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Statistical analysis of stochastic resonance in a simple setting
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A subthreshold signal may be detected if noise is added to the data. We study a simple model, consisting of
a constant signal to which at uniformly spaced times independent and identically distributed noise variables
with known distribution are added. A detector records the times at which the noisy signal exceeds a threshold.
There is an optimal noise level, called stochastic resonance. We explore the detectability of the signal in a
system with one or more detectors, with different thresholds. We use a statistical detectability measure, the
asymptotic variance of the best estimator of the signal from the thresholded data, or equivalently, the Fisher
information in the data. In particular, we determine optimal configurations of detectors, varying the distances
between the thresholds and the signal, as well as the noise level. The approach generalizes to nonconstant
signals.@S1063-651X~99!17110-1#
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I. INTRODUCTION

A detector with a threshold cannot detect a subthresh
signal. If noise is added to the signal, then information ab
the signal can be obtained from output of the detector. Th
is an optimal noise level, beyond which information abo
the signal deteriorates again. This phenomenon is know
stochastic resonance. For a recent review, see@1#.

If the signal isperiodic and observed over a relativel
long time interval, then a common measure of detectab
of the signal is the signal-to-noise ratio; see@2–5#. Instead of
looking at the power spectrum, one may also look at
~empirical! residence-time probability distribution, or inte
spike interval histogram; see@6–8#.

If an aperiodic signal is observed over a relatively lon
time interval, then detectability has been measured by a
relation measure; see@9–13#. The last reference also uses t
interspike interval histogram.

If a signal is to be reconstructed without much delay,
identification must be based on observations over a relati
short time interval, in which the signal may be nearly co
stant. Then the signal-to-noise ratio and correlation meas
break down. The model reduces to a parametric one,
information measures such as Fisher information can stil
used; see@14–18#, and in particular@19,20#.

The inverse of the Fisher information is the minim
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asymptotic variance of estimators. Here we show how,
simple specific settings, optimal estimators of a constant
nal can be constructed. We explore the detectability of
signal in a system with one or more detectors. In the cas
several detectors, we assume that the same noise is fed
each detector. This is always true for external noise but m
also happen if the noise is internal, e.g., when neurons
ceive background noise from other neurons. Different det
tors may well have different thresholds, or a detector m
have more than one threshold; see@21–23#. We determine
optimal configurations of detectors, varying the distances
tween the thresholds and the signal, as well as the n
level. We study the simplest possible model of signal p
noise. The signals is constant over some time interval, sa
@0,1#. At uniformly spaced timest i5 i /n, independent and
identically distributed« i are introduced. The noisy signal i
s1« i , i 51, . . . ,n.

If the signal is observed over a longer time interval, or
the noise has ‘‘higher frequency’’ in the sense that the tim
t i are more densely spaced, or if there are several detec
each of which receives internal noise independently of
others, then the numbern of observations is increased, an
the variance of the estimator for the signal is reduced co
spondingly. For largen, the signal can be estimated well fo
a large range of noise variances. This effect of the law
large numbers had first been observed in a different settin
@10# as stochastic resonance without tuning; see also
@12,13,24,25#.

Our approach differs from the literature on stochas
resonance in that we study detectability of the signal from
statistical point of view: we study optimal reconstruction
the signal from the data in terms of the variance ofrescaled

estimators for the signal, i.e., ofn1/2( ŝ2s) rather than ofŝ.
By the central limit theorem, the variance ofn1/2( ŝ2s) is
4687 © 1999 The American Physical Society
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about the same for all~sufficiently large! n, whereas the vari-
ance ofŝ tends to zero as 1/n. This is why we see stochasti
resonance for arbitrarily largen, whereas the effect dimin
ishes with increasingn in the previous treatments. Stochas
resonance without tuning is an aspect of the diminishing
fect.

We compare four different types of observation of t
noisy signal:

~i! The noisy signalXi5s1« i is fully observed. We need
the information in the noisy signal to measure how mu
information is lost when the noisy signal is not complete
observed.

~ii ! Those timest i are recorded at which the noisy sign
s1« i exceeds a single threshold,a.0. The observations ar
then the indicatorsXi

a51(s1« i.a). This scheme was pro
posed in@26# as a model of a neuron.

~iii ! It is recorded when and which of a finite number
thresholds 0,a1,•••,ar are exceeded. Let A
5$a1 , . . . ,ar% denote the set of thresholds. The obser
tions can then be written as

Xi
A5H 0, s1« i<a1 ,

j , aj,s1« i<aj 11 for j 51, . . . ,r 21,

r , s1« i.ar .

Such observations arise withr detectors with different
thresholds, and common background or internal noise.

~iv! Whenever the single thresholda is exceeded, the
noisy signal itself is observed. Then the observations are

Xi
.a5~s1« i !1~s1« i.a!.

Case~iv! is approximated by case~iii ! for a large number
of closely spaced thresholds abovea.

Let us now explain in which sense the inverse of t
Fisher information is the minimal asymptotic variance of e
timators. We refer to@28#, Sections 2.1 to 2.3, for the fol
lowing results. We note first that in our setting, exactly u
biased estimators fors will not exist, and the concept o
uniformly minimum variance unbiased estimators is not
plicable. Instead, we use anasymptoticoptimality concept.
For the four types of observation described above, we h
local asymptotic normalityin the following sense. LetPs

denote the distribution ofXi , and let Ps
n denote the joint

distribution of the observationsX1 , . . . ,Xn . Then the log-
likelihood ratio admits the stochastic expansion

log
dPs1n21/2t

n

dPs
n

5n21/2t(
i 51

n

l s~Xi !2
1

2
I 1op~1!.

Here l s5] t50dPs1t /dPs is the score function, and I
5Esl s

2 is the Fisher information. Both l s and I will be

calculated in the following sections. Call an estimatorŝ for s
regular with limit L if

n1/2@ ŝ2~s1n21/2t !#⇒L under Ps1n21/2t
n for all t.

Here convergence is meant in distribution. Regularity me
that the distribution ofn1/2( ŝ2s) convergescontinuouslyin
s, in a rather weak sense, to some limit distribution. We
f-

h

-

-

-

-

ve

s

o

not assumeŝ to be unbiased or asymptotically normal. Th
convolution theorem now says thatL5M1I 21/2N, with N a
standard normal random variable, andM independent ofN. If
the rescaled estimatorn1/2( ŝ2s) is asymptotically normal
with variance I 21, then ŝ is efficient, i.e., asymptotically
maximally concentrated in symmetric intervals,

P~2c<I 21/2N<c!>P~2c<L<c! for all c.0.

Equivalently, ŝ has minimum asymptotic risk for all sym
metric and bowl-shaped loss functionsb,

Eb~ I 21/2N!<Eb~L !.

In particular, the inverseI 21 of the Fisher information is the
minimal asymptotic variance among regular estimators.
nally, if

n1/2~ ŝ2s!5n21/2(
i 51

n

l s~Xi !/I 1op~1!, ~1.1!

then ŝ is regular and efficient. In the following sections, w
will construct estimators which have such a stochastic
proximation.

The paper is organized as follows. In Sec. II we consi
a single threshold. We assume that the noise distributio
known. If we observe indicatorsX1

a , . . . ,Xn
a , an efficient

estimator for the signal is obtained as a function of the e
pirical estimator for the probability that the noisy signal e
ceeds the threshold. The efficient estimator is exactly eq
to the maximum likelihood estimator based onX1

a , . . . ,Xn
a .

Its asymptotic variance equals the inverse of the Fisher
formation.

We calculate the Fisher information for arbitrary~posi-
tive! noise distribution. As a function of the noise varianc
the information has, in general, several local maxima, i.e
exhibits stochastic multiresonance. With normal noise, the
function is unimodal with a very pronounced resonan
point.

We determine the proportion of information retained
thresholding, i.e., the ratio of the information inX1

a , . . . ,Xn
a

and inX1 , . . . ,Xn . For normal noise, the proportion of in
formation is a unimodal and symmetric function of the d
tance between signal and threshold. Hence the proportio
information retained by thresholding is maximal if the sign
is at the threshold. The maximal value is 0.636 620, i
equal to the relative efficiency of the sample median in
normal location model.

In Sec. III we consider several thresholds. We assu
again that the noise distribution is known. If we obser
X1

A , . . . ,Xn
A , an efficient estimator for the signal is, agai

the maximum likelihood estimator. However, when there
more than one threshold, the maximum likelihood estima
cannot be represented as a function of the empirical esti
tors for the probability that the noisy signal exceeds one
the thresholds.

We calculate the Fisher information for two threshol
and arbitrary noise distribution. The information gain by
thresholdb.a for a constant signals,a is small.
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When more and more thresholds are introduced abov
fixed threshold a, the information increases to that o
X1

.a , . . . ,Xn
.a . The information in these observations st

exhibits stochastic resonance.
We determine the proportion of information retained

X1
.a , . . . ,Xn

.a relative toX1 , . . . ,Xn . For normal noise and
signal equal to threshold, the proportion of information
tained is 0.818 310.

If the noise distribution is known only up to a scale p
rameter, the signal cannot be identified from the times
which asinglethreshold is exceeded, i.e., fromX1

a , . . . ,Xn
a .

We show that withtwo thresholds,A5$a,b%, both the signal
and the scale parameter of the noise distribution are e
mated consistently fromX1

ab, . . . ,Xn
ab by the maximum like-

lihood estimator.
We do not treat the case of several detectors with a

ferent source of~internal! noise for each of them. If the
sources generate noise independently of each other, the
information is simply the sum of the informations in th
separate detectors. The joint information is then considera
larger than with a single source of noise. An additional a
vantage of such a setting is that the noise variance ma
different for different detectors.

Suppose that the signal is not constant and changes
ticeably in the time interval in which the observations a
made~which we have taken to be the unit interval!. Then the
noisy signalXi5sti

1« i follows a nonparametric regressio
model, with known error distribution, and the signal can
estimated, e.g., by a kernel estimator. Reconstruction of
signal from the corresponding thresholded dataXi

a51(sti
1« i.a) is studied in@27#. The mean squared error show
stochastic resonance. The bias term of the kernel estim
affects the optimal noise variance and leads to results tha
quantitatively, but not qualitatively, different from the resu
for constantsignal obtained here. We will assume that t
regularity conditions needed for our calculations are sa
fied.

II. ONE THRESHOLD

Let a be a threshold ands a constant signal. We think o
s as being non-negative and below the threshold, but
calculations will not depend on this assumption. L
«1 , . . . ,«n be independent with distribution functionF.
Write Ps for the distribution ofXi5s1« i , and Es for ex-
pectations under this distribution. We assume that the o
information we have about the signal is whether it exce
the thresholda. Equivalently, we observe

Xi
a51~s1« i.a!, i 51, . . . ,n.

The observations are independent Bernoulli random v
ables with probabilities

ps5P~Xi
a51!5Ps~a,`!512F~a2s!. ~2.1!

In this section, we consider a single thresholda and suppress
a in the notation. Indeed, by choosing an appropriate sc
we may takea equal to 1.
a

-
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A. Efficient recovery of the signal

We can write the signal as a function ofps ,

s5a2F21~12ps!.

The usual estimator forps is the empirical estimator

p̂5
1

n (
i 51

n

Xi
a5

n̂

n
, ~2.2!

with n̂5#$ i :Xi
a51%. The estimatorp̂ is unbiased and con

sistent forps . The standardized errorn1/2( p̂2ps) is asymp-
totically normal with varianceps(12ps). We obtain an es-
timator for the signal as a function of the empirical estimat

ŝ5a2F21~12 p̂!. ~2.3!

The estimator is not unbiased. Sinceŝ is a continuous func-
tion of p̂, the estimatorŝ is consistent fors. Since ŝ is a
continuously differentiable function ofp̂, it follows that
n1/2( ŝ2s) is also asymptotically normal, with variance

vs5
ps~12ps!

f @F21~12ps!#
2

5
F~a2s!@12F~a2s!#

f ~a2s!2
. ~2.4!

It is well known and easy to check thatp̂ is regular and
efficient for ps . Since continuously differentiable function
of regular and efficient estimators are again regular and e
cient, the estimatorŝ is regular and efficient for the signa
andvs is the minimal asymptotic variance of regular estim
tors of s.

B. Variance bound and Fisher information

As pointed out in the Introduction, the minima
asymptotic variancevs can be calculated as the inverse of t
Fisher information fors, the variance of the score functio
for s. The score function is the logarithmic derivative, wi
respect tos, of the probabilities,

l s~1!5
ṗs

ps
, l s~0!52

ṗs

12ps
;

here and in the following, the dot denotes the derivative w
respect to the parameters. The Fisher information is there
fore

I s
a5Esl s

25
ṗs

2

ps
1

ṗs
2

12ps
5

ṗs
2

ps~12ps!
. ~2.5!

Since ṗs52 f (a2s), the Fisher information~2.5! is indeed
equal to the inversevs

21 of the minimal asymptotic variance
~2.4!,

I s
a5

f ~a2s!2

F~a2s!@12F~a2s!#
5vs

21 . ~2.6!

This Fisher information is also given in@19#, relation ~5.1!.
The Fisher information has been used as a measure o
transmitted information in other models; see@29,30,19#. It
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FIG. 1. Fisher information
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will be useful to rewriteI s
a as follows. Using integration by

parts, or taking the derivative ofps5*a
` f (x2s)dx under the

integral, we obtain

ṗs52E
a

`

f 8~x2s!dx5Es1(a,`)ms . ~2.7!

Since Esms50,

I s
a5

~Es1(a,`)ms!
2

Ps~a,`!@12Ps~a,`!#
5

@covs~1(a,`) ,ms!#
2

vars1(a,`)
.

~2.8!

C. Stochastic resonance

Suppose that the errors« i have distribution function
Fs(x)5F(x/s) with scale parameters, where F is stan-
dardized to variance 1. Given a thresholda and a signals,
which error variance maximizes the information in the in
catorsXi

a51(s1« i.a)? The information~2.8! becomes

I ss
a 5

S E
~a2s!/s

`

m~x! f ~x!dxD 2

s2FS a2s

s D F12FS a2s

s D G .

The informationI ss
a typically tends to zero fors tending to

zero or to infinity. In general, there will not be a uniqu
maximum. In particular, if the noise distribution has seve
modes, so willI ss

a as a function of the noise variances.
Several local maxima arise also in other threshold syste
and with other measures of signal detectability. In@31# this
property is calledstochastic multiresonance. See also@23#.

If F is the standard normal distribution functionF, we
have

I ss
a 5

wS a2s

s D 2

s2FS a2s

s D F12FS a2s

s D G .
l

s,

This is a unimodal function ofs with a very pronounced
resonance point. The function is symmetric ina2s. Hence a
superthreshold signal produces the same stochastic r
nance property as a subthreshold signal. Figure 1 showsI ss

1

as a function ofs ands. The optimals decreases with the
distance from the signal to the threshold; at the same time
maximal information goes to infinity. For example, ifa51
and the signal is low,s50, then the optimals is 0.635 00,
and the maximal value ofI 1s is 0.608 42.

D. The estimator ŝ equals the maximum likelihood estimator

The maximum likelihood estimator based onXi
a is the

solution ins of

05(
i 51

n

l s~Xi
a!5n̂

ṗs

ps
2~n2n̂!

ṗs

12ps

5
ṗs

ps~12ps!
@ n̂~12ps!2~n2n̂!ps#, ~2.9!

i.e., the solution ins of ps5n̂/n or, equivalently, 12F(a
2s)5 p̂. The estimatorŝ was determined as solution of th
last equation.

E. Loss of information through thresholding

How much information is lost by observing the indicato
Xi

a51(s1« i.a) only, rather than the noisy signals1« i?
The density ofs1« i is f (x2s). Hence the score function fo
the noisy signal is

ms~x!52
f 8~x2s!

f ~x2s!
5m~x2s!, ~2.10!

with m5 f 8/ f , and the Fisher information is

I 5Esms
25varsms5E m~x!2f ~x!dx. ~2.11!
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The informationI in the fully observed noisy signalXi can
be compared with the informationI s

a for Xi
a in the form~2.8!.

We haveI s
a<I by the Schwarz inequality. The proportion o

information retained is

I s
a

I
5@corrs~1(a,`) ,ms!#

2.

We note that the information retained increases with the c
relation between the indicator function 1(a,`) and the score
functionms . This tells us for which noise densitiesf thresh-
olding does not lose much information.

The proportionI s
a/I is a function of the distancea2s of

the signal from the threshold,

I s
a

I
5R~a2s!,

with

R~u!5

S E
u

`

m~x! f ~x!dxD 2

F~u!@12F~u!#E m~x!2f ~x!dx

.

For what error variance doesXi
a retain the most informa-

tion? Suppose that« i has distribution functionFs(x)
5F(x/s). Then the score function for the noisy signal
mss5m((a2s)/s)/s, and the proportion of information re
tained byXi

a is

I ss
a

I s
5RS a2s

s D .

If the signal is at the threshold,s5a, then I ss
a /I s5R(0),

which is independent of the noise variances. If the signal is
below the threshold,s,a, we expectI ss

a /I s to be large for
large s because theXi

a are most informative if the noisy
signal is with equal probabilities above and below the thre
old. For the same reason, we expect the same behavio
s.a.

If F is the standard normal distribution functionF, we
havem(x)5x and integration by parts gives

E
a

b

xw~x!dx52@w~b!2w~a!#. ~2.12!

Therefore,

R~u!5

S E
u

`

xw~x!dxD 2

F~u!@12F~u!#
5

w~u!2

F~u!@12F~u!#
.

The functionR is unimodal and symmetric around 0. W
haveR(0)50.636 620. This happens to be the relative e
ciency of the sample mean in the normal location mod
HenceXi

a retains about two thirds of the information if th
signal is at the threshold, and considerably less if it is ab
or below ands is small. Figure 2 showsI ss

1 /I s5R@(1
2s)/s# as a function ofs ands.
r-

-
for

-
l.

e

Remark.For certain noise distributions, thresholding m
not only reduce the information but even therate at which
the signal can be estimated. An example is a one-sided n
distribution like the exponential distribution. The corr
sponding location family consists of distributions that are n
absolutely continuous with respect to each other. On the
sis of the noisy signals1« i , the signals can be estimated a
a rate (n logn)1/2. See Chapter VI in@32#. On the other hand
as long as the signal is below the threshold,s,a, the distri-
butions of the noisy signal above the threshold, (s1« i)1(s
1« i.a), are mutually absolutely continuous for differents.
In particular, the distributions ofXi

a are always mutually
absolutely continuous for differents, as long as the probabil
ity of exceeding the threshold remains strictly between 0 a
1. The optimal rate for estimators ofs on the basis of (s
1« i)1(s1« i.a) or Xi

a is thereforen1/2.
Remark.A widely used measure for the quality of a d

graded~nonconstant! signal is the signal-to-noise ratio. Un
like the Fisher information, it has the counterintuitive pro
erty that degrading the signal may improve the signal-
noise ratio; see@33,23#.

III. SEVERAL THRESHOLDS

Considerr thresholds, 0,a1,•••,ar , a constant signa
s, and a noisy signals1« i , with «1 , . . . ,«n independent
with distribution functionF and densityf. We observe which
thresholds are exceeded by the noisy signal. Equivalen
we observe

Xi
A5H 0, s1« i<a1 ,

j , aj,s1« i<aj 11 for j 51, . . . ,r 21,

r , s1« i.ar .

Here A stands for the set of thresholds,$a1 , . . . ,ar%. The
observationsX1

A , . . . ,Xn
A are independent, with probabilitie

ps05P~Xi
A50!5F~a12s!,

ps j5P~Xi
A5 j !5F~aj 112s!2F~aj2s!

for j 51, . . . ,r 21,

FIG. 2. Proportion of information,I ss
1 /I s , retained byXi

1 .
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psr5P~Xi
A5r !512F~ar2s!.

The observations follow a distribution on$0, . . . ,r %, with a
one-dimensional parameters. For r 51, the family of distri-
butions consists ofall distributions on$0,1%, and an efficient
estimator fors is obtained as a function of the empiric
estimator forps5Ps(a1 ,`); see Sec. II. Forr .1, we do not
get such a simple efficient estimator, but the maximum li
lihood estimator is, of course, still efficient.

A. The maximum likelihood estimator based onX1
A , . . . ,Xn

A

The score function ofXi
A is

l s~x!5(
j 50

r
ṗs j

ps j
1~x5 j !.

Hence the maximum likelihood estimatorŝ is the solution in
s of

05(
i 51

n

l s~Xi
A!5(

j 50

r

nj

ṗs j

ps j
, ~3.1!

with nj5#$ i :Xi
A5 j %. The Fisher information is

I s
A5Esl s

25(
j 50

r ṗs j
2

ps j
. ~3.2!

Here A stands for the set of thresholds$a1 , . . . ,ar%. The
estimatorŝ is not unbiased. A Taylor expansion of the equ
tion around the true parameters shows that

n1/2~ ŝ2s!5n21/2(
i 51

n

l s~Xi
A!/I s

A1op~1!.

Henceŝ is regular and efficient by the characterization~1.1!.

B. Optimal choice of a second threshold

Suppose that the errors« i have distribution function
Fs(x)5F(x/s) with scale parameters, where F is stan-
dardized to variance 1. Choose two thresholds 0,a,b and
a signals. The Fisher information in observing which of th
two thresholds is exceeded by the noisy signal is obtai
from ~3.2! as

I ss
ab5

1

s2S S E
2`

~a2s!/s
m~x! f ~x!dxD 2

FS a2s

s D

1

S E
~a2s!/s

~b2s!/s
m~x! f ~x!dxD 2

FS b2s

s D2FS a2s

s D

1

S E
~b2s!/s

`

m~x! f ~x!dxD 2

12FS b2s

s D D . ~3.3!
-

-

d

Of course,I ss
ab reduces toI ss

a for b5a.
Assume, for simplicity, that the distribution of« i is sym-

metric around 0. Suppose thats anda are given. By a sym-
metry argument, the optimal choice of thresholdb is sym-
metrically oppositea with respect tos, namelyb52s2a.
For s.a we haveb52s2a.a and

I ss
a,2s2a5

S 2E
2`

~a2s!/s
m~x! f ~x!dxD 2

s2FS a2s

s D .

We see thatI ss
a,2s2a.I ss

a . The information is nearly doubled
by the second threshold ifF((a2s)/s) is considerably
smaller than 1

2 . The information gain is small ifF@(a
2s)/s# is close to1

2 .
In the applications we have in mind, we will not be ab

to choose any of the thresholds dependent on the sig
Moreover, there will be a limit to the sensitivity of the de
tectors. Suppose the minimal threshold isa, so that the sec-
ond threshold must be chosen abovea. Suppose also that th
signal is below the threshold,s,a. Then the information
gain through the second threshold, or even through furt
thresholds abovea, is small regardless of the configuratio
of signal, thresholds and noise variance. The reason is
following. For b close toa, the noisy signalXi5s1« i is
most of the time either below both thresholds or above b
thresholds, and the indicatorXi

ab does not say much mor
about the location of the signal than with a single thresho
On the other hand, forb far abovea, the noisy signal rarely
exceedsb, and we rarely learn more abouts than with the
single thresholda.

If F is the standard normal distribution functionF, we
havem(x)5x, and by Eq.~2.12!,

I ss
ab5

1

s2S wS a2s

s D 2

FS a2s

s D 1

S wS b2s

s D2wS a2s

s D D 2

FS b2s

s D2FS a2s

s D

1

wS b2s

s D 2

12FS b2s

s D D .

Suppose in particular thata51. We have seen in Sec. II tha
Xi

1 retains the most information, as a function ofs, at s51:
we haveI 1s

1 /I s5R(0)50.636 620. The value does not d
pend on the noise variances2, and we may takes51. Now
we add a second threshold,b.1. The information retained
by Xi

1b is

w~0!2

F~0!
1

@w~b21!2w~0!#2

F~b21!2F~0!
1

w~b21!2

12F~b21!
;

see Fig. 3. The maximum is 0.759 57, which is attained
b51.98.

For thresholds in symmetric positions around the sig
we obtain
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I ss
a,2s2a5

2wS a2s

s D 2

s2FS a2s

s D .

C. Loss of information through thresholding

How much information is lost by observing the indicato
Xi

A rather than the noisy signalXi5s1« i? We have seen in
Eq. ~2.11! that the Fisher information forXi is I 5varsms .
To compare with the Fisher informationI s

A for Xi
A defined in

Eq. ~3.2!, we rewrite the latter like Eq.~2.8! in the case of
one threshold. Similarly as in Eq.~2.7! the derivative ofps j
with respect to the parameter is

ṗs j52E
aj

aj 11
f 8~x2s!dx5Es1(aj ,aj 11]ms ,

wherems is the score function~2.10! for the noisy signal.
The Fisher information~3.2! is then

I s
A5(

j 50

r ~Es1(aj ,aj 11]ms!
2

Ps~aj ,aj 11#
, ~3.4!

with a052` andar 1151`. By the Schwarz inequality,

I s
A<(

j 50

r Ps~aj ,aj 11#Es1(aj ,aj 11]ms
2

Ps~aj ,aj 11#
5Esms

25I .

D. The information contained in additional thresholds

It is clear that additional thresholds will improve the d
tectability of the signal. To quantify the information gain, w
consider the Fisher informationI s

A in the form~3.4!. Suppose
that there is an additional thresholdc between the threshold
aj andaj 11. The j th term in I s

A is then replaced by

~Es1(aj ,c]ms!
2

Ps~aj ,c#
1

~Es1(c,aj 11]ms!
2

Ps~c,aj 11#
.

This expression is, indeed, larger than thej th term in Eq.
~3.4!,

FIG. 3. Proportion of information,I 11
1b/I 1, retained by two

thresholds, at 1 andb, for noise variance 1.
~Es1(aj ,aj 11]ms!
2

Ps~aj ,aj 11#
5

~Es1(aj ,c]ms1Es1(c,aj 11]ms!
2

Ps~aj ,c#1Ps~c,aj 11#

since, in general, by the Schwarz inequality,

S ( ai D 2

5S ( bi
1/2 ai

bi
1/2D 2

<( bi(
ai

2

bi

if bi>0 for all i.

E. Observing the noisy signal above the threshold

Consider a single thresholda. In Sec. II we have studied
the situation where one observes whether the noisy signs
1« i exceeds the threshold. Suppose now that we also
serve thesize of the noisy signal whenever it exceeds t
threshold. The observations are thenXi

.a5(s1« i)1(s1« i

.a). They contain more information about the signal th
the indicatorsXi

a51(s1« i.a). The distribution of theXi
.a

is

Ps~2`,a#«0~dx!1 f ~x2s!1~x.a!dx,

where«0 is the Dirac measure in 0. Hence, the score fu
tion of Xi

.a is

ms
.a~x!5

q̇s

qs
1~x50!1ms~x!1~x.a!,

with ms the score function~2.10! of s1« i , and qs
5Ps(2`,a# with derivative

q̇s5Es1(2`,a]ms ;

compare Eqs.~2.1! and~2.7!. The Fisher information ofXi
.a

is therefore

I s
.a5

~Es1(2`,a]ms!
2

Ps~2`,a#
1Es1(a,`)ms

2 . ~3.5!

An efficient estimator fors is the maximum likelihood esti-
mator. It is a solution ins of the equation

05(
i 51

n

ms
.a~Xi

.a!5 (
Xi

.a
.a

ms~Xi
.a!1~n2n̂!

q̇s

qs
,

~3.6!

with n̂5#$ i :Xi
.a.a% To compareI s

.a with the Fisher infor-
mation ~2.5! of the indicatorXi , we rewrite the latter as

I s
a5

~Es1(a,`)ms!
2

Ps~a,`!
1

~Es1(2`,a]ms!
2

Ps~2`,a#

and obtainI s
a<I s

.a from the Schwarz inequality

~Es1(a,`)ms!
2<Ps~a,`!Es1(a,`)ms

25Esms
25I .

The proportionI s
.a/I of information retained byXi

.a is a
function of a2s,

I s
.a

I
5R.~a2s!,
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with

R.~u!5

S E
2`

u

m~x! f ~x!dxD 2

F~u!E m~x!2f ~x!dx

1

E
u

`

m~x!2f ~x!dx

E m~x!2f ~x!dx

.

For what error variance doesXi
.a retain the most informa-

tion? Suppose that« i has distribution functionFs(x)
5F(x/s). Then

I ss
.a

I s
5R.S a2s

s D .

If the signal is at the threshold,s5a, then I ss
.a/I s5R.(0),

which is independent of the noise variances. If the signal is
below the threshold,s,a, we expectI ss

.a/I s to be large for
large s because theXi

.a are most informative if the noisy
signal is with high probability above the threshold. For t
same reason,I ss

.a/I s is large forsmall s if s.a.
If F is the standard normal distribution functionF, then

R.~u!5

S E
2`

u

xw~x!dxD 2

F~u!
1E

u

`

x2w~x!dx

5
w~u!2

F~u!
112F~u!1uw~u!.

We haveR.(0)50.818 310. HenceXi
.a retains about four

fifths of the information if the signal is at the threshol
considerably less if it is below ands is small, and most of
the information if s.a and s is small. Figure 4 shows
I ss

.1/I s5R.@(12s)/s# as a function ofs ands.

F. The limit of dense thresholds

Suppose we fix a lowest thresholda and add more and
more thresholds abovea such that in the limit they becom
dense abovea. We expect that the information in observin
which thresholds are exceeded by the noisy signal conve
to the information in seeing the noisy signal above
threshold. To see this, choose thresholdsa1 , . . . ,an.a such
that the gaps between them tend to zero and their maxim

FIG. 4. Proportion of information,I ss
.1/I s , retained byXi

.1 .
es
e

m

tends to infinity withn. The thresholds partition (a,`) into
n11 intervalsB1 , . . . ,Bn11, generating as-field Bn which
tends to the restriction of the Borel field to (a,`). Since the
score functionms of Xi5s1« i is in the spaceL2 of
Ps-square-integrable functions, the martingale converge
theorem gives

Es~1(a,`)msuBn!→1(a,`)ms in L2 . ~3.7!

We have

Es~1(a,`)msuBn!5 (
j 51

n11

Es1Bj
Es~msuBj !.

The variance of the conditional expectation is

Es@Es~1(a,`)msuBn!#25 (
j 51

n11

PsBj@Es~msuBj !#
2

5 (
j 51

n11 ~Es1Bj
ms!

2

PsBj
. ~3.8!

The Fisher information in observing which of the thresho
a,a1 , . . . ,an is exceeded is obtained from Eq.~3.4! as

I s
An5

~Es1(2`,a]ms!
2

Ps~2`,a#
1 (

j 51

n11 ~Es1Bj
ms!

2

PsBj
.

HereAn stands for the set of thresholds$a,a1 , . . . ,an%. The
martingale convergence theorem~3.7! and relation~3.8! then
imply

(
j 51

n11 ~Es1Bj
ms!

2

PsBj
→Es1(a,`)ms

2 .

HenceI s
An converges to the Fisher information~3.5! of Xi

.a

5(s1« i)1(s1« i.a).

G. Identifying the noise variance

Suppose we have one thresholda and observe whether th
noisy signal exceeds it,Xi

a51(s1« i.a). Suppose that the
noise distribution function isFs(x)5F(a2s/s). Then the
observationsX1 , . . . ,Xn are independent Bernoulli random
variables with

pss5P~Xi
a51!512FS a2s

s D .

We see that if signals and noise variances2 are unknown,
they are not identifiable.

The situation is different, in general, if there is a seco
threshold, sayb.a. Then the observations are

Xi
ab5H 0, s1« i<a

1, a,s1« i<b

2, s1« i.b.

The observationsX1
ab, . . . ,Xn

ab are independent, with prob
abilities
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ps05P~Xi
ab50!5FS a2s

s D ,

ps15P~Xi
ab51!5FS b2s

s D2FS a2s

s D ,

ps25P~Xi
ab52!512FS b2s

s D .

The score function ofXi
ab with respect tos is

l ss
s ~x!5(

j 50

2 pss
s

pss
1~x5 j !.

Similarly, the score function ofXi
ab with respect tos is

l ss
s ~x!5(

j 50

2 pss
s

pss
1~x5 j !.

Here the superscriptss ands denote partial derivatives with
respect tos ands. We obtain

l ss
s ~x!52

f s~a2s!

Fs~a2s!
1~x50!2

f s~b2s!2 f s~a2s!

Fs~b2s!2Fs~a2s!

31~x51!1
f s~b2s!

12Fs~b2s!
1~x52!,
v.

ff,

B.
l ss
s ~x!52~a2s!

f s~a2s!

Fs~a2s!
1~x50!

2
~b2s! f s~b2s!2~a2s! f s~a2s!

Fs~b2s!2Fs~a2s!

31~x51!1~b2s!
f s~b2s!

12Fs~b2s!
1~x52!.

We have

l ss
s ~0!5~a2s!l ss

s ~0!, l ss
s ~2!5~b2s!l ss

s ~2!.

Hence, l ss
s and l ss

s are linearly independent, an
ucorrs(l ss

s ,l ss
s )u,1, for a,b. This means that the Fishe

information matrix fors ands is nonsingular, ands ands
can be estimated jointly, and efficiently, by the maximu
likelihood estimator.
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