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ABSTRACT 

Recent development of various spatially resolved transcriptomic techniques has 

enabled gene expression profiling on complex tissues with spatial localization 

information. Identifying genes that display spatial expression pattern in these 

studies is an important first step towards characterizing the spatial transcriptomic 

landscape. Detecting spatially expressed genes requires the development of 

statistical methods that can properly model spatial count data, provide effective 

type I error control, have sufficient statistical power, and are computationally 

efficient. Here, we developed such a method, SPARK. SPARK directly models 

count data generated from various spatial resolved transcriptomic techniques 

through generalized linear spatial models. With a new efficient penalized quasi-

likelihood based algorithm, SPARK is scalable to data sets with tens of 

thousands of genes measured on tens of thousands of samples. Importantly, 

SPARK relies on newly developed statistical formulas for hypothesis testing, 

producing well-calibrated p-values and yielding high statistical power. We 

illustrate the benefits of SPARK through extensive simulations and in-depth 

analysis of four published spatially resolved transcriptomic data sets. In the real 

data applications, SPARK is up to ten times more powerful than existing 

approaches. The high power of SPARK allows us to identify new genes and 

pathways that reveal new biology in the data that otherwise cannot be revealed 

by existing approaches. 
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INTRODUCTION 

Recent emergence of various spatially resolved transcriptomic technologies has 

enabled gene expression profiling with spatial localization information in tissues 

or cell cultures. Some of these techniques, such as MERFISH1 and seqFISH2, 

are based on single-molecular fluorescence in situ hybridization (smFISH)3. 

These smFISH based techniques can measure expression level for hundreds of 

genes with subcellular spatial resolution in a single cell. Some of these 

techniques, such as TIVA4, LCM5, Tomo-Seq6 and spatial transcriptomics 

through spatial barcoding7, are based on the next generation DNA sequencing. 

These DNA sequencing-based techniques can measure expression level for tens 

of thousands of genes on spatially organized tissue regions, each of which 

potentially consists of a couple hundred single cells. Some of these techniques, 

such as targeted in situ sequencing (ISS)8 and FISSEQ9, are based on in situ 

RNA sequencing. These RNA sequencing-based techniques can measure 

expression levels for the entire transcriptome with spatial information at a single 

cell resolution. These different spatially resolved transcriptomic techniques 

altogether have made it possible to study the spatial organization of 

transcriptomic landscape across tissue sections or within single cells, catalyzing 

new discoveries in many areas of biology10, 11.  

In spatially resolved transcriptomic studies, identifying genes that display spatial 

expression pattern, which we simply refer to as SE analysis, is an important first 

step towards characterizing the spatial transcriptomic landscape. However, 

identifying SE genes is challenging both from a statistical perspective and from a 

computational perspective. From a statistical perspective, identifying SE genes 

requires the development of spatial statistical methods that can directly model 

raw count data generated from both smFISH based techniques and sequencing 

based techniques. Unfortunately, count based SE analysis methods are currently 

lacking. The only two existing approaches for SE analysis, SpatialDE12 and 

Trendsceek13, both transform count data into normalized data before analysis. 

However, analyzing normalized expression data can be suboptimal as this 

approach fails to account for the mean-variance relationship existed in raw 

counts, leading to a potential loss of power14. Indeed, similar loss of power has 

been well documented for methods that can only analyze normalized data in 

many other omics sequencing studies15, 16. Besides direct modeling of count data, 

identifying SE genes also requires the development of statistical methods that 

can produce well calibrated p-values to ensure proper control of type I error. 

However, some existing methods for SE analysis, such as SpatialDE12, rely on 
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asymptotic normality and minimal p-value combination rule for constructing their 

hypothesis tests. Subsequently, these methods may fail to control for type I error 

at small p-values that are essential for detecting SE genes at the transcriptome-

wide significance level. Failure of type I error control can lead to excessive false 

positives and/or substantial loss of power. From a computational perspective, 

while some spatial methods such as SpatialDE are based on linear models and 

are computationally efficient, some other spatial methods, in particular 

Trendsceek13, are built without a data generative model and compute non-

parametric test statistics through computationally expensive permutation 

strategies that are not scalable to spatial transcriptomics data which are 

becoming increasingly large. Consequently, analyzing even moderate sized 

spatial transcriptomics data with hundreds of genes across hundreds of spatial 

locations can be a daunting task for these methods.  

Here, we present a new method that address the above statistical and 

computational challenges. We refer to our method as Spatial PAttern Recognition 

via Kernels (SPARK). SPARK builds upon a generalized linear spatial model 

(GLSM)17, 18 with a variety of spatial kernels to accommodate count data 

generated from smFISH based or sequencing based spatial transcriptomics 

studies. With a newly developed penalized quasi-likelihood (PQL) algorithm19, 20, 

SPARK is scalable to analyzing tens of thousands genes across tens of 

thousands samples. Importantly, SPARK relies on a mixture of Chi-square 

distributions to serve as the exact test statistics distribution and further takes 

advantage of a recently developed Cauchy combination rule21, 22 to combine 

information across multiple spatial kernels for calibrated p-value calculation. As a 

result, SPARK properly controls for type I error at the transcriptome-wide level 

and is more powerful for identifying SE genes than existing approaches. We 

illustrate the benefits of SPARK through extensive simulations and applications 

to four published spatial transcriptomics studies. In the analysis of the real data 

sets, we show how SPARK can be used to identify new SE genes that reveal the 

importance of neuronal migration in the formation of the olfactory system as well 

as reveal the importance of immune system and cytoskeleton in tumor 

progression and metastasis.  
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RESULTS 

Simulations 

We provide an overview of SPARK in Materials and Methods, with technical 

details provided in Supplementary Text and a method schematic shown in Fig. 

1A. Unlike Trendsceek, SPARK has an underlying data generative model which 

can be viewed as an extension of SpatialDE. However, unlike SpatialDE, SPARK 

models count data directly and relies on a proper statistical procedure to obtain 

calibrated p-values. A more detailed description of these methods is provided in 

Supplementary Text. We performed two sets of simulations to evaluate the 

performance of SPARK and compared it with two existing approaches, SpatialDE 

and Trendsceek. Simulation details are provided in Materials and Methods. 

Briefly, in the first set of simulations, for each scenario, we simulated 10,000 

genes on 260 spatial locations (a.k.a. spots) in the mouse olfactory bulb data 

using parameters inferred from the real data. We examined both type I error 

control under the null hypothesis and power for identifying SE genes under 

common alternatives. In the null simulations, all genes are non-SE genes with 

expression levels randomly distributed across spatial locations without any 

spatial patterns (Fig. 1B). In the alternative simulations, 9,000 genes are non-SE 

genes, while 1,000 genes are SE genes whose expression levels display one of 

the three observed spatial patterns in the data (named as spatial pattern I, II and 

III; Fig. 1C). In the simulations, we varied noise variance to be either low, 

moderate or high, and varied the SE strength for SE genes to be either weak, 

moderate or strong.  

In the null simulations, we found that SPARK produces well-calibrated p-values 

at transcriptome-wide significance levels (Fig. 1B). Some Trendsceek test 

statistics (e.g. markvario and Vmark) also produce reasonably calibrated p-

values while others (e.g. Emark statistics and markcorr statistics) yield slightly 

conservative p-values. In contrast, SpatialDE produces overly conservative p-

values (Fig. 1B). The failure of SpatialDE in type I error control presumably is due 

to its use of an asymptotic Chi-square distribution in place of an exact distribution 

for p-value computation and/or its use of the ad hoc minimal p-value combination 

rule. The p-value calibration results for different methods are consistent across 

simulation settings and across a range of noise variance levels (Fig. S1). 

Because some methods fail to control for type I error, in the alternative 

simulations, we measured power based on false discovery rate (FDR) to ensure 

fair comparison among methods. In the alternative simulations, we found that 
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SPARK is more powerful than the other two methods across a range of FDR 

cutoffs (Fig. 1C) and across a range of parameter settings (Figs. S2 and S3). The 

power performance of SPARK is followed by SpatialDE, while Trendsceek does 

not fare well in any of the alternative simulations. For example, in the easy 

setting where the noise variance is moderate and the spatial expression pattern 

strength is moderate, SPARK identified 860, 968, 1000 SE genes at an FDR of 5% 

for spatial patterns I-III, respectively (Fig. 1C). The power of SPARK is 16.5%, 

168.1% and 5.5% higher than that of SpatialDE (which identified 738, 361 and 

948 SE genes), for the three spatial patterns, respectively. In contrast, 

Trendsceek was only capable of identifying less than three SE genes (with the 

detailed number varying depending on the spatial pattern and the random seed 

Trendsceek used). In the more challenging setting where the noise variance is 

high and the spatial expression pattern strength is moderate, SPARK identified 

540, 872, 982 SE genes at an FDR of 5% for spatial patterns I-III, respectively 

(Fig. S3). The power of SPARK is 38.8%, 685.6% and 36.6% higher than that of 

SpatialDE (which identified 389, 111 and 719 SE genes), for the three spatial 

patterns, respectively. In contrast, Trendsceek was only capable of identifying 

less than two SE genes.  

Because of the extremely poor performance of Trendsceek in the first set of 

simulations, to rule out the possibility that our first simulations were somehow 

biased against Trendsceek, we compared different methods on a second set of 

simulations performed fully based on the original Trendsceek paper13. Simulation 

details are provided in Materials and Methods. Briefly, we first randomly 

simulated the spatial locations for a fixed number of cells through a spatial 

Poisson process. We then generated 1,000 genes in the simulated data, which 

were all non-SE genes in the null simulations and consisted of 100 SE genes and 

900 non-SE genes in the alternative simulations. For non-SE genes, the 

expression measurements from the real data were randomly assigned to the 

simulated cells regardless of their spatial locations (Fig. 1D). For SE genes, the 

expression measurements from the real data were assigned to the simulated 

cells to display three distinct spatial patterns (Fig.1E): cells in a focal area 

showed higher expression measurements than the remaining cells (Hotspot 

pattern), cells in a streak area showed higher expression measurements than the 

remaining cells (Streak pattern), or cells tend to show gradually reduced 

expression measurements when they are further away from the streak (Gradient 

pattern). In the simulations, we varied the number of cells (n = 100, 200 or 500), 

the SE strength (low, moderate or high; measured by the fold change between 
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cells inside and outside the focal/streak area in the first two spatial patterns and 

by the fraction of cells displaying expression gradient for the third spatial pattern), 

as well as the fraction of cells in the focal/streak area for the first two spatial 

patterns. We applied all three methods to the simulated data. The comparison 

results are largely consistent with the results obtained from the first set of 

simulations. Specifically, under the null, both SPARK and Trendsceek produce 

well-calibrated p-values, while SpatialDE does not (Fig. 1D). Under the 

alternative, SPARK is more powerful than the other two methods across a range 

of FDR cutoffs (Fig. 1E) in almost all parameter settings (Figs. S4-S7). The 

power performance of SPARK is followed by SpatialDE, while Trendsceek does 

not fare well, even though the power of Trendsceek is largely consistent with its 

performance shown in the original Trendsceek paper13. For example, when the 

SE strength is moderate and the cell number equals to 200, SPARK identified 94, 

78 and 96 SE genes at an FDR of 5% for the Hotspot, Streak and Gradient 

patterns, respectively (Fig. 1E). The power of SPARK is 20.5%, 31.7% and 9% 

higher than that of SpatialDE (which identified 78, 60 and 88 SE genes) for the 

three patterns, respectively. In contrast, Trendsceek was only capable of 

identifying less than two SE genes, consistent with original study13. As expected, 

the power of all methods increases with increasing SE strength and increasing 

sample size. For example, when SE strength is high and the cell number is large 

(n = 500), consistent with13, Trendsceek detected 9, 7 and 12 SE genes for the 

Hotspot, Streak and Gradient patterns  (Figs. S7 and S8), respectively, again 

consistent with13. However, in such setting, both SPARK and SpatialDE reach 

100% power and can detect all SE genes. Overall, the two sets of simulations 

suggest that SPARK produces well-calibrated p-values while being more 

powerful than the other two methods in detecting SE genes.  

Olfactory Bulb Data 

We applied SPARK to analyze four published data, including two data obtained 

through spatial transcriptomics sequencing and two data through smFISH 

(details in Materials and Methods). The first data we examined is a mouse 

olfactory bulb data7, consisting of gene expression measurements for 11,274 

genes on 260 spots. Consistent with simulations, both SPARK and Trendsceek 

produce calibrated p-values under permuted null, while SpatialDE does not 

(Fig.2A). SPARK also identified more SE genes compared to SpatialDE and 

Trendsceek across a range of FDRs (Figs. 2B and S9). For example, at an FDR 

of 5%, SPARK identified 772 SE genes, which is ~10-fold more than that 

detected by SpatialDE (which identified 67, among which 62 are overlapped with 
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SPARK; Figs. 2B and 2E); Trendsceek was unable to detect any SE genes in the 

data, even though we tried ten different random seeds for the method.  

We carefully examined the SE genes and found that most SE genes only 

detected by SpatialDE tend to have close to zero expression levels (Fig. S10) 

and appear to locate on either one or two spots (Fig. S11), suggesting potentially 

false signals. In contrast, the SE genes detected only by SPARK generally have 

comparable expression levels to the SE genes detected by both methods (Fig. 

S10). To assess the quality of the SE genes identified by SPARK, we performed 

clustering on the 772 SE genes and obtained three major spatial expression 

patterns (dendrogram in Fig. 2D; UMAP visualization in Fig. S12): one 

representing the mitral cell layer (Pattern I); one representing the glomerular 

layer (Pattern II); and one representing the granular cell layer (Pattern III); all 

clearly visualized via three previously known marker genes for the three layers, 

Doc2g, Kctd12 and Penk7 (Fig. 2C).  For each spatial pattern, we ranked genes 

only detected by SPARK based on their p-values and obtained 20 genes with 

increasing p-values from the ranked list as representative examples (Figs. S13-

S15). Almost all these genes show clear spatial expression pattern, cross 

validated by in situ hybridization data provided by the Allen Brain Atlas (Fig. 2C), 

confirming the higher power of SPARK.  

We provide three additional lines of evidence to validate the SE genes detected 

by SPARK. First, we examined the highlighted marker genes in the olfactory 

system presented in the original study. The list of highlighted marker genes, 

while is not necessarily the complete list of all marker genes, at least represents 

the likely best set of genes one can obtain that are both biologically important for 

the data and are detectable in the data. Importantly, SPARK detected 8 of 10 

such highlighted mitral cell layer (MCL) enriched genes; while SpatialDE only 

detected 3 and Trendsceek detected none (Fig. S16). Second, we obtained a list 

of 2,030 cell type specific marker genes identified in a recent single cell RNAseq 

study in the olfactory bulb23. Reassuringly, 55% of the unique SE genes identified 

by SPARK are in the marker list, while only 20% of the unique SE genes 

identified by SpatialDE are in the same list (Fig. 2E). Third, we obtained a list of 

3,262 genes that are related to the olfactory system from the Harmonizome 

database24. Again, 26% of the unique SE genes identified by SPARK are in the 

Harmonizome list, while only 20% of the unique SE genes identified by SpatialDE 

are in the same list (Fig. 2E). These three additional validation analyses provide 

convergence support for the higher power of SPARK. 
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Finally, we performed functional enrichment analyses of SE genes identified by 

SPARK and SpatialDE (details in Materials and Methods). A total of 1,023 GO 

terms (Fig. 2F) and 79 KEGG pathways were enriched in the SE genes identified 

by SPARK at an FDR of 5%, while only 87 GO terms (overlap = 64; Fig. S17A) 

and 2 KEGG pathways (overlap = 2; Fig. S17B) were enriched in the SE genes 

identified by SpatialDE (Table S1; Fig. S17C). Many enriched GO terms or 

KEGG pathways identified only by SPARK are directly related to the synaptic 

organization and olfactory bulb development. For example, olfactory lobe 

development is a highly enriched GO term detected only by SPARK 

(GO:0021988; SPARK: p-value = 5.81×10−3; SpatialDE: p-value = 1.21×10−1). 

Oxytocin signaling pathway is a highly enriched KEGG pathway detected only by 

SPARK (KEGG: mmu04921; SPARK: p-value = 1.59×10−9; SpatialDE: p-value = 

2.15×10−1) and is known to modify olfactory response26. The newly identified GO 

term and KEGG pathway enrichment highlights the benefits of running SE 

analysis with SPARK.  

A further enrichment analysis using SE genes in Patterns I-III separately provide 

additional biological insights. SPARK identified a total of 489, 714, and 684 

enriched GO terms for Patterns I-III, respectively; while SpatialDE only identified 

171 (overlap = 96), 275 (overlap = 177), and 22 (overlap = 22; Fig. S18, Table 

S1). For example, in Pattern I, the enriched GO term of glutamatergic synaptic 

transmission is only detected by SPARK (GO:0035249; SPARK: p-value = 

1.06×10−6; SpatialDE: p-value = 2.14×10−3; Fig. S19; Table S1), and supports the 

functional role of the synaptic organization in the mitral cell layer27. One 

representative gene in this GO term is Reln, which is only identified by SPARK 

(Fig. 2C). Reln encodes the protein Reelin expressed in mitral cells and 

promotes tangential to radial migration transition28. In Pattern II, the enriched GO 

term of cell junction assembly is only detected by SPARK (GO:0034329; SPARK: 

p-value = 1.22×10−9; SpatialDE: p-value = 1.48×10−2; Fig. S20; Table S1), and 

supports the critical role of cell junction and synaptic connection in the nerve 

layer29. One representative gene in this GO term is Cldn5, which is only identified 

by SPARK (Fig. 2C). Cldn5 is known to be enriched in the olfactory nerve layer 

and is critical for cell-cell adhesion30. In Pattern III, the enriched GO term of 

dendrite morphogenesis is only detected by SPARK (GO:0048813; SPARK: p-

value = 6.53×10−13; SpatialDE: p-value = 8.39×10−3; Fig. S21; Table S1), and 

supports the importance of dendritic morphogenesis in the development of 

granular layer31. One representative gene in this GO term is Camk2a, which is 

again only identified by SPARK (Fig. 2C).  Camk2a is enriched in the granular 
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cell layer and encodes a protein that belongs to the Ca(2+)/calmodulin-

dependent protein kinases subfamily which is crucial for several key aspects of 

synaptic and dendritic plasticity32. Overall, these new GO terms/KEGG pathways 

and SE genes that are only identified by SPARK reveal new biology in the data 

that otherwise cannot be discovered by existing methods.   

Breast Cancer Data 

The second data we examined is a human breast cancer biopsy study7, which 

contains 5,262 genes measured on 250 spots. Consistent with simulations, both 

SPARK and Trendsceek produce calibrated p-values under permuted null, while 

SpatialDE does not (Fig. 3A); SPARK identified more SE genes compared to 

SpatialDE and Trendsceek across a range of FDRs (Figs. 3B and S22). For 

example, at an FDR of 5%, SPARK identified 290 SE genes, which is ~3-fold 

more than that detected by SpatialDE (which identified 115, among which 85 are 

overlapped with SPARK; Figs. 3B and 3D). In contrast, Trendsceek only 

identified at most 15 SE genes across ten different random seeds. Consistent 

with the olfactory bulb study, we also found that the SE genes only detected by 

SpatialDE tend to have low expression levels, suggesting of potential false 

positives. In contrast, the SE genes detected only by SPARK generally have 

comparable expression levels to the SE genes detected by both methods (Fig. 

S23). To assess the quality of the SE genes identified only by SPARK, we 

obtained 20 genes with increasing p-values from the ranked list as representative 

examples (Fig. S24). Again, most of these genes show clear spatial expression 

pattern, confirming the higher power of SPARK.  

We provide three additional lines of evidence to validate the SE genes detected 

by SPARK. First, we examined the 14 cancer relevant genes highlighted in the 

original study. Importantly, SPARK detected 10 of them while SpatialDE detected 

7 and Trendsceek detected two (Fig. S25). Both SpatialDE and Trendsceek 

missed three of these previously well-known cancer relevant genes (SCGB2A2, 

KRT17 and MMP14). Second, we collected a list of 1,144 genes that are 

previously known to be relevant to breast cancer through literature based on the 

CancerMine database33. 14% of SE genes uniquely identified by SPARK are in 

the list while only 10% by SpatialDE are in the list (Fig. 3C). For example, the 

well-known proto-oncogene ERBB2 gene has tens of thousands of previous 

literature support on breast cancer but it can only be identified by SPARK (Fig. 

3E). Third, we collected a list of 3,538 genes that are relevant to breast cancer 

based on the Harmonizome database24. Again, 44% of SE genes uniquely 
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identified by SPARK are in the list while only 37% by SpatialDE are in the list (Fig. 

3C). Overall, these three additional lines of evidence provide convergent support 

for the higher power of SPARK. 

We performed functional enrichment analysis with GO term and KEGG pathways. 

At an FDR of 5%, SPARK identified 542 GO terms and 20 KEGG pathways (Fig. 

3F; Table S2) while SpatialDE identified 266 GO terms (overlap = 191) and 3 

KEGG pathways (overlap = 3; Fig. S26; Table S2). Many enriched gene sets 

discovered only by SPARK are related to extracellular matrix organization and 

immune responses (Figs. S26A-S26C; Table S2). For example, the GO term of 

response to cytokine is only identified by SPARK (GO:0034097; SPARK: p-value 

= 5.58×10−10; SpatialDE: not enriched); cytokines are released in response to 

immunity and can function to inhibit cancer development34. One representative 

gene in this GO term is HLA-B, which is a member of the human leukocyte 

antigen (HLA) complex35. HLA-B and five other HLA members are only detected 

by SPARK and are all expressed in the areas of ductal cancer (Figs. 3E and 

S24), suggesting a potential tumor-associated local immune response. As 

another example, the GO term of immune effector process is only identified by 

SPARK (GO:0002252; SPARK: p-value = 1.03×10−3; SpatialDE: not enriched); 

the number of immune effector cells plays an important role of cancer 

immunotherapy to block the tumor immune evasion and to restore immune 

surveillance36. One representative gene related to this GO term is EEF1A1, 

which is only detected by SPARK and is previously known to be upregulated in 

breast cancer samples37. EEF1A1 is highly expressed in the cancer area with 

moderate expression in the rest areas (Fig. 3E) and such spatial expression 

pattern is consistent with the previous hypothesis that EEF1A1 promotes tumor 

cell motility and subsequently metastasis through its influence in the cytoskeleton 

organization38. As last example, the GO term of cell-substrate adherens junction 

is only identified by SPARK (GO:0005924; SPARK: p-value = 1.61×10−6; 

SpatialDE: 5.97×10−2); the adhesion protein junctional adhesion molecule-A 

regulates epithelial cell morphology and migration, and its over-expression has 

recently been linked with increased risk of metastasis in breast cancer patients39. 

The example gene related to this GO term is CD44 (Fig. 3E), which encodes a 

cell-surface glycoprotein involved in tumors metastasis. The interaction between 

CD44 and matrix metalloproteinases (MMP) members such as MMP2 and 

MMP14 has been discovered in many cancer cell types40,41,. It has been 

hypothesized that MMP-induced CD44 cleave is associated with enhanced cell 

migration, thus facilitating metastasis. The coordinated expression of MMP2, 
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MMP14 and CD44 in the cancer area of the studied sample (Figs. 3E and S24) 

highlights the importance of extracellular matrix in the process of metastasis. 

These new GO terms/KEGG pathways and SE genes that are only identified by 

SPARK again reveal new biology in the data that otherwise cannot be discovered 

by existing methods.   

Hypothalamus Data 

The third data we examined is a MERFISH data collected on the preoptic area of 

the mouse hypothalamus42. The data contains 160 genes measured on 4,975 

single cells with known spatial locations (Fig. 3I), and 155 out of these 160 genes 

were selected in the original study as they are makers of distinct cell populations 

or relevant to various neuronal functions of the hypothalamus. Besides these 

likely true positive genes, a total of 5 blank control genes that were also included 

in the original study to serve as negative controls. In the analysis, consistent with 

simulations, we found that SPARK produces calibrated p-values under permuted 

null, while SpatialDE does not (Fig. 3G). Note that we did not apply Trendsceek 

to the permuted null here due to computational reasons: it takes Trendsceek over 

48 hours to analyze even one gene in this data. Also consistent with simulations, 

the QQ-plot of p-values from different methods suggest that both SpatialDE and 

SPARK are more powerful than Trendsceek (Fig. S27A). Because this data 

contains 5 negative control genes and 155 likely positive genes, we directly 

compared power of different methods based on the number of SE genes 

identified given a fixed number of negative control genes identified (Fig. 3H). The 

power comparison results again support a higher power of SPARK. For example, 

conditional on only one blank control gene being detected (i.e. one false positive), 

SPARK identified 145 SE genes, which is 6 more than that detected by 

SpatialDE (which identified 139, among which 138 are overlapped with SPARK; 

Figs. 3H and S27B). The performance of SPARK and SpatialDE is followed by 

Trendsceek, which identified 108 SE genes, among which 103 are overlapped 

with SPARK.  

A careful examination suggests that almost all SE genes identified by SPARK 

show clear spatial expression pattern as one would expect. For example, we 

display 9 major cell classes in hypothalamus (Figs. 3I and S28A) along with 9 

marker genes42 (Fig. S28B). Importantly, all four SE genes only identified by 

SPARK are closely related to the neuronal functions of the hypothalamus. 

Specifically, Grpr encodes a multiphase membrane protein that functions as a 

receptor for gastrin-releasing peptide. Grpr has been recently shown to mediate 
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an antidepressant-like effect in mouse model and could be potentially served as 

a new therapeutic target of depression43. Avpr1a encodes a receptor for arginine 

vasopressin, which is a neurohypophysial hormone involved in the regulation of 

adrenocorticotropic hormone released from the pituitary44. A recent study has 

shown that the blocking AVPR1A may improve social communication in autism 

spectrum disorder45. Chat encodes an enzyme which catalyzes the biosynthesis 

of the neurotransmitter acetylcholine. Polymorphisms in Chat have been 

associated with Alzheimer's disease and mild cognitive impairment46. Nup62cl 

itself is a protein coding gene related to structural constituent of nuclear pore. 

Previous studies have found that Nup62cl is co-expressed with Ghrh42, which is 

the gene coding the growth hormone-relating hormone (GHRH) secreted by the 

hypothalamus that further stimulates the synthesis and release of growth 

hormone (GH) in pituitary47. These important genes missed by other methods 

highlight the power of SPARK.   

Hippocampus Data 

The final data we examined is from a mouse hippocampus study48. This is a 

small seqFISH data that contains 249 genes measured on 131 single cells with 

known spatial locations (Fig. S29A). These 249 genes include 214 genes that 

were selected in the original study as transcription factors and signaling pathway 

components and 35 remaining genes that are previously known cell identity 

markers. In the analysis, consistent with simulations, both SPARK and 

Trendsceek produce calibrated p-values under permuted null, while SpatialDE 

yields conservative p-values (Fig. S29B); SPARK again identified more SE genes 

compared to SpatialDE and Trendsceek across a range of FDRs (Figs. S29C 

and S29D). For example, at an FDR of 5%, SPARK identified 17 SE genes; while 

SpatialDE and Trendsceek identified 11 (all overlap with SPARK) and 4 (one 

overlap with SPARK) SE genes, respectively (Figs. S30-S32). The 11 SE genes 

identified by both SpatialDE and SPARK show clear spatial expression patterns 

(Fig. S31), so are the 6 SE genes identified only by SPARK (Fig. S32). The 3 SE 

genes only detected by Trendsceek tend to express uniformly highly in most cells 

and show less obvious spatial pattern (Fig. S33). The higher number and 

apparent spatial expression pattern of SE genes identified by SPARK support its 

higher power.  

We carefully examined all six SE genes that are only identified by SPARK. Four 

of them are cell identity markers: FoxO1 and Slc17a8 for glutamatergic neurons; 

igtp for GABAergic neurons; and opalin for Oligodendrocytes49. All of them are 
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closely related to neuronal functions in hippocampus. For example, the spatial 

expression pattern of FoxO1 detected by SPARK is consistent with the previous 

observation that it is highly enriched in the ventral CA3 area of the hippocampus 

as well as in the amygdalohippocampal region50, 51. FoxO1 is activated in 

hippocampal progenitor stem cells following cortisol exposure to prenatal stress 

and mediates the negative effect of stress on neurogenesis52.  Besides these 

four marker genes, the remaining two genes are pou4f1 and gfi1, both of which 

encode neural transcription factors and play important roles in the sensory 

nervous system development53, 54. These important genes that are missed by 

other methods again highlight the power of SPARK.  
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DISCUSSION 

We have presented a new computational method, SPARK, for identifying genes 

with spatial expression patterns in spatially resolved transcriptomic studies. 

Compared with existing approaches, SPARK is computationally scalable, 

produces well-calibrated p-values for type I error control, and is more powerful in 

identifying SE genes. We have illustrated the benefits of SPARK through 

extensive simulations and in-depth analysis of four real data sets.  

Different from previous literatures in spatial statistics, SPARK incorporates a data 

generative model and relies on a model-based hypothesis test framework for 

spatial pattern detection. The data generative model in SPARK distinguishes it 

from previous spatial data exploratory tools that rely on variogram or semi-

variogram to visualize spatial autocorrelation pattern55,56. The model-based 

hypothesis test in SPARK also distinguishes it from previous simple spatial test 

statistics such as Moran’s I and Geary’s C57, 58  for detecting spatial 

autocorrelation patterns. However, presumably because Moran’s I relies on 

asymptotic normality, its p-values under permuted null were highly inflated in the 

real data we examined here (Fig. S34). In addition, Moran’s I effectively 

computes correlation among neighboring locations to detect the existence of 

spatial autocorrelation. Subsequently, these conventional test statistics are not 

specifically designed to detect spatial patterns other than autocorrelation. For 

example, studies have shown that Moran’s I (and Geary’s C) are not well 

powered to detect spatial periodicity patterns57,58. In contrast, by incorporating 

multiple spatial kernel functions, SPARK can accommodate a range of spatial 

patterns commonly observed in spatial transcriptomics studies. Indeed, in our 

analysis, we also found that Moran’s I test was unable to identify most SE genes 

in pattern I from the mouse olfactory bulb data, including the well-known genes 

Doc2g and Reln, whose spatial patterns do not reflect simple autocorrelation. 

Subsequently, the power of Moran’s I test was lower than SPARK across all four 

real data sets (Fig. S35).  

We have primarily focused on modeling count data with SPARK. Modeling count 

data directly allows us to account for the mean-variance dependency observed in 

the spatial data (Fig. S36), resulting in an appreciable power gain. Such power 

gain is especially apparent in data with low count reads such as the first two 

spatial transcriptomics data we examined here. However, we acknowledge that 

the power gain brought by count modeling may be small in data with high count 

reads such as the MERFISH and seqFISH data, since a normal distribution can 
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often approximate high counts as well as an over-dispersed Poisson distribution. 

Subsequently, it could be beneficial to provide a Gaussian version of SPARK. 

Here, we have developed such a Gaussian version of SPARK and implemented 

it in the SPARK software package. Modeling and algorithm details are provided 

in the Supplementary Text. The Gaussian version of SPARK allows for robust 

modeling and scalable computation and can be particularly beneficial for data 

with high counts. Because we rely on novel statistical techniques to obtain p-

values, the Gaussian version of SPARK also produces well-calibrated p-values in 

all permuted data (Fig. S37), much more so than the p-values from SpatialDE. 

While the power of the Gaussian version of SPARK is inferior to the Poisson 

version of SPARK for data with low counts (Figs. S38A-S38B), its power is 

somewhat comparable with the Poisson version of SPARK for data with high 

counts, even though its power remains higher than that of SpatialDE (Figs. 

S38C-S38D). We hope that by providing both the Poisson and Gaussian 

versions of SPARK, practitioners can make their own choice in selecting the 

appropriate model for applied data analysis.  

We have primarily focused on aggregating p-values obtained from ten different 

kernels. Aggregating p-values across different kernels ensures stable 

performance across a range of possible scenarios. However, we fully 

acknowledge that some kernels may work preferentially well for certain data sets 

(Fig. S39), for detecting certain spatial patterns, and/or for identifying certain SE 

genes. Subsequently, it could be beneficial to estimate the weights of the ten 

kernels for each gene separately. In addition, because many SE genes may 

share similar spatial expression pattern, it could be beneficial to exploit such 

common information across multiple genes to further improve the power of SE 

analysis. For example, we could infer for all genes in the same gene set a 

common set of weights, with which to combine p-values from different kernels. 

How to obtain these kernel weights and how to combine p-values in a weighted 

fashion are important topics for future research.   

There are several potential extensions for SPARK. We have primarily focused on 

de novo detection of genes with spatial expression patterns without knowing 

what specific spatial patterns to look for in the data a priori. If we have prior 

knowledge on the structure of the tissue, we can incorporate such structural 

information into the kernel functions to facilitate the detection of genes that are 

specifically expressed in the known structures. We have primarily focused on 

analyzing spatial transcriptomic data collected on a two-dimensional space of a 

tissue/culture layout. SPARK is flexible and can be easily extended to analyze 
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three-dimensional (3D) data sets such as STARmap where the depth of the 

sample location in the tissue can be recorded59 or even higher dimensional data 

sets where other coordinates (e.g. time) are also recorded. We have primarily 

relied on simple spatial pattern plots and hierarchical clustering for downstream 

analysis to visualize and categorize identified SE genes from SPARK. Using 

model based downstream analysis approaches such as the hidden Markov 

random field model60 may provide additional accuracy in the categorization of 

spatial patterns inferred from identified SE genes. We have primarily focused on 

using an over-dispersed Poisson model to model count data. Several recent 

studies have shown that over-dispersed Poisson models are well suited for 

modeling the data generating process underlying, for example, the unique 

molecular identifier (UMI) based sequencing studies61, 62. However, exploring the 

use of zero inflated models for data types with inflated zero counts could be a 

useful future extension. We have primarily focused on analyzing one gene at a 

time. Future extension of SPARK towards joint modelling of multiple correlated 

genes in a hierarchical Bayesian framework may further increase power, as it 

allows for information sharing on the common spatial patterns inferred across 

genes. Finally, SPARK is computationally efficient. It takes less than an hour to 

analyze each real data set examined here (Table S3) and can easily handle tens 

of thousands of genes measured on tens of thousands of spatial locations (Fig. 

S40). However, extending SPARK to analyze the larger data collected from 

emerging techniques such as Slide-seq63 will likely require new algorithmic 

development or better computing environment other than standard desktop PCs.  
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MATERIALS AND METHODS 

SPARK: Model and Algorithm 

We consider modeling gene expression data collected by various high-

throughput spatial sequencing techniques such as smFISH and spatial 

transcriptomics technology. These spatial techniques simultaneously measure 

gene expression levels of � different genes on � different spatial locations on a 

tissue of interest (which we simply refer to as samples). The gene expression 

measurements are often obtained in the form of counts: they are collected either 

as the number of barcoded mRNA for any given transcript in a single cell through 

smFISH based techniques or as the number of sequencing reads mapped to any 

given gene through sequencing based spatial techniques. The number of genes, 

�, varies across different spatial sequencing techniques and often ranges from a 

couple hundred (in the case of smFISH) to the whole transcriptome (in the case 

of spatial transcriptomics technology). The sample composition varies across 

different spatial sequencing techniques and can consist of either a single cell (in 

the case of smFISH) or a small set of approximately homogenous single cells 

residing in a small region of the sampled location known as a spot (in the case of 

spatial transcriptomics technology). The sampled locations have known spatial 

coordinates that are recorded during the experiment. These sampled locations 

can either be considered as random (in the case of smFISH; as expressions are 

measured on single cells that are randomly scattered across the tissue/culture 

space) or are pre-determined by researches (in the case of spatial 

transcriptomics technology) before the experiment. We denote �� � ����, ���� as 

the spatial coordinates (i.e. location index) for i'th sample, with 	 
 �1,� , �� . 

These spatial coordinates vary continuously over a two-dimensional space 
�, or 

�� 
 
�. While we only focus on the cases where samples are collected on a two-

dimensional space of a tissue/culture layout, our model and method are general, 

capable of handling three-dimensional cases where the depth of the sample 

location in the tissue can be recorded or handling even higher dimensional cases 

where other coordinates (e.g. time) are also recorded.  

Our primary goal is to detect genes whose expression level displays spatial 

pattern with respect to the sample locations. We simply refer to these genes as 

SE genes (genes with spatial expression pattern), in parallel to DE genes 

(differentially expressed genes) used in other settings. To identify SE genes, we 

examine one gene at a time and model its expression level across sampled 

locations using a generalized linear spatial model (GLSM)64, 65. GLSM, also 
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known as the generalized linear geostatistical model or the spatial generalized 

linear mixed model, is a generalized linear mixed model that directly models non-

Gaussian spatial data and uses random effects to capture the underlying 

stationary spatial process. GSLM has been commonly used for interpolating and 

prediction of spatial data, with applications in spatial disease mapping and spatial 

epidemiologic studies66, 67. However, different from all these previous GLSM 

development, we instead focus on developing a hypothesis testing framework for 

GLSM. Here, for the gene of focus, we denote ������ as the gene expression 

measurement in terms of counts for the i'th sample. We denote ������ as a k-

vector of covariates that include a scalar of one for the intercept and k-1 

observed explanatory variables for the i'th sample. These explanatory variables 

could contain batch information, cell cycle information, or other information that 

are important to adjust for during the analysis. We denote ������  as the 

normalization factor for i'th sample. Here, we set ������ as the summation of the 

total number of counts across all genes for the sample as our main interest is in 

analyzing the relative gene expression level. Other choices of ������ are possible; 

for example, ������ can be set to one if the main interest is in the absolute gene 

expression level. We consider modeling the observed expression count data with 

an over-dispersed Poisson distribution  

������~��	��������������, 	 � 1,2, � , � 

where ������  is an unknown Poisson rate parameter that represents the 

underlying gene expression level for the i'th sample. In the spatial setting, ������ 
can also be viewed as the unobserved spatial random process occurred at 

location  �� . We model the log scale of the latent variable ������  as a linear 

combination of three terms, 

log�������� � �������� � ������ � �� , 

where � is a k-vector of coefficients that include an intercept representing the 

mean log-expression of the gene across spatial locations together with k-1 

coefficients for the corresponding explanatory variables; �� is the residual error 

that is independently and identically distributed from ��0, !� � with variance !� ; 

and ������ is a zero-mean, stationary Gaussian process modeling the spatial 

correlation pattern among spatial locations  

"���� � �������, ������, � , ��������~ MVN�&, !�'����, 
where the covariance '���  is a kernel function of the spatial locations � �
���, � , ���� , with ij’th element being  '���, ��� ; !�  is a scaling factor of the 

covariance kernel; and MVN denotes a multivariate normal distribution. We will 

discuss the choice of the kernel function in more details below. In the above 
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model, the covariance for the latent variables log�(�����  is ) � !�'��� � !�* , 

where (���� � �������, ������, � , ��������  and *  is an n-dimensional identity 

matrix. In spatial statistics, !� is commonly referred to as the partial sill which 

effectively measures the expression variance in log�������� captured by spatial 

patterns or spatial location information; !� is commonly referred to as the nugget 

which effectively measures the expression variance in log�������� due to random 

noise independent of spatial locations.  

In the GLSM defined above, testing whether a gene shows spatial expression 

pattern can be translated into testing the null hypothesis  +	: !� � 0 . The 

statistical power of such hypothesis test will inevitably depend on how the spatial 

kernel function '��� matches the true underlying spatial pattern displayed by the 

gene of interest. For example, a periodic kernel will be particularly useful to 

detect expression pattern that is periodic across the location space, while a 

Gaussian kernel will be particularly useful to detect expression pattern that is 

clustered in focal areas. The true underlying spatial pattern for any gene is 

unfortunately unknown and may vary across genes. To ensure robust 

identification of SE genes across various spatial patterns, we consider using a 

total of ten different spatial kernels, including five periodic kernels with different 

periodicity parameters and five Gaussian kernels with different smoothness 

parameters. The detailed construction of these kernels is described in 

Supplementary Text. These ten kernels cover a range of possible spatial patterns 

that are observed in common biological data sets (Fig. S41) and are used as 

default kernels in our software implementation for all analysis results presented 

here. However, we note that our method and software implemented can easily 

handle many other kernel functions or incorporate different number of kernel 

functions as the users see fit.  

We fit the above GLSM and test the null hypothesis using the ten kernels one at 

a time. Parameter estimation and hypothesis testing in GLSM is notoriously 

difficult, as the GLSM likelihood consists of an n-dimensional integral that cannot 

be solved analytically. To overcome the high dimensional integral and enable 

scalable estimation and inference with GLSM, we develop an approximate 

inference algorithm based on the penalized quasi-likelihood (PQL) approach20, 68. 

The algorithmic details are provided in the Supplementary Text. With parameter 

estimates from the PQL-based algorithm, we computed a p-value for each of the 

ten kernels using the Satterthwaite Method69 based on score statistics, which 

follow a mixture of chi-square distributions. Afterwards, we combined these ten p-
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values through the recently developed Cauchy p-value combination rule21. To 

apply the Cauchy combination rule, we converted each of the ten p-values into a 

Cauchy statistic, aggregated the ten Cauchy statistics through summation, and 

converted the summation back to a single p-value based on the standard Cauchy 

distribution. The Cauchy rule takes advantage of the fact that combination of 

Cauchy random variables also follows a Cauchy distribution regardless whether 

these random variables are correlated or not21, 22. Therefore, the Cauchy 

combination rule allows us to combine multiple potentially correlated p-values 

into a single p-value without loss of type I error control. After obtaining � p-

values across � genes, we controlled for false discovery rate (FDR) using the 

Benjamini–Yekutieli (BY) procedure, which is effective under arbitrary 

dependence across genes70. 

We refer to the above method as the Poisson version of SPARK (Spatial PAttern 

Recognition via Kernels) and is the main method used in the present study. 

Besides the Poisson version, we have also developed a Gaussian version of 

SPARK for modeling normalized spatial data (Supplementary Text). Both 

versions of SPARK are implemented in the same R package with multiple 

threads computing capability, and with underlying efficient C/C++ code linked 

through Rcpp. The software SPARK, together with all analysis code used in the 

present study for reproducing the results presented in the manuscript, are freely 

available at www.xzlab.org/software.html.  

Simulation Designs 

We performed two sets of simulations. In the first set of simulations, we 

simulated gene expression data on 260 spatial locations (i.e. spots) collected in 

the mouse olfactory bulb study using parameters inferred from the corresponding 

real data (detail of the study is described in the next section). For null simulations, 

we simulated 10,000 non-SE genes on these locations to examine type I error 

control. For power simulations, we simulated 1,000 SE genes and 9,000 non-SE 

genes on these locations to examine method power. In either null or power 

simulations, for each gene in turn, we first simulated the non-spatial residual 

errors on the spots independently based on a normal distribution with mean zero 

and variance being either 0.2, 0.35 or 0.6, which are equivalent to approximately 

the first quartile, median and third quartile of the non-spatial variance estimates 

in the real data, respectively. For non-SE genes, we set the intercept to be -10.2, 

which is shared across all spots and corresponds to the median of the intercept 

estimates in the mouse olfactory data. For SE genes, we first categorized spots 
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into two groups – a group of spots with low expression levels and a group of 

spots with high expression levels -- based on the three spatial patterns illustrated 

in Fig. 1C. We then set the intercept in the low expression group to be -10.2 and 

set the intercept in the high expression group to be either two-fold, three-fold or 

four-fold higher than the lower one on rate parameter scale; thus the intercept in 

the high expression group is -9.5, -9.1, and -8.8, for the three cases, respectively. 

The difference in the intercept between the two groups of spots thus introduces 

spatial differential expression pattern. Finally, for each gene in turn, regardless 

whether it is SE or non-SE, we summed the residual errors and the intercept to a 

spot-specific latent variable log ��. We then simulated the gene expression count 

data based on a Poisson distribution with the rate being a product of the latent 

variable λ
 and the total read counts ���� that is obtained from the real data. That 

is, ��~��	������ for the 	.th spot. With the above procedure, in each of the spatial 

pattern illustrated in Fig. 1C, we first simulated data using a baseline parameter 

setting where the noise variance is set to be 0.35 and the intercept is set to be 

either -10.2 for non-SE genes or -10.2/-9.1 (representing a three-fold change) for 

SE genes. Afterwards, we varied one parameter at a time to examine the 

influence of different parameters on the performance of different methods. We 

performed 10 replicates for each scenario and combined results across all 10 

replicates.  

In the second set of simulations, we simulated count data on spatially distributed 

cells following the Trendsceek paper. Specifically, we first randomly simulated 

the spatial locations for a fixed number of cells (n = 100, 200 or 500) through a 

random-point-pattern Poisson process. We generated 1,000 genes in the 

simulated data, which were all non-SE genes in the null simulations and 

consisted of 100 SE genes and 900 non-SE genes in the power simulations. For 

non-SE genes, the expression measurements from the real data were randomly 

assigned to the simulated cells regardless of their spatial locations (Fig. 1E). For 

SE genes, the expression measurements from the real data were assigned to the 

simulated cells to display three distinct spatial patterns (Hotspot, Streak and 

Gradient patterns; Fig. 1E). Specifically, for the first two spatial patterns, we 

created either a circle (for Hotspot pattern) or a band (for Streak pattern) in the 

middle of the panel and marked cells residing in these areas. The size of the 

circle and the size of the band were designed so that the marked cells inside 

these areas represent a fixed proportion of all cells, with the proportion set to be 

either 10%, 20%, or 30%. The expression measurements of the non-marked 

cells were randomly assigned from the observed expression distribution of the 
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gene in the seqFISH data. The expression measurements of the marked cells 

were randomly assigned from either the upper quantile (for 50 SE genes) or the 

lower quantile (for the other 50 SE genes) of the expression distribution of the 

gene in the seqFISH data. We set the quantile cutoff to be either 40%, 66% or 

80%, representing low, moderate, or high SE signal strength, respectively. These 

three different quantile cutoffs correspond to an expected expression fold change 

between the marked cells and the non-marked cells of either 1.5, 2 or 2.5, 

respectively. For the Gradient pattern, the expression levels of a fraction of 

marked cells (=30%, 40%, or 50%) were set either in an increasing order (for 50 

SE genes) or a decreasing order (for the other 50 SE genes) along the x-axis. To 

do so, we draw the expression measurements for the marked cells randomly 

from the observed expression distribution in the real data and assigned these 

drawn values in either increasing or decreasing order to the marked cells based 

on their x-axis coordinates. In contrast, the expression measurements of the non-

marked cells were again randomly assigned from the observed expression 

distribution of the gene in the seqFISH data, regardless of their spatial location. 

In all these simulations, we varied the number of cells (n = 100, 200 or 500), the 

SE strength (low, moderate or high; measured by the quantile cutoff for the first 

two spatial patterns and by the fraction of cells displaying expression gradient for 

the third spatial pattern), as well as the fraction of cells in the focal/streak area for 

the first two spatial patterns.  

Clustering SE Genes Detected by SPARK 
 

We summarized the spatial expression patterns detected by SPARK by dividing 

SE genes into different categories. To do so, we first applied variance-stabilizing 

transformation (VST) to the raw count data12 and obtained the relative gene 

expression levels through adjusting for the log-scale total read counts. We then 

used the hierarchical agglomerative clustering algorithm in the R package 

amap (v0.8-17) to cluster identified SE genes detected by SPARK into five 

groups. Afterwards, we summarized the gene expression patterns by using the 

expression level of the five cluster centers (Fig. S42). In the hierarchical 

clustering, we set the two optional parameters in the R function to be Euclidean 

distance and Ward’s criterion, respectively. 

Gene Sets and Functional Enrichment Analysis 

For each of the first two real data sets, we obtained lists of genes that can be 

used to serve as unbiased validation for the SE genes identified by different 

methods. Specifically, for the olfactory bulb data, we obtained a gene list directly 
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based on the three layers (mitral, glomerular and granule) of the main olfactory 

bulb listed in the Harmonizome database 

(https://amp.pharm.mssm.edu/Harmonizome/). For the breast cancer data, we 

obtained from the Harmonizome database a gene list that consists of breast 

cancer related genes from six different data sets (OMIM Gene-Disease 

Associations; PhosphoSitePlus Phosphosite-Disease Associations; DISEASES 

Text-mining Gene-Disease Association Evidence Scores; GAD Gene-Disease 

Associations; GWAS Catalog SNP-Phenotype Associations). For the breast 

cancer data, we also obtained from the CancerMine database 

(http://bionlp.bcgsc.ca/cancermine/) another gene list that consists of breast 

cancer related genes that are either cancer drivers, oncogenes, or tumor 

suppressors. We used these gene lists to validate the SE genes identified by 

different methods.  

In addition, we performed the functional enrichment analysis of significant SE 

genes identified by SPARK and SpatialDE in Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG). We performed all enrichment 

analyses using the R package clusterProfiler71 (v3.12.0). In the package, we 

used the default “BH” method for p-value multiple testing correction and we used 

the default number of permutations to be 1,000.  

Spatial Transcriptomics Data Sets 

We downloaded two spatial transcriptomics data sets from the Spatial 

Transcriptomics Research (http://www.spatialtranscriptomicsresearch.org). 

These two data sets include a mouse olfactory bulb data and a human breast 

cancer data. These data consist of gene expression measurements in the form of 

read counts that are collected on a number of spatial locations known as spots. 

Following the SpatialDE paper, we used the MOB Replicate 11 file for mouse 

olfactory bulb data, which contains 16,218 genes measured on 262 spots and 

Breast Cancer Layer 2 file for the breast cancer data, which contains 14,789 

genes measured on 251 spots. We filtered out genes that are expressed in less 

than 10% of the array spots and selected spots with at least 10 total read counts. 

With these filtering criteria, we analyzed a final set of 11,274 genes on 260 spots 

in the mouse olfactory bulb data and 5,262 genes on 250 spots for the breast 

cancer data. In the analysis, we performed permutations to construct an 

empirical null distribution of p-values for each method by permuting the spot 

coordinates 10 times. Afterwards, we examined type I error control of different 

methods based on the empirical null distribution of p-values.  
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MERFISH Data Set 

We obtained the MERFISH data set collected on the mouse preoptic region of 

the hypothalamus from Dryad42,72. We used the slice at Bregma +0.11mm from 

animal 18 for analysis, as it contains all 160 genes measured on the largest 

number of single cells (5,665) across all nine cell classes. Among the 160 genes, 

155 of them were pre-selected in the original study as either known markers for 

major cell classes or relevant to various neuronal functions of the hypothalamus 

(e.g. some are neuropeptides and some are neuro-modulator receptors). Most of 

these 155 genes are expected to have spatial expression pattern in the 

hypothalamus. The remaining 5 genes are blank control genes without spatial 

expression pattern in the hypothalamus and thus can serve as negative controls. 

The downloaded data contains normalized genes expression values, which were 

computed as read counts divided by either the cell volume (combinatorial 

smFISH) or arbitrary fluorescence units per µm3 (non-combinatorial, sequential 

FISH) and further scaled by 1,000. To obtain the raw count data, we thus 

rescaled the expression values by first multiplying 1,000, adjusted for cell volume, 

and then converted the rescaled value into integers by taking the ceiling over the 

rescaled data. After removing the ambiguous cells that were identified as putative 

doublets in the original data, we analyzed a final set of 160 genes on 4,975 cells. 

In the analysis, we permuted the location coordinates 100 times to construct an 

empirical null distribution, with which we examined type I error control of different 

methods. 

SeqFISH Data Set 

We obtained the seqFISH data set collected on the mouse hippocampus from 

the supplementary file of the original paper48. Following the SpatialDE paper, we 

extracted the field 43 data set for analysis. The data are in the form of raw count 

data for 249 genes measured in 257 cells with known spatial location information. 

Among 249 measured genes, 214 were selected from a list of transcription 

factors and signaling pathway components, and the remaining 35 were selected 

from cell identity markers48. Following Trendsceek13 and the original study48, we 

filtered out cells with x- or y-axis values falling outside the range of 203 - 822 

pixels in order to address border artifacts. After filtering, we analyzed a final set 

of 249 genes measured on 131 cells. In the analysis, we permuted the location 

coordinates 100 times to construct an empirical null distribution, with which we 

examined type I error control of different methods. 

Compared Methods 
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We compared SPARK with two existing methods for detecting genes with spatial 

expression patterns. Both of these methods are designed for normalized data. 

The first method is Trendsceek (R package trendsceek; v1.0.0; download date: 

12/20/2018). We followed the same procedure described in the original 

Trendsceek paper13 to filter and normalize count data. Specifically, for the two 

spatial transcriptomics data, we excluded genes that are expressed in less than 3 

spots and excluded spots that contain less than 5 read counts. We then 

performed log10-transformation on raw count data (by adding a pseudo-count of 

one to void log transformation of zero values). For the real data analysis, we 

focused on analyzing the top 500 most variable genes to ensure sufficient power 

as well as computational feasibility as described in the Trendsceek paper. For 

the permuted data, we analyzed all the genes to construct an empirical null 

distribution. For seqFISH data, we first removed boundary cells as described in 

the previous section. Afterwards, following the Trendsceek recommendation, for 

each gene in turn, we performed a one-sided winsorization procedure to remove 

outlier effects by setting the first four largest values to be the fifth largest value. 

We then applied log10-transformation on the count data (again adding a pseudo-

count of one) to obtain normalized expression values. For MERFISH data, we 

performed log10-transformation on raw count data (again adding a pseudo-count 

of one) and included all genes for analysis. Besides filtering and normalization, 

Trendsceek relies on permutation to compute p-values. Here, we set the number 

of permutations to be the default of 10,000. In addition, because the results of 

Trendsceek depend on the seeds used in the software, we analyzed each data 

using ten different seeds and reported results based on the seed that yields the 

highest number of discoveries; thus the power estimates of Trendsceek are likely 

upward biased. One disadvantage of Trendsceek is its slow computation: it takes 

over 48 hours to analyze one single gene in the mouse hypothalamus data. 

Therefore, in that data, we only applied the Trendsceek to the real data but not to 

the permuted data. Following the Trendsceek paper, we used the Benjamini-

Hochberg procedure implemented in Trendsceek software to obtain adjusted p-

value (i.e. FDR). With the adjusted p-value, we declared an SE gene significant if 

at least one of the four adjusted p-value outputs from (the four tests of) 

Trendsceek is below the threshold of 0.05. 

The second method we compared with is SpatialDE (python package; v.1.1.0; 

download date: 12/12/2018). For the mouse olfactory data and human breast 

cancer data, we directly used the analysis code provided by the SpatialDE 

authors on the Github (https://github.com/Teichlab/SpatialDE) to perform analysis. 
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For the mouse hippocampus data, we applied their analysis code to the border 

artifacts adjusted data set described above to avoid detection of border artifacts 

and ensure fair comparison across methods. For the mouse hypothalamus data, 

we also directly applied the MERFISH analysis code described in the SpatialDE 

paper. Following the SpatialDE paper, we declared an SE gene as significant if 

the output q-value (i.e. FDR) from SpatialDE is below the threshold of 0.05. 

Finally, we also examined the performance of Moran’s I test in all four real data 

sets. We used the function moran.test implemented in the R package spdep 

(v1.1.2) for this analysis. The results on Moran’s I are presented in the 

Discussion. 
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Figure 1: Method schematic of SPARK and simulation results. (A) Method 

schematic of SPARK. SPARK examines one gene at a time and models the gene 

expression measurements on spatial locations using the generalized linear spatial 

model (GLSM). To detect whether the gene shows spatial expression pattern, SPARK 

relies on a series of spatial kernels for pattern recognition and outputs a p-value for 

each spatial kernel using the Satterthwaite method that enables exact p-value 

computation. All these p-values from different spatial kernels are subsequently 

combined into a final SPARK p-value through the Cauchy combination rule. (B) 

Quantile-quantile plot of the observed -log10 p-values from different methods against 

the expected -log10 p-values under the null for the first set of null simulations based on 

the mouse olfactory bulb data. p-values are combined across ten simulation replicates. 

Simulations are performed under moderate noise ( !� � 0.35 ). Compared methods 

include SPARK (pink), SpatialDE (purple), Trendsceek.E (light salmon) which is the 

Emark test of Trendsceek, Trendsceek.2 (yellow-green) which is the Markcorr test of 

Trendsceek, Trendsceek.3 (light green) which is the Markvario test of Trendsceek, and 

Trendsceek.V (wheat) which is the Vmark test of Trendsceek. p-values from SPARK 

and some of the Trendsceek methods (e.g. Markvario and Vmark) are well calibrated. In 

contrast, p-values from SpatialDE, and to a lesser extent from the Emark and Markcorr 

tests of Trendsceek, are overly conservative and distributed below the expected 

diagonal line. Representative expression pattern for a null gene that does not show a 

spatial expression pattern is embedded inside the panel. (C) Power plots show the 

proportion of true positives (y-axis) detected by different methods at a range of false 

discovery rates (FDR; x-axis) for the first set of alternative simulations based on the 

mouse olfactory bulb data. Representative genes displaying each of the three spatial 

expression patterns I-III are embedded inside the panels. The proportion of true 

positives is averaged across ten simulation replicates. Simulations are performed under 

moderate noise (!� � 0.35) and moderate SE strength (threefold). Trendsceek (sky-blue) 

is the combined test of Trendsceek. (D) Quantile-quantile plot of the observed -log10 p-

values from different methods against the expected -log10 p-values under the null for 

the second set of null simulations based on the SeqFISH data. p-values are combined 

across ten simulation replicates. Simulations are performed under moderate sample 

size (� � 200). p-values from SPARK and Trendsceek are well calibrated. In contrast, 

p-values from SpatialDE are overly conservative and distributed below the expected 

diagonal line. Representative expression pattern for a null gene that does not show a 

spatial expression pattern is embedded inside the panel. (E) Power plots show the 

proportion of true positives (y-axis) detected by different methods at a range of false 

discovery rates (FDR; x-axis) for the first set of alternative simulations based on the 
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SeqFISH data. Representative genes displaying each of the three spatial expression

patterns are embedded inside the panels. The proportion of true positives is averaged

across ten simulation replicates. Simulations were performed under moderate fraction of

marked cells (20%) and moderate SE strength (2 fold) for the hotspot and streak

patterns, or under moderate SE strength (40% cells displaying expression gradient) for

the linear gradient pattern. In all these simulations, SPARK properly controls for type I

error and is more powerful than the other two methods for detecting genes with spatial

expression patterns.   
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Figure 2: Analyzing the mouse olfactory bulb data. (A) Quantile-quantile plot of the 

observed -log10 p-values from different methods are plotted against the expected -

log10 p-values under the null in the permuted data. p-values are combined across ten 

permutation replicates. Compared methods include SPARK (pink), SpatialDE (purple), 

Trendsceek.E (light salmon) which is the Emark test of Trendsceek, Trendsceek.2 

(yellow-green) which is the Markcorr test of Trendsceek, Trendsceek.3  (light green) 

which is the Markvario test of Trendsceek, and Trendsceek.V (wheat) which is the 

Vmark test of Trendsceek. p-values from SPARK and various Trendsceek methods are 

well calibrated. In contrast, p-values from SpatialDE are overly conservative at large 

values and are overly anti-conservative at small values. (B) Power plot shows the 

number of genes with spatial expression pattern (y-axis) identified by different methods 

at a range of false discovery rates (FDRs; x-axis). Across a range of FDRs, SPARK 

detected more genes with spatial expression pattern than SpatialDE, while Trendsceek 

(sky-blue) which is the combined test of Trendsceek, detected almost none. (C) In situ 

hybridization of three representative genes (Reln, Cldn5, and Camk2a) obtained from 

the database of the Allen Brain Atlas. Reln is spatially expressed in the mitral layer and 

glomeruli layer. Cldn5 is spatially expressed in the nerve layer. Camk2a is spatially 

expressed in the granular layer. Spatial expression pattern for the same three genes 

(Reln, Cldn5, and Camk2a) in the spatial transcriptomics data, along with their p-values 

from SPARK (inside parenthesis). Color represents relative gene expression level 

(purple: high; green: low). These genes are only identified by SPARK, but not by the 

other two methods. Spatial expression patterns for three additional known marker genes 

(Doc2g, Kctd12, and Penk) in the spatial transcriptomics data, along with their p-values 

from SPARK (inside parenthesis). These genes are previously known molecular 

markers for different layers in the mouse olfactory bulb: Doc2g for mitral layer; Kctd12 

for nerve layer; and Penk for granular layer. (D) Three distinct spatial expression 

patterns summarized based on the 772 SE genes that are identified by SPARK, along 

with dendrogram displaying the clustering of these three main patterns. (E) Venn 

diagram shows the overlap between SE genes identified by SPARK and SpatialDE. Bar 

plot shows the percentage of SE genes identified by SPARK (orange/pink) or SpatialDE 

(orange/purple) that are also validated in two gene lists, one from a literature (left) and 

the other from the Harmonizome database (right). The orange bar represents the 

percentage of SE genes identified by both SPARK and SpatialDE that are in either of 

the gene lists; the pink bar represents the percentage of unique SE genes identified by 

SPARK that are in either of the gene lists; the purple bar represents the percentage of 

unique SE genes identified by SpatialDE that are in either of the gene lists. In both gene 

lists, SE genes identified only by SPARK show a higher percentage of overlap with 
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existing gene lists than SE genes identified only by SpatialDE. (F) Bubble plot shows –

log10 p-values for pathway enrichment analysis on SE genes obtained by SPARK.

Gene sets are colored by three categories: GO biological process (blue), GO molecular

function (purple), and GO cellular component (yellow). 
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Figure 3:  Analyzing the human breast cancer data and the mouse hypothalamus 

data. (A) Quantile-quantile plot of the observed -log10 p-values from different methods 

are plotted against the expected -log10 p-values under the null in the permuted data. p-

values are combined across ten permutation replicates. Compared methods include 

SPARK (pink), SpatialDE (purple), Trendsceek.E (light salmon) which is the Emark test 

of Trendsceek, Trendsceek.2 (yellow-green) which is the Markcorr test of Trendsceek, 

Trendsceek. 3  (light green) which is the Markvario test of Trendsceek, and 

Trendsceek.V (wheat) which is the Vmark test of Trendsceek. p-values from SPARK 

and various Trendsceek methods are approximately well calibrated. In contrast, p-

values from SpatialDE are overly conservative at large values and are overly anti-

conservative at small values. (B) Power plot shows the number of genes with spatial 

expression pattern (y-axis) identified by different methods at a range of false discovery 

rates (FDRs; x-axis). Across a range of FDRs, SPARK detected more genes with spatial 

expression pattern than SpatialDE, while Trendsceek (sky-blue) which is the combined 

test of Trendsceek, detected only a few. (C) Bar plot shows the percentage of SE genes 

identified by SPARK (orange/pink) or SpatialDE (orange/purple) that are also validated 

in two gene lists, one from the CancerMine database (left) and the other from the 

Harmonizome database (right). The orange bar represents the percentage of SE genes 

identified by both SPARK and SpatialDE that are in either of the gene lists; the pink bar 

represents the percentage of unique SE genes identified by SPARK that are in either of 

the gene lists; the purple bar represents the percentage of unique SE genes identified 

by SpatialDE that are in either of the gene lists. In both gene lists, SE genes identified 

only by SPARK show a higher percentage of overlap with existing gene lists than SE 

genes identified only by SpatialDE. (D) Venn diagram shows the overlap between SE 

genes identified by SPARK and SpatialDE. (E) Spatial expression pattern for five genes 

(HLA-B, EEF1A1, ERBB2, MMP14, and CD44) that are only identified by SPARK but 

not by the other two methods. The p-values for the five genes from SPARK are shown 

inside parenthesis. Color represents relative gene expression level (purple: high; green: 

low). For reference, the hematoxylin and eosin (H&E) staining on an adjacent section is 

shown in the top left panel. The dark staining in the H&E panel represents potential 

tumors. The H&E panel is reproduced based on the reference7. These five genes are 

previously known molecular markers associated with tumor induced immune response 

(HLA-B), growth factor (ERBB2), or metastasis (EEF1A1, MMP14 and CD44). (F) 

Bubble plot shows –log10 p-values for pathway enrichment analysis on SE genes 

obtained by SPARK. Gene sets are colored by categories: GO biological process (blue), 

GO molecular function (purple), and GO cellular component (yellow). (G) Quantile-

quantile plot of the observed -log10 p-values from different methods are plotted against 
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the expected -log10 p-values under the null in the permuted data. p-values are 

combined across one hundred permutation replicates. Compared methods include 

SPARK (pink) and SpatialDE (purple). Results for Trendsceek are not included here 

due to computational issue. (H) Power plot shows the number of genes with spatial 

expression pattern (y-axis) identified by different methods vs the number of blank 

control genes identified at the same threshold (x-axis). SPARK detected more genes 

with spatial expression pattern than SpatialDE and Trendsceek (sky-blue) across 

various numbers of false discoveries. Color represents relative gene expression level 

(purple: high; green: low). (I) Spatial distribution of all major cell classes on the 1.8-mm 

by 1.8-mm imaged slice from a single female mouse (Bregma +0.11). Cells are colored 

by cell classes shown in the legend, where the cell class information are obtained from 

the reference42. Spatial distribution of four main cell classes. The spatial distributions of 

the remaining five cell classes are shown in a Supplementary Figure. The cell classes 

are represented by colored dots while the background of all other cells is shown as gray 

dots. Spatial expression pattern for four representative genes (Gad1, Mbp, Cd24a, and 

Myh11) that are identified by all three methods. The p-values for the four genes from 

SPARK are shown inside parenthesis.  
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