are shown in dashed
lines while the predicted residues are shown as solid lines. High scoring residues of
InterProSurf coincide to a large extent with the experimentally observed interface residues
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Fig. 7.

Comparison of actual and predicted residues in the capsid protein of hepatitis B virus. a) The
actual interface residues (blue). b) Predicted residues using cluster analysis (red). c) Predicted
residues using patch analysis (yellow). Residues shown inside the circle predicted by our
method are found to play an important role in inter subunit packing
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Fig. 8.

Comparison of interface residues predicted for the capsid protein of hepatitis B using
InterProSurf, ProMate and ConSurf web servers. In addition to actual interface residues the
InterProSurf method also predicts one highly conserved cluster of amino acid residues from
137-143 which can be seen with ConSurf analysis
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