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Abstract
With the advent of novel sequencing technologies, interest in the identification of rare variants that
influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-
Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects
because of the rareness of the variants. Recently, various alternative approaches have been
proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic
region or sets of regions. We provide an overview of these collapsing methods for association
analysis and discuss the use of permutation approaches for significance testing of the data-
adaptive methods.
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Introduction
Genome-wide association studies have been successful in identifying common single-
nucleotide polymorphisms (SNPs) that contribute to complex genetic disease [Manolio,
2010]. They are thus supportive of the common disease/common variant hypothesis, which
states that frequent SNPs contribute to widespread disease. However, only a portion of the
heritability as estimated from twin, adoption, and family studies can be explained by loci
identified in genome-wide association studies. Although both the validity and the accuracy
of the heritability estimates are questionable [Ziegler and König, 2010, ch. 6], it is widely
believed that there is missing heritability [Maher, 2008; Eichler et al., 2010]. This
hypothesis, if true, suggests that other genetic mechanisms, such as gene-gene interaction,
epigenetics, and rare variants, contribute to disease susceptibility. Indeed, although the
exploration of these factors has just begun, there already is increasing evidence that gene-
gene interaction and epigenetics play a role [Cordell, 2009; Petronis, 2010].

The investigation of rare variants (rare generally corresponds to a minor allele frequency
[MAF] < 1%) is complicated because relatively few rare variants are well represented in
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current genome-wide association arrays; in addition, the methods used for genome-wide
association analysis have low power for low-MAF SNPs unless the effect size is large, and
untyped rare variants are poorly tagged by common SNPs. The combination of low MAFs
and poor tagging properties makes rare variants unsuitable for analysis with the microarrays
used in genome-wide association studies [Asimit and Zeggini, 2010]. However, with the
development of novel technologies for high-throughput next-generation sequencing
[Metzker, 2009; Meyerson et al., 2010], it is now possible to sequence regions of interest,
the exome, or even the entire genome. Unfortunately, the costs are still high, there is a trade-
off between cost and accuracy, and the post-processing and analysis of sequence data are
challenging.

The reasons that multiple rare variants might play a role in complex genetic disease have
been summarized by Bansal et al. [2010]: With the recent expansion of the human
population, a large number of segregating, functionally relevant rare variants have emerged
that mediate phenotypic variation. Furthermore, multiple rare variants within the same gene
contribute to largely monogenic disease [Fitze et al., 2002; Easton et al., 2007]. It is
therefore reasonable to assume that the same genetic mechanisms that operate for complex
disease also apply to common disease. Finally, and most important, sequencing studies that
focus on specific genes have shown that collections of rare variants can indeed associate
with particular phenotypes [Bansal et al., 2010, Table 1].

Several strategies for identifying rare variants that contribute to disease susceptibility have
been proposed and include the study of families and studies that place increasing emphasis
on other structural variants, such as insertions, deletions, inversions, or translocations
[Manolio et al., 2009, Box 1]. The study of large families is a promising approach in this
context. Specifically, the study of extended pedigrees has several advantages over unrelated
subjects. First, some rare variants can be observed at higher frequencies in extended
pedigrees compared to the general population. Second, rare variants that segregate with
reasonably high penetrance in extended pedigrees can provide a linkage signal so that deep
sequencing in extended pedigrees is not required for the entire genome but only in those
chromosomal regions that show a linkage signal. Thus the sequencing effort is substantially
reduced. Third, one can expect larger effect sizes of the rare variants. Fourth, the results are
simpler to interpret because the rare variants, together with the disease, run within the
families and therefore provide a proof of the genetic basis. Finally, families are generally
simpler to follow up than individuals.

As an alternative to the study of families, the investigation of subjects with unusual
phenotypes or from the extreme ends of the phenotype distribution can be reasonable, as can
studies in isolated or founder populations or of subjects of recent African ancestry. These
study designs generally lead to analyses that are analogous to those of standard case-control
studies. In addition, population-based cohort studies might be of interest to obtain unbiased
estimates of population parameters. In all scenarios involving unrelated subjects, the
statistical analysis of rare variants remains challenging because of low power. One approach
to overcome the problem of low power is to pool rare variants for analysis, and these
methods are generally called collapsing methods.

Several novel collapsing approaches were proposed during Genetic Analysis Workshop 17
(GAW17), and these were often compared with already published collapsing approaches.
Furthermore, GAW17 contributors compared various approaches discussed in the literature
using the simulated data provided for the workshop. Our aim in this paper is to provide a
comprehensive overview of published collapsing methods and the permutation approaches
most studies require to assess statistical significance. For simplicity, we restrict the
description of the statistical approaches to dichotomous phenotypes.
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Indicator and Proportion Coding for Collapsing Methods
Let na and nu denote the number of affected and unaffected subjects, respectively, with n =
na + nu. We consider a region of interest (ROI), and this term will be discussed in greater
detail in the next section. Two fundamentally different ideas are generally used for
collapsing. The first, termed indicator coding, results in a dichotomous variable that
indicates presence or absence of any rare variant within the ROI. Formally, the expression

(1)

denotes whether a variant is present at chromosomal position i in the ROI in subject j. Then,
with K denoting the number of sites with variants in the ROI,

(2)

denotes whether subject j carries any rare variant in the ROI.

In proportion coding we count the number of variants of subject j over all the K sites; that is,

 denotes the number of variants at position i of subject j so that the proportion of all
variants is given by

(3)

Both Eqs. (2) and (3) indicate that all rare variants are weighted equally, independent of
their frequency. Because the effect size of a variant may depend on its frequency, several
approaches to up- or down-weight variants in a ROI have been proposed. For example,
Madsen and Browning [2009] suggested weighting variants according to their frequency in
unaffected subjects. Specifically, they weighted site i inversely proportional to its variance:

(4)

where

(5)

is an estimate of the MAF in unaffected subjects and  denotes the number of variants in
the unaffected subject j. The correction factors 1 and 2 in the numerator and denominator,
respectively, of Eq. (5) are included because a rare variant might be present only in case
subjects. Price et al. [2010] used a similar weighting approach with weights
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(6)

where  is the estimated MAF at site i. However, Price and colleagues did not consider the
critical case that a rare variant is present only in affected subjects.

Another weighting alternative is to jointly consider affected and unaffected subjects so that

(7)

where p̂i is the estimated MAF at site i estimated over all subjects.

Finally, we note that the coding of Eq. (3) for each site corresponds to the coding of an
additive genetic model, and generalizations to other genetic models are straightforward.

Options in Coding and Analyzing Rare Variants
Both the indicator and proportion coding approaches allow flexibility with respect to the
units that are considered for collapsing. The ROI can be a gene, a gene cluster, a
combination of different genes (e.g., several genes from the same pathway), or even an
arbitrary chromosomal region defined by base-pair positions on a chromosome.

In addition, different thresholds can be used for collapsing. More specifically, rare variants
with MAF ≤ p are considered collapsed, and the standard choices for collapsing are p1 (i.e.,
p = 0.01) and p5 (i.e., p = 0.05). The threshold may be either fixed or variable, and this has
been discussed in detail by Price et al. [2010]. Furthermore, the analysis in the ROI can be
restricted to rare variants only. Alternatively, frequent SNPs and rare variants can be
analyzed simultaneously.

Finally, rare variants can be grouped according to their functionality. More specifically, one
can restrict counting to synonymous or nonsynonymous rare variants only. Another option is
to group rare variants according to their predicted effect, which may be beneficial, neutral,
or deleterious. For these groupings, standard packages and databases, such as PolyPhen2
[Ramensky et al., 2002], SIFT [Ng and Henikoff, 2003], SNAP [Bromberg et al., 2008], or
SNPs3D [Yue et al., 2006], can be used.

Implementation of these three approaches—unit definition, threshold type, and rare variant
grouping—can be accomplished by integrating indicator variables that flag variants for
inclusion in Eqs. (2) and (3).

Statistical Tests for Rare Variants
Now that we have described the collapsing approaches and the flexibilities in the up- or
down-weighting of rare variants, we can now outline the different statistical approaches for
analysis.

Standard Methods for Analysis: Trend Test and Regression
If the MAF is sufficiently high at a specific site, standard approaches, such as the Cochran-
Armitage trend test or a logistic regression, can be conducted (see, e.g., Morris and Zeggini
[2010]); for a detailed description of these methods, see, for example, the textbook of
Ziegler and König [2010]. Single-site analysis is similar to indicator coding in the sense that
only a specific site is filtered. However, the power of this approach is extremely low if the
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MAF is low. For example, with an odds ratio of 2 and a type I error level of 5 × 10−8, in
order to detect the association at a site with a MAF of 0.005 in control subjects under the
assumption of Hardy-Weinberg equilibrium, the required sample size would have to exceed
20,000.

It may therefore be more reasonable to use indicator or proportion coding over all sites in a
logistic regression or any other model from the class of generalized linear models. In this
case, one models

(8a)

or

(8b)

where yj denotes the phenotype of subject j, zj is a vector of covariates, and  is
the parameter vector to be estimated. The effects of β1 or  can be tested using likelihood
ratio, score, or Wald-type tests. Morris and Zeggini [2010] developed the likelihood ratio
indicator coding test (rare variant test 2, or RVT2) and the likelihood ratio proportion coding
test (RVT1). A limitation of both RVT1 and RVT2 is that they can be applied only to rare
variants (for a discussion, see the next subsection). The inclusion of frequent variants is not
intended, and a multivariate model to include both rare variants and frequent SNPs from
different sites has not been formulated so far.

Collapsing and Summation Test and Combined Multivariate and Collapsing Method
The collapsing and summation test (CAST) is a simple approach for comparing case
subjects with control subjects. More precisely, it compares the number of case subjects with
a variant with the number of control subjects with a variant in a 2 × 2 frequency table. CAST
has been applied in different studies (see, e.g., Fitze et al. [2002]) and has been described in
detail by Morgenthaler and Thilly [2007]. A restriction of CAST is that it is limited to rare
variants. Rare and frequent variants cannot be investigated jointly in a multivariate test.
Therefore the approach of Li and Leal [2008] is a straightforward generalization. For the
joint analysis of rare variants and frequent SNPs, they proposed a three-step approach. In the
first step, a test statistic is calculated for the collapsed rare variants using CAST. Next,
univariate test statistics are calculated for frequent SNPs. Finally, a standard combination
rule, such as the inverse normal method or Fisher’s combination rule, can be applied to all
rare variants and frequent SNPs in the ROI.

More elegant is a multivariate test statistic, termed the combined multivariate and collapsing
(CMC) method, such as Hotelling’s T2 for both rare variants and frequent SNPs [Li and
Leal, 2008].

Weighted-Sum Collapsing
The weighted-sum (WS) collapsing approach [Madsen and Browning, 2009] gives more
weight to rare variants because stronger effects are expected for rare variants than for more
frequent ones. The original WS approach of Madsen and Browning is performed in five
steps:

Step 1. Site-specific weights wi are estimated using Eq. (4).
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Step 2. Subject-specific genetic scores  are estimated using

(9)

where  denotes the number of variants of subject j at site i.

Step 3. The sum of the rank of the score is determined over all affected subjects;
that is,

(10)

Step 4. The affection status is permuted B times. For each permutation, steps 1 to 3
are repeated, yielding  in permutation b.

Step 5. The p-value is not estimated as the number of permutations exceeding r.
Instead, the mean (μ̂B) and the standard deviation (σ ̂B) of the permutation
distribution are estimated. This permutation distribution should reflect the
distribution of the test statistic under the null hypothesis of no association.
The p-value is estimated from the standard normal distribution using (r −
μ̂B)/σ ̂B.

Data-Adaptive Summation
None of the approaches discussed so far differentiates between beneficial, neutral, or
deleterious variants. One approach in this direction has been proposed by Han and Pan
[2010]. They introduced data-adaptive weights and summed over all variants, and their
method is therefore termed adaptive summation (aSUM). Specifically, they considered the
regression model with proportion coding of Eq. (8b), and embedded this regression
approach in the following four-step procedure:

Step 1. A logistic regression is fitted using the original data for every site i.

Step 2. If the p-value pi of the statistical test at site i is less than 0.1 and if the
estimated regression coefficient β ̂i is negative (i.e., the variant has a

beneficial effect in the data), then the coding  of all subjects j is altered at
site i. Otherwise, the coding is left unchanged. That is,

(11)

Step 3. With the recoded data , the RVT1 model of Eq. (8b) is estimated and a
test statistic is formed.

Step 4. Because the coding at the sites is changed data adaptively, the p-value from
this procedure is determined using permutations. Specifically, the affection
status is permuted B times, and steps 1 to 3 are repeated for each
permutation sample b. The p-value is determined in the classical way as the
proportion of permutations for which the permuted test statistic exceeds the
test statistic of the original data.
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Variable Threshold Collapsing
The aSUM method is one approach to differentiating between beneficial and strongly
deleterious variants. The variable threshold (VT) approach of Price et al. [2010] permits
another flexibility. All statistical methods discussed so far assume a fixed threshold for
collapsing rare variants. However, the optimal threshold τ for which rare variants with MAF
< τ are more likely to be functional than SNPs with a MAF ≥ τ is unknown. For this reason,
Price et al. [2010] proposed computing the maximum test statistic over all reasonable
thresholds τ, and they used the following three-step procedure:

Step 1. Determine the proportion coding of subject j when all rare variants with
MAF < τ are included in

(12)

The MAF is estimated in the entire sample.

Step 2. The test statistic is

(13)

with

(14)

This means that the maximum of threshold-specific test statistics T(τ) is
calculated, and T(τ) is obtained by summing the proportion of coded
variants at threshold τ over all affected subjects.

Step 3. The p-value from this procedure is determined using permutations.
Specifically, the affection status is permuted B times, and steps 1 and 2 are
repeated for each permutation sample b. The p-value is determined in the
classical way as the proportion of permutations for which the permuted test
statistic exceeds the test statistic of the original data.

A disadvantage of the VT approach is that the variability at a site increases with the MAF.
Therefore there might be a trade-off between summation over all rare variants with a large
effect and the increased variability, and this needs to be investigated further.

Permutation Approaches in Significance Testing
All the approaches described in the “Statistical Tests for Rare Variants” section use
estimates from the observed data (e.g., MAF in control subjects, direction of effect at a
variant) in a data-adaptive manner where both model selection and model testing steps
occur. These approaches depend on permutations to estimate significance. Determining an
estimate of statistical significance using permutations requires permuting enough times to
reach the desired level of significance. Because the data from high-throughput sequencing
studies can be quite large, the calculations require a substantial amount of computer-
processing time.
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Classical permutation tests have been advised in most of the papers involving permutation
procedures [Han and Pan, 2010; Price et al., 2010]. A sufficient condition for a permutation
test to be exact is exchangeability under the null hypothesis [Good, 1994]. However, it is
unclear whether the test statistics of interest remain exchangeable in next-generation
sequencing studies.

Because the number of required permutations can be quite large for a reliable estimation of
the p-value, Madsen and Browning [2009] proposed a different approach. They estimated
the mean and standard deviation from the permutation distribution using a relatively small
number of permutations (e.g., 1,000), assuming that these represent the moments of the
distribution under the null hypothesis of no association; they then used the standard normal
distribution to derive a p-value. However, the permutation distribution need not adequately
reflect the distribution under the null hypothesis (Fig. 1). Furthermore, it is by no means
clear that the permutation distribution will be close to a normal distribution in the tail of the
permutation distribution, and the estimation of small p-values using a normal distribution
might be misleading. Alternative approaches in the same direction have been proposed by,
for example, Qian [2004] and Knijnenburg et al. [2009], who also estimated the tails of the
permutation distribution. Whereas Qian linearly extrapolated the tail of the normal
distribution, Knijnenburg and colleagues considered the generalized Pareto distribution
(GPD) for p-value approximation in the extreme tails of the distribution. Further work is
required to determine the optimal approximation and the validity of the permutation
approaches.

Final Remarks
We have provided an overview of the different collapsing methods that were published in
the literature until October 2010. Since then, several other approaches have been proposed
[Hoffmann et al., 2010; Li et al., 2010; Liu and Leal, 2010], and two review papers on
association studies involving rare variants have become available [Asimit and Zeggini,
2010; Bansal et al., 2010]. Novel approaches for the analysis of rare variants were also
proposed during GAW17, and the new collapsing methods are summarized by Sun et al.
[2011] and Tintle et al. [2010].
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Fig. 1. Failure of standard permutation methods
Consider an autosomal SNP with an allele frequency of 0.7 and a recessive genetic model
for the A allele. The phenotype is assumed to be normally distributed. (a) Two genotype
groups in the original sample differ in their means but the variances are identical. The
assumptions of the standard t-test are met. (b) One permutation sample of the same data as
in panel (a) is shown. Note that the permuted data are not unimodal and that, although the
variances in the permuted sample are similar for both genotype groups, the group-specific
permutation variance is substantially larger than the group-specific variance in the original
sample. In fact, the standard two-sided t-test yields p = 0.03, whereas the Madsen and
Browning permutation approach with 1,000 permutations gives p = 0.23 and the standard
permutation approach, also with 1,000 permutations, results in p = 0 because none of the
permuted samples reveal a t statistic larger than the original data. As a result, the Madsen
and Browning permutation approach leads to a different conclusion compared with the
standard t test. Furthermore, the classical permutation method most likely yields p = 0, even
for a high number of permutations, and thus underestimates the p-value.
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