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Hands-free speech input is required in many modern telecommunication applications that employ
autoregressive �AR� techniques such as linear predictive coding. When the hands-free input is
obtained in enclosed reverberant spaces such as typical office rooms, the speech signal is distorted
by the room transfer function. This paper utilizes theoretical results from statistical room acoustics
to analyze the AR modeling of speech under these reverberant conditions. Three cases are
considered: �i� AR coefficients calculated from a single observation; �ii� AR coefficients calculated
jointly from an M-channel observation �M �1�; and �iii� AR coefficients calculated from the output
of a delay-and sum beamformer. The statistical analysis, with supporting simulations, shows that the
spatial expectation of the AR coefficients for cases �i� and �ii� are approximately equal to those from
the original speech, while for case �iii� there is a discrepancy due to spatial correlation between the
microphones which can be significant. It is subsequently demonstrated that at each individual
source-microphone position �without spatial expectation�, the M-channel AR coefficients from case
�ii� provide the best approximation to the clean speech coefficients when microphones are closely
spaced ��0.3m�. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2356840�

PACS number�s�: 43.72.Ar, 43.55.Hy �DOS� Pages: 4031–4039
I. INTRODUCTION

Many hands-free telecommunication applications in-
volving, for example, speech coding and speech enhance-
ment, make use of autoregressive �AR� analysis techniques
such as linear predictive coding �LPC�. These applications
are often employed in systems used inside rooms where the
observed speech signal becomes reverberant due to the en-
closed space. There is an interest in AR modeling of de-
graded speech, and the properties of the AR coefficients have
been studied in the context of parameter quantization noise
and ambient acoustical noise.1–3 Several dereverberation al-
gorithms have been proposed which operate on the linear
prediction �LP� residual under the explicit or implicit as-
sumptions that the AR coefficients are not affected by
reverberation.4–8 These methods utilize known features of
the LP residual of speech signals to attenuate components
due to reverberation. Yegnanarayana and Satyanarayana6

provided a comprehensive study on the effects of reverbera-
tion on the LP residual. We now present an investigation of
the effects of reverberation on the AR coefficients.

We utilize tools from statistical room acoustics �SRA�
theory9–11 for the analysis of the relation between the sets of
AR coefficients obtained from clean speech and those ob-
tained from reverberant speech. SRA provides a means for
describing the sound field in a room that is mathematically
tractable compared to, for example, wave theory.9 SRA
has been shown useful for the analysis of signal-processing
techniques in reverberant environments and has recently
been applied by several researchers. Radlović et al.,10
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Talantzis et al.,12 and Bharitkar et al.13 utilized SRA to in-
vestigate the robustness of channel equalization. Further, Ta-
lantzis et al.14 investigated the performance of blind source
separation, Gustafsson et al.15 analyzed the performance of
sound source localization, and Ward16 used SRA to measure
the performance of acoustic crosstalk cancellation in rever-
berant environments.

In our study, we will consider three cases: �i� AR coef-
ficients calculated from a single observation; �ii� AR coeffi-
cients jointly calculated from an M-channel observation �M
�1�; and �iii� AR coefficients obtained from the output of a
delay-and-sum beamformer �DSB�. Extending the work in
Ref. 17, we will show in terms of spatial expectation that the
AR coefficients obtained from reverberant speech are ap-
proximately equal to those from clean speech for cases �i�
and �ii�, while the AR coefficients obtained from the output
of the delay-and-sum beamformer differ due to spatial corre-
lation between the microphones. Furthermore, it will be
demonstrated that the M-channel AR coefficients from �ii�
provide the best estimate of the clean speech coefficients
compared to the other two cases under consideration. We
believe that our results here also relate to and explain the
following statement in Ref. 4: “…it has been recognized that
any practical or typical room transfer function has certain
properties that make it possible to accurately determine the
speaker’s vocal tract transfer function from the reverberative
speech signal.” and “…arrays of plural microphones can
also be used to advantage…” which continues “For this
case, each new microphone requires its own correlation com-
puter. The new outputs from this computer R���1�,
R���2� , . . . ,R���14� are added to the other R���’s of other
microphones thus giving more accurate data for the coeffi-

cient computer.”
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The remainder of this paper is organized as follows. In
Sec. II we review the statistical room acoustic model includ-
ing the conditions under which the theory is valid. The simu-
lation environment is defined in Sec. III. In Sec. IV an analy-
sis of the effects of reverberation on the AR coefficients and
on the residual signal is presented for the single channel
case. Section V presents the analysis of the two multichannel
AR modeling cases. Simulation results are presented in Sec.
VI and finally conclusions regarding AR modeling of rever-
berant speech are drawn in Sec. VII.

II. STATISTICAL ROOM ACOUSTICS

In this section, the statistical model of room reverbera-
tion and the conditions under which this is assumed valid are
summarized. Within the framework of SRA, the sound field
at a point in a room consists of the superposition of many
acoustic plane waves arriving from all possible directions
and with randomly distributed amplitudes and phases such
that they form a uniform, diffuse sound field.9,11 Subse-
quently, the room transfer function �RTF� of the acoustic
channel from the source to the mth microphone can be ex-
pressed as the sum of a direct component, Hd,m�ej�� and a
reverberant component, Hr,m�ej��, such that

Hm�ej�� = Hd,m�ej�� + Hr,m�ej��, m = 1,2, . . . ,M . �1�

Under the conditions stated at the end of this section,
and due to the different propagation directions and the ran-
dom relation of the phases of the direct component and all
the reflected waves, it can be assumed that the direct and the
reverberant components are uncorrelated.9,11 Hence, the spa-
tial expectation of the cross terms of the squared magnitude
of �1� is zero10 and the spatially expected energy density
spectrum of the RTF can be written

E��Hm�ej���2� = �Hd,m�ej���2 + E��Hr�ej���2� , �2�

where E�·� is the spatial expectation operator, with the spatial
expectation defined over all allowed microphone-source po-
sitions in a room.15,11 Only the reverberant component varies
with position, and its spatial expectation is independent of
the microphone index m. The computation of E�·� is de-
scribed in Sec. III. The direct component of the RTF is the
free-space Green’s function, defined as11

Hd,m�ej�� =
ejkDm

4�Dm
, �3�

where Dm is the distance from the source to the mth micro-
phone and k=2�f /c is the wave number, with f denoting
frequency and c the speed of sound in air, which we take at
room temperature as c=344 m/s. From SRA, the expected
density spectrum of the reverberant component is given
by9,10

E��Hr�ej���2� = �1 − �

�A�
	 , �4�

with A being the total surface area of the room and � the
average absorption coefficient of the room walls.

The spatial cross correlation of the reverberant paths be-
16
tween the mth and the nth channels has been shown to be
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E�Hr,m�ej��Hr,n
* �ej��� = �1 − �

�A�
	 sin k
�m − �n


k
�m − �n

, �5�

where 
 · 
 denotes the Euclidean norm and �m is the three-
dimensional position vector of the mth microphone, with the
origin at �x ,y ,z�= �0,0 ,0�.

These approximations are known to represent closely the
acoustic properties of a room provided that the following
conditions are satisfied:9,10

�1� The dimensions of the room are large relative to the
wavelength at all frequencies of interest.

�2� The average spacing between the resonant frequencies of
the room is smaller than one-third of their bandwidth.
This can be satisfied at all frequencies above the
Schroeder frequency defined as

fSch = 2000�T60

V
Hz, �6�

where T60 is the reverberation time and V is the volume of
the room in cubic meters.
�3� Speaker and microphones are situated in the room inte-

rior, at least a half-wavelength from the surrounding
walls.

These conditions usually hold for most practical situations
over the significant speech bandwidth. Also, image method18

simulations and measured impulse responses of a real room
have been demonstrated to coincide closely with SRA
theory.15

III. EXPERIMENTAL ENVIRONMENT

We consider a room with a single source and an array of
microphones as depicted in Fig. 1. All results presented in
this paper are based on computer simulations with the simu-
lated environment defined as follows. The dimensions of the
room were set to 4�5�6.4 m. These dimensions were spe-
cifically chosen to conform with the ratio �1:1.25:1.6�, as in

FIG. 1. Plan view of the simulated room environment with the initial posi-
tion of the microphones �·� and the source ���.
Ref. 10, in order to obtain the best approximation of a diffuse
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sound field so as to satisfy the conditions above. Unless
stated otherwise, the microphones were positioned in a linear
array configuration with the distance between adjacent mi-
crophones set to 
�m−�m+1 
 =0.05 m. The source was at a
distance D=2.5 m from the center of the array. The source
and the microphones were assumed omnidirectional and
were always at least a half-wavelength from the surrounding
walls, where the wavelength is taken with respect to the low-
est frequency component in the signal. The source-image
method for modeling small room acoustics,18 modified to
accommodate fractional sample delays according to Ref. 19,
was used to generate finite room impulse responses, h�n�.
The room transfer function, H�ej��, was then found by taking
the Fourier transform of h�n�. Anechoic speech samples were
taken from the APLAWD database20 and all the signals under
consideration were bandlimited to 300–7000 Hz with a sam-
pling frequency fs=16 kHz.

To compute the spatial expectation, E�·�, we utilized the
method used by Radlovic et al.10 and Gustafsson et al.15 An
initial position for the source, y0, and for each of the micro-
phones, �m,0, was selected. A random translation vector, �,
and a random rotation matrix, R, were generated and ap-
plied to the initial coordinates of the source-receiver configu-
ration to obtain the ith realization coordinates yi=Ry0+�
and �m,i=R�m,0+�. In this way, the distance between the
source and the microphones and between successive micro-
phones is kept constant for all i=1,2 , . . . ,N. An estimate of
E�·� is obtained by taking the average of the N outcomes.

IV. SINGLE-CHANNEL AR MODELING
OF REVERBERANT SPEECH

In this section, we consider AR modeling of speech us-
ing linear prediction21,22 and we present the analysis of the
effects of reverberation on the AR coefficients obtained from
a single channel. We also discuss the consequences this has
on the linear prediction residual.

A. AR modeling of speech

In order to introduce the notation used in the rest of the
paper, we provide a brief summary of the AR modeling of
speech. A speech signal, s�n�, can be expressed as a linear
combination of its p past samples using a linear predictor21

s�n� = − aTs�n − 1� + e�n� , �7�

where a= �a1 a2 ¯ ap �T is a p�1 vector of AR coeffi-
cients with �·�T denoting matrix transpose, s�n−1�= �s�n
−1�s�n−2�¯s�n− p��T is a vector of input samples at time n,
e�n� is the LP residual, and p is the prediction order. The
prediction error filter and the all-pole predictor are, respec-
tively,

A�z� = 1 + aTz �8�

and

V�z� = 1/A�z� , �9�

where z= �z−1 z−2
¯ z−p �.

The AR coefficients can be obtained by minimizing the

sum of the squared prediction error,
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J = �
n=−�

�

e2�n� = �
n=−�

�

�s�n� + aTs�n − 1��2, �10�

with respect to each of the coefficients in a. Equivalently, by
Parseval’s theorem, a frequency domain formulation of the
error in �10� can be expressed as21

J =
1

2�


−�

�

�E�ej���2d� =
1

2�


−�

�

�1 + aTd�2�S�ej���2d� ,

�11�

where S�ej�� and E�ej�� are the Fourier transforms of s�n�
and e�n� respectively, and d= �e−j� e−j2�

¯ e−jp� �T is a
p�1 DFT vector. The optimum set of p AR coefficients that
minimize the error J is

aopt = arg min
a

J = − R−1r , �12�

where

R =
1

2�


−�

�

�S�ej���2ddHd� �13�

is a p� p autocorrelation matrix, with �·�H denoting Hermit-
ian �complex conjugate� matrix transpose and

r =
1

2�


−�

�

�S�ej���2dd� �14�

is a p�1 vector of autocorrelation coefficients. In practice,
the error signal is evaluated over finite windowed frames;21

however, in this paper the effects of the window will not be
considered.

B. Effect of reverberation on the AR coefficients

Consider a speech signal, s�n�, produced at a point in a
noiseless, reverberant room. The observation by a single mi-
crophone positioned at some distance from the speaker is
denoted

x�n� = hTs�n� , �15�

where h= �h0 h1 ¯ hL−1 �T is the L-tap impulse response
of the acoustic channel from the source to the microphone
and s�n�= �s�n� s�n−1� ¯ s�n−L+1� �T is the input vec-
tor at time n. The relation between the AR coefficients ob-
tained by linear prediction from s�n� and those from x�n� is
summarized in Theorem 1.

Theorem 1 Let aopt= �aopt,1 aopt,2 ¯ aopt,p �T be the
optimum set of AR coefficients obtained from the clean
speech signal, s�n�, and bopt= �bopt,1 bopt,2 ¯ bopt,p �T the
optimum set of AR coefficients obtained from the reverberant
speech signal, x�n�. The spatially expected values of the re-
verberant speech AR coefficients are approximately equal to
those of the AR coefficients calculated from clean speech,
i.e.,

E�bopt� � aopt. �16�

Proof: We apply LP analysis on the reverberant speech

signal, x�n�, to obtain the optimum set of AR coefficients
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bopt = − Q−1q , �17�

with

Q =
1

2�


−�

�

�H�ej���2�S�ej���2ddHd� �18�

and

q =
1

2�


−�

�

�H�ej���2�S�ej���2dd� , �19�

where Q is a p� p autocorrelation matrix and q is a p�1
vector of autocorrelation coefficients.

In order to study the AR coefficients of reverberant
speech, we take the expectation on both sides of �17�

E�bopt� = − E�Q−1q� . �20�

However, we would like to consider the expectation of each
term of �20�. Adopting the approach used in Ref. 10 and Ref.
12, we use the zeroth-order Taylor series expansion to write
E�g�x���g�E�x��, as detailed in the Appendix, and therefore
�20� can be written as

E�bopt� � − E�Q�−1E�q� . �21�

This reduces the problem to studying the properties of the
AR coefficients in terms of the autocorrelation function.

Now, consider the spatial expectation of the uth element
of q in �19�

E�qu� =
1

2�


−�

�

E��H�ej���2��S�ej���2e−j�ud� , �22�

for u=1,2 , . . . , p. The term S�ej�� is taken outside the spatial
expectation since it is independent of the source-microphone
position.

From �2�–�4� the SRA expression for the expected en-
ergy density spectrum of the RTF is

E��H�ej���2� =
1

�4�D�2 + �1 − �

�A�
	 = 	 . �23�

Since 	 is independent of frequency, by substitution of
�23� into �22� we arrive at

E�qu� =
	

2�


−�

�

�S�ej���2e−j�ud� = 	ru, �24�

for u=1,2 , . . . , p, where ru is the uth element of the clean
speech autocorrelation vector r, and by similar reasoning the
�u ,v�th element of Q in �18� becomes

E�Qu,v� = 	Ru,v, u,v = 1,2, . . . ,p , �25�

where Ru,v is the �u ,v�th element of the clean speech auto-
correlation matrix R. Substituting the results from �24� and
�25� into �21� gives �16�. �

This result states that if LP analysis is applied to rever-
berant speech, the coefficients aopt and bopt are not necessar-
ily equal at a single observation point in space. However, in
terms of spatial expectation, the AR coefficients from rever-

berant speech are approximately equal to those from clean
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speech. The accuracy of the approximation depends on the
accuracy of estimation of the spatial expectation of the auto-
correlation function.

C. Effect of reverberation on the prediction residual

Consider a frequency domain formulation of the source-
filter model described in Sec. IV A. The speech signal is
expressed as

S�ej�� = E�ej��V�ej�� , �26�

where E�ej�� is the Fourier transform of the LP residual and
V�ej�� is the transfer function all-pole filter from �9� evalu-
ated for z=ej�.

Now, consider the speech signal produced in a reverber-
ant room as defined in �15�, which in the frequency domain
leads to

X�ej�� = S�ej��H�ej�� = E�ej��V�ej��H�ej�� . �27�

Referring to �16�, an inverse filter, B�ej��=1+�k=1
p bke

j�k,
can be obtained such that E�B�ej����A�ej��, where A�ej�� is
given by �8� for z=ej�. Filtering the reverberant speech sig-
nal with this inverse filter, whose coefficients are obtained
from the reverberant speech signal, results in

Ê�ej�� � E�ej��H�ej�� , �28�

where Ê�ej�� is the Fourier transform of the LP residual,
ê�n�, obtained from the reverberant speech signal. Thus, in
the time domain, the LP residual obtained from reverberant
speech is approximately equal to the clean speech residual
convolved with the room impulse response. The approxima-
tion in �28� arises from the AR modeling. Therefore, if the
AR coefficients used were identical to those from clean
speech, the approximation would be an equivalence.

In summary, we have shown that the AR coefficients
obtained from reverberant speech are approximately equal to
those from clean speech in terms of spatial expectation. Fur-
thermore, the LP residual obtained from a reverberated
speech signal is approximately equal to the clean speech re-
sidual convolved with the room impulse response. This ap-
proximation depends on the accuracy of the estimation of the
AR coefficients. Intuitively, the result in �16� suggests that
using a microphone array in a manner so as to approximate
the taking of the spatial expectation will give a more accu-
rate estimation of the AR coefficients than use of a single
observation alone. This motivates our study of multichannel
AR modeling in the following section.

V. MULTICHANNEL AR MODELING
OF REVERBERANT SPEECH

Several microphone array techniques have been applied
as preprocessing in speech applications, proving advanta-
geous to single-channel algorithms.23 In this section, we in-
vestigate the use of a microphone array to obtain the AR
coefficients and how these compare to the AR coefficients
from clean speech. Two alternative approaches are consid-
ered. In the first alternative, the AR coefficients are obtained
by formulating an estimation procedure that jointly mini-

mizes the squared errors over all M channels. In the second
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¯

alternative, the AR coefficients are obtained from the output
of an M-channel array using delay-and-sum beamforming.

A. M-channel AR coefficients

The speech signal observed at the mth microphone in an
array of M microphones can be expressed as

xm�n� = hm
T s�n�, m = 1,2, . . . ,M , �29�

where h= �hm,0 hm,1 ¯ hm,L−1 �T is the L-tap room im-
pulse response from the source to the mth microphone.

In linear prediction terms, the observation at the mth
sensor from �29� can be written as

xm�n� = − bm
T xm�n − 1� + em�n�, m = 1,2, . . . ,M , �30�

where bm= �bm,1 bm,2 ¯ bm,p �T are the prediction coeffi-
cients, xm�n−1�= �xm�n−1�xm�n−2�¯xm�n− p��T is the mth
microphone observation vector at time n, and em�n� is the
prediction residual obtained from the mth microphone signal.
From �30�, a joint M-channel error function can be formu-
lated as23

JM =
1

M
�
m=1

M

�
n=−�

�

em
2 �n�

=
1

M
�
m=1

M

�
n=−�

�

�xm�n� + bm
T xm�n − 1��2. �31�

The optimum set of coefficients that minimize this error,
similarly to �12�, is given by

b̂opt = − Q̂−1q̂ , �32�

with

Q̂ =
1

M
�
m=1

M

Qm �33�

and

q̂ =
1

M
�
m=1

M

qm, �34�

where Q̂ and q̂ are, respectively, the p� p mean autocorre-
lation matrix and the p�1 mean autocorrelation vector
across the M microphones. The relation between the clean
speech coefficients and the coefficients obtained using �32�
is summarized in Corollary 1.

Corollary 1 Replacing �18� and �19� with their averages
considered over M microphones �33� and �34� and then fol-
lowing the steps of the proof of Theorem 1, it can be shown
that the spatial expectation of the AR coefficients obtained
from minimization of �31� is approximately equal to those
from clean speech. That is,

E�b̂opt� � aopt. �35�

This result implies that the optimal AR coefficients obtained
using a spatial expectation over M channels are equivalent to
the spatial expectation of the AR coefficients in the single-
microphone case in �16�. However, at each individual posi-

tion, the M-channel case provides a more accurate estimation
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of the clean speech AR coefficients than that obtained with a
single reverberant channel, as will be shown by simulations
in Sec. VI. This is because the averaging of the autocorrela-
tion functions in �33� and �34� is equivalent in effect to the
calculation of the spatial expectation operation in the single-
channel case �21�.

B. AR coefficients from a DSB output

The output of a delay-and-sum beamformer can be
written24 as

x̄�n� =
1

M
�
m=1

M

xm�n − �m� , �36�

where �m is the propagation delay in samples from the source
to the mth sensor. Assuming that the time delays of arrival
are known for all microphones, linear prediction can be per-
formed on the beamformer output, x̄�n�, following the ap-
proach in Sec. IV B. This is summarized in Theorem 2.

Theorem 2 Let aopt= �aopt,1 aopt,2 ¯ aopt,p �T be the
optimum set of AR coefficients obtained from the clean

speech signal, s�n�, and b̄= �b̄opt,1 b̄opt,2 ¯ b̄opt,p �T be the
optimum set of AR coefficients obtained from the DSB output,
x�n�. The spatial expectation of the AR coefficients calcu-
lated by linear prediction from the output of the DSB is

E�b̄opt� � Taopt − t , �37�

with T=I− �1/ 	̄�R−1���−1−�H�1/ 	̄�R−1��−1�H and t
= �	̄R+��−1�, where these terms are defined in the following
proof.

Proof: Consider a speech signal source, s�n�, observed
using M microphones and combined using a DSB to give a
signal x̄�n�. In the frequency domain this can be expressed as

X̄�ej�� = � 1

M
�
m=1

M

Hm�ej��e−j2�f�m	S�ej�� = H̄�ej��S�ej�� ,

�38�

where X̄�ej�� is the Fourier transform of x̄�n�, S�ej�� is the
Fourier transform of s�n�, Hm�ej�� is the RTF with respect to

the mth microphone, and H̄�ej�� is the averaged RTF at the

DSB output. The AR coefficients, b̄opt, at the beamformer
output are calculated as in Sec. IV A,

b̄opt = − Q̄−1q̄ , �39�

with

Q̄ =
1

2�


−�

�

�H̄�ej���2�S�ej���2ddHd� �40�

and

q̄ =
1

2�


−�

�

�H̄�ej���2�S�ej���2dd� , �41�

where Q̄ is a p� p autocorrelation matrix and q̄ is a p�1

vector.
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From this point on, we omit the frequency index for
reasons of clarity. The expected energy density spectrum of
the averaged RTFs can be written as

E��H̄�2� =
1

M2��
m=1

M

E��Hm�2�

+ �
m=1

M

�
n=1
n�m

M

E�HmHn
*�e−j2�f��m−�n�� . �42�

From Sec. II, the expected energy density for the mth chan-
nel is

E��Hm�2� =
1

�4�Dm�2 + �1 − �

�A�
	 , �43�

and the expected cross correlation between the mth and the
nth microphones is

E�HmHn
*� =

ejk�Dm−Dn�

16�2DmDn
+ �1 − �

�A�
	 sin k
�m − �n


k
�m − �n

. �44�

By substituting �43� and �44� into �42� and with �m=Dm /c,
we obtain the following expression for the mean energy den-
sity at the DSB output:

E��H̄�2� = 	̄ + 
��� , �45�

with

	̄ =
1

�4�M�2 �
m=1

M

�
n=1

M
1

DmDn
+ � 1 − �

M�A�
	

and


��� = � 1 − �

M2�A�
	�

m=1

M

�
n=1
n�m

M
sin k
�m − �n


k
�m − �n


�cos�k�Dm − Dn�� ,

where 	̄ is a frequency-independent component and 
��� is
a component due to spatial correlation.

Now, let

�u =
1

2�


−�

�


����S�ej���2e−j�ud� �46�

and

�u,v =
1

2�


−�

�


����S�ej���2e−j��u−v�d� �47�

be the uth element of a vector � and the �u ,v�th element of a
matrix �, respectively. The expected value of the uth ele-
ment of q̄ from �41� then becomes

E�q̄u� = 	̄ru + �u, u = 1,2, . . . ,p , �48�

where ru is the uth element of the vector r in �14�. Similarly,
¯
the expected value of the �u ,v�th element of Q from �40� is
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E�Q̄u,v� = 	̄Ru,v + �u,v, u,v = 1,2, . . . ,p , �49�

where Ru,v is the �u ,v�th element of the matrix R in �13�.
The expected set of coefficients for the DSB output is there-
fore

E�b̄opt� � − �	̄R + ��−1�	̄r + �� . �50�

Since � is a Hermitian symmetric matrix, it can be factored
as

� = ���H, �51�

where � is a matrix of eigenvectors and � is a diagonal
matrix of eigenvalues. Using the matrix inversion lemma,25

we can write

�	̄R + ��−1 =
1

	̄
R−1 −

1

	̄2R−1�

���−1 − �H 1

	̄
R−1�	−1

�HR−1. �52�

Finally, substituting the result from �52� into �50� we obtain
the result in �37�. �

Theorem 2 states that, in terms of spatial expectation,
the AR coefficients obtained by LP analysis of the DSB out-
put, x̄�n�, differ from those obtained from clean speech. This
difference depends on the spatial cross correlation between
the acoustic channels. It can be seen from �5� that the inter-
channel correlation and its significance are governed by the
reverberation time, the distance between adjacent micro-
phones, the source-microphone separation, and on the array
size if the speaker is in the near field of the microphone
array. Of particular interest is the separation of adjacent mi-
crophones. From �45� it is evident that the term 
��� and,
consequently, the matrix � and the vector �, will tend to zero
as the source-microphone separation is increased. Therefore,
for large intermicrophone separation the matrix T tends to
the identity matrix I and the vector t tends to zero and the
result in �37� tends to the result in �16�. Furthermore, if es-
timates of T and t were available, since T is a square matrix
the effects of the spatial cross correlation could be compen-

sated as aopt�T−1�E�b̄opt�+ t�. However, estimating these pa-
rameters is difficult in practice. Finally, for the special case
where the distance between the microphones is exactly a
multiple of a half-wavelength at each frequency and the
speaker is far from the microphones, then 
���=0, ∀� and
thus � and � from �46� and �47� are equal to zero. Therefore,
the matrix T becomes exactly the identity matrix I and the
vector t is exactly zero, which results in the expression in
�37� becoming equivalent to that in �16�.

VI. SIMULATIONS AND RESULTS

Having established the theoretical relationship between
the AR coefficients obtained from clean speech and those
obtained from reverberant speech observations, we now
present simulation results to demonstrate and to validate the
theoretical analysis. In summary, we demonstrate two spe-
cific points: �1� On average over all positions in the room,

the AR coefficients obtained from a single microphone as in
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case �i� and those calculated from M microphones as in case
�ii� are not affected by reverberation while the AR coeffi-
cients from the DSB become more dissimilar from the clean
speech coefficients with increased reverberation time. �2�
The M-channel AR coefficients are the most accurate esti-
mates of the clean speech AR coefficients from the three
cases studied.

As an evaluation metric for the similarity between two
sets of AR coefficients we use the Itakura distance
measure,22 defined as

dI = log� âTRâ

aTRa
	 , �53�

where a is the set of clean speech coefficients and â are the
coefficients under test. The Itakura distance can be inter-
preted as the log ratio of the minimum mean squared errors
�MMSE� obtained with the true and the estimated coeffi-
cients. The denominator represents the optimal solution for
the clean speech and thus dI0. For the experiments, the
diphthong /e ( / as in the alphabet letter “a” uttered by a male
speaker was used as an example and is depicted in Fig. 2. We
performed the LP analysis on that sample employing selec-
tive linear prediction26 with a frame length equal to the
length of the vowel and a prediction order p=21 with sam-
pling frequency fs=16 kHz. The prediction order was cho-
sen using the relation p= fs /1000+5 as recommended in
Ref. 22. Thus, this gives a pole pair per kHz of Nyquist
sampling frequency and some additional poles to model
the glottal pulse. For the selective linear prediction we
consider the spectrum in the range 0.3–7 kHz in order to
avoid errors due to bandlimiting filters.

A. Experiment 1

The spatial expectation was calculated using N=200 re-
alizations of the source-array positions, and thus an average
autocorrelation function was calculated for each of the cases
under consideration. This was repeated, varying the rever-
beration time, T60, from 0.1 to 0.9 s in steps of 0.2 s. For
each case the Itakura distance measure was applied to the
estimation of the spatial expectation of the coefficients. Fig-
ure 3 shows the results in which the Itakura distance of the
spatially expected coefficients is plotted versus reverberation
time for �a� a single channel; �b� M =7 channels; and �c� the
DSB output simulation and the theoretical expression for the
DSB output in �37� �dashed�. It can be seen that the experi-

FIG. 2. Speech sample used in the experiments comprising the time-domain
waveform of the diphthong /e ( / as in the alphabet letter “a” uttered by a
male speaker.
mental outcome closely corresponds to the theoretical results
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where the coefficients from the M-channel case and from a
single channel are close to the clean speech coefficients with
an Itakura distance close to zero. In contrast, the difference
between the results from the DSB output and the clean
speech increases proportionally to the reverberation time,
where the Itakura distance varies from dI=0.0028 for T60

=0.1 s to dI=0.07 at T60=0.9 s.

B. Experiment 2

This experiment illustrates the individual outcomes for
the three cases at the N=200 different locations. Thus, using
the same conditions as in experiment 1, the AR coefficients
were computed at each individual source-array position us-
ing �17�, �32�, and �39� and the Itakura distance was calcu-
lated. Figure 4 shows the resulting plot in terms of the mean
Itakura distance versus increasing reverberation time for �a� a
single channel; �b� M =7 channels; and �c� a DSB output.
The error bars indicate the range between the maximum and
the minimum errors while the crosses indicate the mean
value for all N locations. It can be seen that the M-channel
LPC provides the best approximation of the clean speech AR
coefficients. The mean Itakura distance is dI=0.01 on aver-
age for all reverberation times, with a maximum distance of
dI=0.057 and a minimum distance dI=0.0015 compared to a
mean Itakura distance of dI=0.027 for the single-channel
case, where the maximum and the minimum distances are,
respectively, dI=0.079 and dI=0.0067. It can also be seen
that the estimation error for the AR coefficients obtained

FIG. 3. Itakura distance vs reverberation time for the spatially expected AR
coefficients of �a� a single channel; �b� M =7 channels; and �c� DSB output
simulation and the theoretical expression for the DSB output �37� �dashed�.
from the DSB output can become significant with increasing
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reverberation time, reaching an average of dI=0.099 at T60

=0.9 with a maximum distance dI=0.175 and minimum dI

=0.045 at that reverberation time. This result may appear
counterintuitive; however, it conforms with the theoretical
expression in �37� and will be clarified further with the fol-
lowing experiment. Figure 5 shows examples of the spectral
envelopes from the AR coefficients obtained from reverber-
ant observations using LPC for �a� single channel; �b� M
=7 channels; and �c� the DSB output. Each case is compared
to the resulting spectral envelope from clean speech.

C. Experiment 3

In line with the discussion in Sec. V B, the discrepancy
in the estimated AR coefficients at the output of the DSB
from those obtained with clean speech is governed mainly by
the separation of the microphones. This final experiment
demonstrates the effect of the separation between adjacent
microphones on the expected AR coefficients obtained at
output of a DSB. All the parameters of the room and source-
microphone array were kept fixed while the separation, 
�m

−�m+1
, between adjacent microphones in the linear array
was increased from 0.05 to 0.3 m in steps of 0.05 m. The
results are shown in Fig. 6, where the Itakura distance is
plotted against microphone separation for �a� the theoretical
results calculated with �37� �dashed� and the simulated re-
sults �crosses� for the spatially expected AR coefficients at

FIG. 4. Itakura distance vs reverberation time in terms of the AR coeffi-
cients for each individual outcome for �a� a single channel; �b� M =7 chan-
nels; and �c� the DSB output. Error bars indicate the maximum and mini-
mum errors while crosses show the mean values.
the output of the DSB, and �b� the AR coefficients for each

4038 J. Acoust. Soc. Am., Vol. 120, No. 6, December 2006
individual outcome. Error bars indicate the maximum and
the minimum errors while crosses indicate the mean value. It
is seen from these results that the estimates at the output of
the DSB become more accurate as the distance between the

FIG. 5. Spectral envelopes calculated from the AR coefficients of clean
speech compared with spectral envelopes obtained from the AR coefficients
of �a� a single channel; �b� M =7 channels; and �c� the DSB output.

FIG. 6. Itakura distance vs microphone separation for �a� the theoretical
results calculated with �37� �dashed� and the simulated results �crosses� for
the spatially expected AR coefficients at the output of the DSB and �b� the
AR coefficients for each individual outcome. Error bars indicate the maxi-

mum and the minimum errors while crosses show the mean value.
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microphones is increased. At a microphone separation of

�m−�m+1 
 =0.3 m the results are comparable to the
M-channel case both in terms of spatial expectation where an
Itakura distance of dI=0.0041 is observed and for the indi-
vidual outcomes where the mean Itakura distance is dI

=0.0164 with the minimum and maximum distances being
dI=0.06 and dI=0.036. This is due to the fact that the spatial
correlation between microphones becomes negligible with
increased microphone separation.

VII. CONCLUSIONS

We have used statistical room acoustic theory for the
analysis of the AR modeling of reverberant speech. Investi-
gating three scenarios, we have shown that, in terms of spa-
tial expectation, the AR coefficients calculated from rever-
berant speech are approximately equivalent to those from
clean speech both in the single-channel case and in the case
when the coefficients are calculated jointly from an
M-channel observation. Furthermore, it was shown that the
AR coefficients calculated at the output of a delay-and-sum
beamformer differ from the clean speech coefficients due to
spatial correlation, which is governed by the room character-
istics and the microphone array arrangement. This difference
decreases as the distance between adjacent microphones is
increased. It was also demonstrated that AR coefficients cal-
culated jointly from the M-channel observation provide the
best approximation of the clean speech AR coefficients at
individual source-microphone positions and in particular
when the microphone separation is small ��0.3 m�. Thus, in
general, the M-channel joint calculation of the AR coeffi-
cients is the preferred option where such an equivalence is
important and specifically in the case of closely spaced mi-
crophones. Finally, the findings in this paper are of particular
interest in speech dereverberation methods using prediction
residual processing, where the main and crucial assumption
is that reverberation mostly affects the prediction residual.
Since most of these methods utilize microphone arrays for
the residual processing, M-channel joint calculation of the
AR coefficients should be deployed to ensure the validity of
this assumption.

APPENDIX

Consider a function, g�x1 ,x2 , . . . ,xn�, of random
variables27 with mean values E�xi�=�i, which we write g�x�
for brevity. Letting g��x�=��g�x�� /�xi�x=�, the Taylor series
expansion of g�x� about the mean, �, is g�x�=g���
+�i=1

n g�����xi−�i�+ ğ�x�, where ğ�x� are the second-order
terms and above. All the partial derivatives up to the first
order vanish10 at ��1 ,�2 , . . . ,�n� and, consequently, we can
write E�g�x���g�E�x�� up to the zeroth order of approxima-
tion. In practice, the accuracy of this approximation will de-
pend on the estimation of the mean value of the random
variables.
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