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Abstract 
The objective of this research is to determine the influence of gear tooth geometrical variations on the performance of 

a double wave harmonic drive through stochastic analysis. This work incorporates state of the art analytical and 

numerical models to evaluate kinematic error, load capacity, bending fatigue strength, and pitting life. The geometric 

variables considered in this study include gear modulus, pressure angle, and tooth correction factor. The stochastic 

analysis follows a three-levels, full factorial design of experiments. Non-linear dynamic simulation is accompanied 

by finite-element analysis (FEA) to estimate contact and bending stresses. Largest bending fatigue strength is also 

determined. Results demonstrate that gear modulus is the geometric parameter with prevalent influence on the 

kinematic error, and pitting life is rather high for all geometric variables considered. 

Keywords: Harmonic drive; analysis of variance; kinematic error; fatigue failure; design for strength 
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This is the author's manuscript of the article published in final edited form as:
León, D., Arzola, N., & Tovar, A. (2015). Statistical analysis of the influence of tooth geometry in the performance 
of a harmonic drive. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2), 723-735.
http://dx.doi.org/10.1007/s40430-014-0197-0 

http://dx.doi.org/10.1007/s40430-014-0197-0


2 

𝑚𝑚1 Material elastic properties of the circular spline (MPa-1) 𝑚𝑚2 Material elastic properties of the flexible spline (MPa-1) 𝑟𝑟 Pitch of the rigid spline (mm) 𝑡𝑡 Time (s) 𝐷𝐷𝑖𝑖  Internal diameter of the rigid spline (mm) 𝑭𝑭 Vector of internal nodal forces (N) 𝑲𝑲 Jacobian matrix 𝑁𝑁𝑝𝑝 Number of cycles for pitting failure (cycles) 𝑃𝑃 Reference point on the rigid spline 𝑹𝑹 Vector of external nodal forces (N) 𝑆𝑆𝑓𝑓 Fatigue safety factor 𝑼𝑼 Vector of nodal displacements (mm) 𝑍𝑍1 Number of teeth of the rigid spline 𝑍𝑍2 Number of teeth of the flexible spline 

1. Introduction
A harmonic drive (HD) is compact coaxial gear mechanism characterized by high reduction ratios (up to 300:1), no 

backlash, and a few number of components, which makes it popular in robotics and automotive applications [1, 2]. A 

typical HD consists typically consists of three main coaxial components: a circular rigid spline, a flexible spline, and 

a wave generator. The wave generator, which is usually an elliptic cam, runs insight the flexible spline and deforms it 

to engage the outer circular rigid spline along the major elliptic axis. When the wave generator deforms the flexible 

spline in such a way that there are two points of contact with the rigid spline, the mechanism receives the name of 

double wave HD. 

HDs offer several advantages with respect to conventional spur gear transmissions, including better mass-to-torque 

ratio and smaller overall dimensions than a spur gear equivalent. Since HDs have a flexible component and several 

teeth engaging simultaneously during the transmission, there is damping factor that is four to five times better than 

the spur gear counterparts [3]. The flexible teeth gearing results in theoretically zero backlash. Despite manufacturing 

challenges due to small moduli (from 0.10 mm to 2.00 mm), HDs have been rapidly growing in popularity. 

Numerical and analytic models have been developed to quantify life according to failure criteria and transmission 

conditions [4]. The solution of the harmonic flexural wave transmission kinematics is generally approached in two 

different ways. The first approach makes use of mathematical models of different transmission, incorporating 

structural and manufacturing parameters and results of experimental tests [5]. Lagrange equations are sometimes used 

in this approach [6]. The second approach is based on physical transmission models, which are tested for fatigue 

failure to determine performance and validate geometric parameters. This approach makes use of an analytic model 

that defines a harmonic curve trajectory. This model is based on the displacements of the wave generator and the 

flexible spline ideal displacement relation. 

Longer fatigue lifetime is usually obtained for transmission ratios higher than 120:1. Fatigue lifetime considerably 

decreases for transmission ratios lower than 80:1. This is because the radial deformation that is required for a proper 

gearing action increases when the number of teeth is decreased. However, if geometrical and material parameters are 

carefully selected to maintain low deformation, the transmission ratio should not be a performance limiting factor. 

The load conditions on the HD components can be stated in terms of energy conservation [7] or stated in term of 

variable relations [6]. The stress analysis makes use of analytical models that describe the flexible gear stress state as 

a function of the radial strain and geometric parameters [8]. Due to the complexity of the teethed component geometry, 

this is usually simplified so the approximated model captures the main features of a specific geometric profile and 

reduces the effect of some geometric variables [9]. One approach is to define a flexible line and model the HD structure 

according to the Kirchhoff-Love theory for plates and cylindrical shells [5]. Iterative methods are sometimes required 

in order to achieve a reliable approximation when using finite element analysis (FEA) to simulate dynamic loading 

conditions, nonlinear material, and varying boundary conditions due to contact [4]. The HD hysteresis can be obtained 

from torque analysis as a function of rotation using elastic deformation of the output shaft. The corresponding 

kinematic error can be obtained from a time history of the input and output shaft rotation. One procedure is to obtain 

a polar coordinate system from which the outer radius of the flexible gear is obtained. This radius is modified according 
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to the harmonic and the angular positions. Once the input and output angles are determined, it is possible to obtain the 

kinematic transmission error [7, 10]. 

HD technology is in stage of development and innovation and designers strive to determine the influence of the design 

parameters on the HD performance using theoretical and experimental methods [4, 5, 9, 11]. The traditional approach 

is the use of sensitivity analysis, which refers to the variation of a generic performance function to small variations of 

parameters about a particular configuration [12]. This approach provides relevant information, but the results greatly 

depend on the selection of the particular configuration. In contrast to this traditional sensitivity analysis, we propose 

the use of global sensitivity analysis using a three-level full-factorial design of experiments [13]. This method is 

reliable though computationally demanding. A full-factorial design of experiments considers all possible combinations 

of design parameters (𝑛𝑛𝑃𝑃) and levels (𝑛𝑛𝐿𝐿) so the number of experiments is 𝑛𝑛𝐿𝐿𝑖𝑖𝑃𝑃.  Two or three levels are typically 

employed, but the number of sample experiments may result very high; however, the reduction on the number of 

experiments decreases the computational cost, but also decreases the accuracy. 

Therefore, the objective of this work is to provide HD design insights with the use of three-level full factorial 

experimental design considering the geometric variables with the most relevant influence on the gears’ kinematics 

and the stress levels in a nonlinear dynamic finite-element model of a double wave HD. The design parameters include 

gear modulus, pressure angle, and tooth correction. The height of the teeth is also analyzed and corrected to achieve a 

satisfactory gear mesh. Performance parameters include kinematic error, load capacity, bending fatigue strength, and 

surface fatigue strength (pitting). The nonlinear dynamic model developed in our work provides the required a level 

of accuracy not commonly found in most studies currently available. In addition, the statistical analysis based on full 

factorial experimental design has not been previously reported and it is also considered a contribution of this work. 

The results of the statistical analysis are presented in the Appendix and analyzed with detail in the following sections. 

2. Materials and Methods
2.1 CAD model and simulation parameters 
Harmonic drives are composed of three main concentric components: an internal rigid spline, an external flexible 

spline, and a wave generator (Figure 1). The wave generator deflects the flexible external spline that meshes with the 

slightly larger, rigid, stationary internal circular spline. The wave generator, usually an ellipsoidal cam, is attached to 

the input shaft and acts as an efficient stress converter [11]. The flexible spline serves as the output, rotating in a 

direction opposite to one of the input shaft. Both splines have the same circular pitch, but the flexible spline typically 

has two teeth less than the rigid spline [14]. While the wave generator rotates, the contact line between the splines 

moves with the input shaft. For every 180° of the input shaft, the flexible spline rotates one tooth in the opposite 

direction. 

Figure 1: Harmonic drive assembly (left) and three main concentric components (right): an internal rigid spline, an 
external flexible spline, and a wave generator. 

The splines in a HD are designed following a similar procedure than the one used to design planetary transmissions. 

First, the modulus is defined and then the number of teeth is determined. The number of teeth depends on the required 

number of waves. The transmission ratio 𝑖𝑖 is defined as [15]: 𝑖𝑖 =
𝑍𝑍1𝑍𝑍1 − 𝑍𝑍2, (1) 
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where 𝑍𝑍1 and 𝑍𝑍2 are the number of teeth of the rigid and flexible splines, respectively. For example, two waves in the 

flexible spline can be generated for 𝑍𝑍1 = 115 and 𝑍𝑍2 = 113, case in which 𝑖𝑖 = 57.5. 

 

The geometry configuration imposes that the diametral pitch of the rigid spline should be equal to the larger semi-axis 

diametral pitch of the flexible spline. Also, the internal perimeter of the flexible spline should be equal to the external 

elliptic perimeter of the wave generator. This condition is satisfied for [9]: 

 𝑑𝑑𝑒𝑒 = 𝐷𝐷𝑖𝑖 =
1

2
𝑚𝑚(𝑍𝑍1 + 𝑍𝑍2), (2) 

where 𝑑𝑑𝑒𝑒 is the external diameter of the flexible spline before setup (mm), 𝐷𝐷𝑖𝑖  is the internal diameter of the rigid spline 

before setup (mm), and 𝑚𝑚  is the modulus. The elliptic shape of the wave generator imposes another geometric 

constraint, in which the perimeter of the flexible spline should be maintained after setup. The perimeter of an ellipse 

can be determined from Ramanujan’s equation 

 
1𝜋𝜋𝑚𝑚𝑍𝑍2 = 3(𝑎𝑎′ + 𝑏𝑏′) − �10 𝑎𝑎′ 𝑏𝑏′ + 3(𝑎𝑎′2 + 𝑏𝑏′2), (3) 

where 𝑎𝑎′ is the larger pitch semi-axis (mm), and 𝑏𝑏′ is the smaller pitch semi-axis (mm) defined in this work by 

 𝑎𝑎′ = 𝑎𝑎 + ℎ𝑓𝑓 + 1.25𝑚𝑚 + 𝛿𝛿𝑎𝑎 (4) 

 𝑏𝑏′ = 𝑏𝑏 + ℎ𝑓𝑓 + 1.25𝑚𝑚 + 𝛿𝛿𝑎𝑎, (5) 

where 𝑎𝑎 is the larger semi-axis of the wave generator (mm), 𝑏𝑏 is the smaller semi-axis of the waver generator (mm), ℎ𝑓𝑓 is the thickness of the flexible spline (mm), and 𝛿𝛿𝑎𝑎 is the setup gap of the flexible spline on the track of the wave 

generator (mm). In this model, all HD components have a constant thickness in the axial direction. The analytic 

definition of the involute is used to numerically generate the points that define the teeth profiles with the required 

precision. Tooth fillet radius corresponds to one sixth of the modulus.  

 

The model meshing and finite element analysis are performed using CAE software SolidWorks and CosmosWork 

developed by Dassault Systèmes SolidWorks Corporation [16]. The bulk of each component is discretized using 

isoparametric four-noded triangular elements. The mesh size of the surfaces in contact is refined and its order increased 

to ten-noded elements that include angular and midsize nodes. The domains in this work have complex geometries 

where elements with square corners do not satisfied strictly the discretization. In this case, isoparametric elements are 

used. The mesh discretization and refinement are parameterized with respect to the gear modulus and contains about 

23,000 triangular elements and 13,000 nodes. The finite element analysis is done under plane stress (Section 2.3).  

 

2.2 Kinematic error analysis  

The kinematic error 𝜃𝜃𝑒𝑒 of a harmonic drive is defined as [7]: 

 𝜃𝜃𝑒𝑒 =
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 , (6) 

where 𝜃𝜃𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 are the angular positions of the input and output shafts, respectively. Two models are considered 

to determine the kinematic transmission error: analytical kinematic model analysis and finite element-based numerical 

kinematic model. The analytical model describes the theoretical motion of the transmission and gives a kinematic 

approximation of the characteristic positions. This result is used as a reference to compare the deformations obtained 

from the finite element model. The analytic model describes the trajectory of a point on the flexible spline using 

geometric relations between the wave generator and the rigid spline. This model defines a straight joining the center 

of the wave generator and a point 𝑃𝑃 on the circular spline perimeter and two associated angles: 𝛼𝛼 and 𝛽𝛽. Angle 𝛼𝛼 is 

the rotation of the straight line measured in a coordinate system attached to the wave generator, and 𝛽𝛽 is the rotation 

of the straight line measured in a reference coordinate system [10]. In a generalized reference system, the displacement 

of 𝑃𝑃 can be described by the deviation between 𝛼𝛼 and 𝛽𝛽. Since the ratio 𝑖𝑖 is constant, a correction needs to be applied. 

The ellipse coordinates (𝑥𝑥, 𝑦𝑦) in the moving coordinate system attached to the wave generator can be expressed in 

fixed coordinate system (𝑋𝑋0,𝑌𝑌0) as [17]: 

 𝑋𝑋0 = −𝑟𝑟 sin(𝛽𝛽) = − 𝑦𝑦
cos�𝛼𝛼(𝑖𝑖 + 1)� sin(𝑖𝑖𝛼𝛼) (7) 

 𝑌𝑌0 = 𝑟𝑟 sin(𝛽𝛽) = − 𝑦𝑦
cos�𝛼𝛼(𝑖𝑖 + 1)� cos(𝑖𝑖𝛼𝛼) (8) 

where 𝑟𝑟 is the pitch of the rigid spline (mm). Then, the position (velocity and acceleration) of 𝑃𝑃 can be defined, as 

well as the position (velocity and acceleration) of the flexible spline with respect to the wave generator. 
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The finite element-based model can simulate the HD kinematics using the angular velocity of the wave generator, 

input torque, elastic properties, and boundary conditions. This numerical model can be obtained for splines 

components with and without teeth [14]. For a given time interval 𝑡𝑡 + 𝛥𝛥𝑡𝑡, the equilibrium equation between external 

and internal forces is given by [18]: 

 𝑹𝑹𝑜𝑜+𝛥𝛥𝑜𝑜 − 𝑭𝑭𝑜𝑜+𝛥𝛥𝑜𝑜 = 𝟎𝟎, (9) 

where 𝑹𝑹 and 𝑭𝑭 are the vectors of nodal external and internal forces, respectively. In the internal nodal forces 𝑭𝑭 are 

time functions of nodal displacements 𝑼𝑼 for the time interval 𝑡𝑡 + 𝛥𝛥𝑡𝑡, the equilibrium condition needs a iterative 

approach. The iterative process can be described as [18]: 

 𝑼𝑼(0) =𝑜𝑜+𝛥𝛥𝑜𝑜 𝑼𝑼𝑜𝑜   and 𝑭𝑭(0) =𝑜𝑜+𝛥𝛥𝑜𝑜 𝑭𝑭𝑜𝑜  (10) 

 𝛥𝛥𝑹𝑹(𝑘𝑘−1) = 𝑹𝑹 − 𝑭𝑭𝑜𝑜+𝛥𝛥𝑜𝑜 (𝑘𝑘−1)𝑜𝑜+𝛥𝛥𝑜𝑜  (11) 

 𝑲𝑲𝑜𝑜+𝛥𝛥𝑜𝑜 (𝑘𝑘)𝛥𝛥𝑼𝑼(𝑘𝑘) = 𝛥𝛥𝑹𝑹(𝑘𝑘−1) (12) 

 𝑼𝑼(𝑘𝑘) =𝑜𝑜+𝛥𝛥𝑜𝑜 𝑼𝑼(𝑘𝑘−1) + 𝛥𝛥𝑼𝑼(𝑘𝑘)𝑜𝑜+𝛥𝛥𝑜𝑜  (13) 

where 𝑘𝑘 is the iteration time and 𝑲𝑲 is the Jacobian matrix. The equilibrium condition (9) between internal and external 

forces is achieved at every iteration using the Newton-Raphson method [16]. With this method, the tangential stiffness 

matrix is formed and decomposed at every iteration [18]. Node trajectories are used to find the HD kinematic error as 

the difference between the input divided by 𝑖𝑖 , and output angles. The kinematic error analysis includes linear 

regression and the mean of the residuals (Section 3.2). 

 

2.3 Stress analysis, fatigue and pitting strengths 
The finite element dynamic analysis in this work incorporates kinematics of deformable bodies and the nonlinear 

effects of localized stress between internal rigid spline, external flexible spline, and wave generator. Due to the absence 

of stresses in the axial direction, the finite element analysis is done under plane stress. This condition is verified by 

two factors: (1) the reduced incidence of the rotational dynamics of the transmission components in the generation of 

axial forces, and (2) the absence of geometric constraints that may result in restrictions on the free strain in the axial 

direction. As required by isoparametric finite elements, the nodal displacement equations make use of the Jacobian 

transformation matrix to transform natural to Cartesian coordinates [18]. Our model ensures that the sign of the 

determinant of the Jacobian matrix is constant. The finite elements define their displacements according to 

interpolation functions, making nodes comply with the conditions imposed by the strain energy functions and 

requirements of convergence. Finally, the stress distribution is determined from the nodal displacements. 

 

The non-linear finite element model of the tooth external surface includes contact nodes. The internal surface of the 

flexible spline and the wave generator make use of surface-to-surface contact [16]. The material model for all elements 

corresponds to a steel alloy AISI SAE 4340 of elastic modulus 210 GPa and elastic limit 620.4 MPa [19]. In this 

model, the rigid spline is fixed. The input shaft has an angular velocity of 60 rpm with an input torque of 1.77 Nm per 

millimeter in tooth face width. The number of teeth in the rigid and the flexible splines are 115 and 113, respectively. 

A dynamic friction coefficient of 0.07 is considered in all surfaces. Meshing control is applied to all surfaces in contact 

[16].  

  

The mechanical strength analysis uses von Mises distortion energy considering maximum and minimum equivalent 

oscillating stresses of the double wave HD. The fatigue model uses the modified Goodman criterion [20]. Surface 

failure can occur due to the complex contact condition among teeth involving rolling and sliding. The pitting failure 

analysis considers results from experimental combining rolling and sliding [21]. Fatigue and pitting strength analysis 

are considered on the flexible spline, which is the most critical component in the HD transmission. The evaluation of 

the fatigue and pitting failure requires the location of the most probable point of failure. The location of the most 

probable point of failure in a double wave HD cannot be pre-established without full-system non-linear FEA. To this 

end, our work considers six nodes uniformly separated along the tooth profile. The time history of stress is analyzed 

in these six nodes. Figure 2 shows the finite element mesh and two analysis nodes. 
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Figure 2: Detail of the finite element model of the circular and flexible splines depicting two most probable points of 

failure due to fatigue (Node 5983) and pitting (Node 5967), respectively. 

 

The fatigue safety factor 𝑆𝑆𝑓𝑓 is defined as a function of the equivalent mean value and the amplitude of the von Mises 

stress as [22]: 

 𝑆𝑆𝑓𝑓 =
𝜎𝜎𝑒𝑒𝜎𝜎𝑜𝑜𝑜𝑜𝜎𝜎𝑉𝑉𝑉𝑉𝑎𝑎𝜎𝜎𝑜𝑜𝑜𝑜 + 𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉𝜎𝜎𝑒𝑒 , (14) 

where 𝜎𝜎𝑒𝑒 is the corrected endurance limit for the flexible spline material, 𝜎𝜎𝑜𝑜𝑜𝑜 is the ultimate tension stress, and 𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉 

and 𝜎𝜎𝑉𝑉𝑉𝑉𝑎𝑎 are the equivalent mean and amplitude of the von Misses stress, respectively. The number of cycles for 

pitting failure 𝑁𝑁𝑝𝑝 is determined as [22]: 

 𝑁𝑁𝑝𝑝 = 10𝜗𝜗−𝛾𝛾 log𝐾𝐾  (15) 

where 

 𝐾𝐾 = 𝜋𝜋𝜎𝜎𝑧𝑧(𝑚𝑚1 + 𝑚𝑚2), (16) 

and 𝜗𝜗, 𝛾𝛾 are pitting strength empirical parameters, 𝜎𝜎𝑧𝑧 is the peak normal stress on the teeth of the flexible spline, and 𝑚𝑚1 and 𝑚𝑚2 are material elastic properties of the rigid and flexible splines, respectively. For the HD, the empirical 

parameters and material elastic properties are obtained for a slip-to-roll ratio of 42.8% [22]. The input power is 

considered constant; however, the gear dimensions are a function of the geometric variables and they vary according 

to the full factorial design of experiments described in the following section. 

 

2.4 Design of experiments 
A three-level, full-factorial experimental design is applied in order to determine the influence of the pressure angle, 

modulus, and tooth correction factor on the load capacity, kinematic transmission error, and fatigue and pitting failure. 

Our approach considers three design factors and eight parameters (Figure 3). 
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Figure 3: Full-factorial design of experiments methodology used in this research. 

 

A systematic analysis was conducted where three geometric factors were varied according to a three level full factorial 

design. The factors were: gear modulus, pressure angle, and tooth correction factor. Finally, 33=27 variants of 

geometric design were obtained. Table 1 shows the values used in the experiments.  

 
Table 1: Parameters used in the full factorial design of experiments. 

N Gear modulus 

(mm) 

Pressure 

angle 

(degrees) 

Tooth 

correction 

factor 

1 0.1 20 0 

2 0.1 20 0.25 

3 0.1 20 0.50 

4 0.1 25 0 

5 0.1 25 0.25 

6 0.1 25 0.50 

7 0.1 30 0 

8 0.1 30 0.25 

9 0.1 30 0.50 

10 0.4 20 0 

11 0.4 20 0.25 

12 0.4 20 0.50 

13 0.4 25 0 

14 0.4 25 0.25 

15 0.4 25 0.50 

16 0.4 30 0 

17 0.4 30 0.25 

18 0.4 30 0.50 

19 0.7 20 0 

20 0.7 20 0.25 

21 0.7 20 0.50 

22 0.7 25 0 

23 0.7 25 0.25 

24 0.7 25 0.50 

25 0.7 30 0 

26 0.7 30 0.25 

27 0.7 30 0.50 
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An analysis of the results of the full factorial design using a statistical analysis of variance (ANOVA) was performed. 

The response surfaces and empirical models for the kinematic error, load capacity, bending fatigue strength, and pitting 

were obtained using statistical analysis system software. The total correction factor in both splines satisfies that [23]: 

 𝜉𝜉1 + 𝜉𝜉2 = 0  (17) 

and for the externally geared flexible spline the correction factors satisfies that [15]: 

 𝜉𝜉2 ≥ 0  (18) 

The results of the analysis of invariance are presented in the Appendix and analyzed in the following section. 

 

3. Results and Discussion 
3.1 Load capacity 
The theoretical geometric model depicts interference so the addendum in all teeth had to be reduced in proportion 

similar to the variation of all geometric parameters. Considering all deflections, a reduction of 22% in the height of 

both gearing teeth allows a full cycle without compromising the tooth strength. With a reduction of 30% the 

performance characteristics are decreased, but they still fall in a range of what can be considered a normal operation. 

The effect of the geometry on the load capacity is statically determined. The correction factor conditions (17) and (18) 

decreases the transversal section area of the splines, increasing the load capacity. Figure 4 shows the effect of the 

pressure angle, modulus, and correction factor on the load capacity. The maximum load capacity of 5.86 kW/kg 

corresponds to a pressure angle of 20°, modulus 0.1 and tooth correction factor 0.50. While the load capacity is highly 

influenced by the gear modulus, it is practically insensitive to the pressure angle and the correction for the ranges 

considered. 

 

 
Figure 4: Effect of the pressure angle, modulus, and correction factor on the HD load capacity. 

 

3.2 Kinematic error analysis 
Two finite element models are developed for the kinematic numerical analysis of the HD: without and with teeth 

(Figure 5). In both cases the thickness of ring is the same. For the same power efficiency, the maximum von Mises 

stress results for the toothless case is lower than the one corresponding to the more realistic and numerically more 

expensive case with teeth. In both cases, the relative stress distribution is very close. 
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(a) (b) 

Figure 5: Finite element-based kinematic models of the HD: (a) without teeth, and (b) with teeth. 

 

The simulation of trajectory of a point on the surface of the flexible spline depicts differences depending on the model. 

Figure 6 shows the trajectory in global rectangular coordinates for the analytical and numerical, finite element-based 

models (with and without teeth) in three 360° cycles. While the analytic model and the teethed finite element models 

predict similar motion ranges, the toothless model shows a significant delay corresponding to ~1° after the third cycle. 

However, the wave transmission of both numerical models is close in shape for which both are equivalent predictions 

with different kinematic gain.     

 

A linear regression adjustment is used to determine the transmission error residuals. Figure 7 shows the error residuals 

in the output shaft for the double wave HD with pressure angle 20°, modulus 0.1 mm, and correction factor +0.50. 

The mean residual is the linear fit of the numerical results. The range spanned between the maximum and minimum 

values defines the kinematic error of the transmission. 

 
Figure 6: Trajectory described by a point on the surface of the flexible spline described by the analytical model, and the 

finite element models with and without teeth. 
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Figure 7: Linear regression adjustment used to determine the kinematic transmission error (units in degrees). 

 

Statistical analysis is used to determine the influence of the pressure angle, modulus, and correction factor on the HD 

average transmission error (Figure 8). Appendix contains the detailed stochastic analysis. A smaller transmission error 

is obtained for a larger correction factor and a smaller pressure angle. For these conditions, the trajectory of the point 

of contact in the flexible spline tends to be more linear decreasing the variation between the input-to-output ratio and, 

therefore, the transmission kinematic error. A minimum transmission error of 0.274° is obtained for pressure angle 

20°, modulus 0.10 mm, and correction factor +0.5. 

 

 
Figure 8: Effect of the pressure angle, modulus, and correction factor on the average kinematic transmission error. 

 

3.3 Bending fatigue and pitting 
Time varying stress and strain conditions are determined from the dynamic finite element analysis. This analysis 

shows that the flexible spline depicts higher normal contact Hertz stress on the tooth surface and von Misses stress on 

the tooth base as a product of the strains induced by the wave generator and the resulting gearing. Figure 9 shows the 

gearing position between the rigid and flexible splines for which highest stresses are obtained. 

 

 
Figure 9:  Gear position for maximum surface normal Hertz contact stress and corresponding maximum effective von 

Mises stress in the tooth base. 
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Figure 10 shows the variation of the surface normal Hertz contact stress on the tooth surface and the von Mises stress 

on the tooth base for a full 360° rotation of the input shaft. This simulation shows corresponding peak and valley 

locations for both curves. The contact stress values are used by the pitting strength analysis. 

 

Bending fatigue and pitting analysis make use of (14), (15) and (16). Appendix contained the detailed stochastic 

analysis for fatigue strength and pitting, respectively. This analysis shows the influence of the pressure angle, modulus, 

and correction factor on the fatigue factor of safety 𝑆𝑆𝑓𝑓 on the tooth base. Figure 11 shows the effect of the pressure 

angle, modulus, and correction factor on the fatigue safety factor on the tooth base. The highest value of 𝑆𝑆𝑓𝑓 = 2.57 

corresponds to pressure angle 21.7°, modulus 0.55, and tooth correction factor +0.50. The bending fatigue strength 

is monotonically increased with respect to the tooth correction factor due to the increment on the tooth base area. The 

pressure angle and modulus have a larger influence on the tooth profile for which favoring the bending stress on the 

tooth base. Finally, all 27 models showed excellent pitting strength; however, the maximum value is obtained for 

pressure angle 27°, modulus 0.7, and correction factor 0.0.  

 

 
Figure 10: Cyclic variation of the surface normal Hertz contact stress and corresponding maximum effective von Mises 

stress in the tooth base as a function of the angular position of the wave generator. 

 

 
Figure 11: Effect of the pressure angle, modulus, and correction factor on the fatigue safety factor on the tooth base. 

 

4. Final remarks 
This work introduces a systematic approach for harmonic drive design considering nonlinear dynamic analysis, 

particularly cycling contact stresses between the three main components of the transmission (rigid spline, flexible 
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spline, and wave generator) and stresses at the teeth root. Analytic and numerical finite element-based models are 

utilized on a double wave HD. These models allowed to measuring the influence of pressure angle (from 20° to 30°), 

modulus (from 0.1 to 0.7 mm), and tooth correction factor (from 0.0 to +0.5) on load capacity, kinematic transmission 

error, and fatigue and pitting strengths. Three-level full factorial experimental design supports the statistical analysis 

of this work. Even though, Taguchi planning or general reduced fractional factorial design is computationally efficient 

due to the reduced number of simulations, our work supports the more computational expensive full-factorial study to 

quantify the effect of design variables in the non-linear HD performance. A noise in the planning is also an alternative, 

but its use would make it more difficult to accurately reproduce the results; therefore, deterministic design of 

experiments was followed in this work. 

 

The finite element models include a full-size, fully toothed harmonic drive, which is not commonly presented by 

numerical studies. The results obtained with this model are compared to the ones from the more commonly used 

toothless model as well as the results from the analytic equations. The transmission errors predicted by the model with 

teeth agree more closely to the results from the analytic model than to the results from the toothless numeric model. 

The toothed numerical model also allows to determining and correcting interference problems that cannot be detected 

by any other modeling approach.  

 

Load capacity studies performed in this paper shows the main influence on the modulus. In particular, this work shows 

a dramatic load capacity improvement when the modulus is decreased to order of 0.1 mm. However, the low modulus 

value increases the manufacturing cost due to the required special tooling. Interestingly, load capacity is not sensitive 

to changes in pressure angle or correction factor. A load capacity larger than 5.8 kW/kg is theoretically achievable in 

a well-designed harmonic drive. 

 

Kinematic transmission error is significantly influenced by all parameters considered and is generally favored by lower 

pressure angle, higher modulus, and higher correction factor. These results can be explained from the wave uniformity 

at this regime. A kinematic error of less than 0.3° is theoretically achievable with the correct harmonic drive design. 

 

Pitting occurs after a very long period of time and this study shows that it will not be a concern for the harmonic drive. 

The reason is because the contact stresses on the tooth are relatively smaller than the bending stresses on the tooth 

base. Bending fatigue is clearly influenced by the design parameters. In all cases von Mises stresses (mean and 

amplitude) fall in a safe operation regime according the modified Goodman’s fatigue failure criterion. A safety factor 

larger than 2.5 is theoretically possible to obtained with the proper harmonic drive design.  

 

Future work includes the development of a 3D model employing a dynamic finite element analysis of nonlinear 

isotropic hyperelastic material for the splines. This type of model is more appropriate to describe certain polymers 

which may be potentially useful in this type of transmission. Furthermore, it is necessary to conduct a detailed study 

on the influence that has the tooth addendum height in the HD performance. This geometric parameter should be 

included in future virtual experimental design. 
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6. Appendix – Fitted models 
 

6.1 Load capacity 
The equation for the fitted model is: 𝐿𝐿𝐿𝐿 = 8.77151 − 0.0160725ϕ − 32.0864𝑚𝑚 + 0.672273ξ + 0.0000453607ϕ2 + 0.0224681ϕ𝑚𝑚− 0.00063109ϕξ + 28.1708𝑚𝑚2 − 1.03049𝑚𝑚ξ − 0.0327807ξ2 

with R2 = 99.98 %, mean absolute error = 0.0241476, and Durbin-Watson statistic = 1.21314 (P=0.0031), confidence 

interval LC = [3.57501;  5.99652]. The response surface is: 
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Figure 12: Load capacity response for a correction factor 𝛏𝛏 = 𝟎𝟎.𝟐𝟐𝟐𝟐 as a function of 𝒎𝒎 and 𝜱𝜱. 

 

6.2 Kinematic transmission error 
The equation for the fitted model is: 𝜃𝜃𝑒𝑒 = 0.294959 + 0.00563235ϕ + 0.165081𝑚𝑚 − 0.3339ξ − 0.000149184ϕ2 + 0.00381561ϕ𝑚𝑚

+ 0.0105043ϕξ − 0.361116𝑚𝑚2 + 0.0211167𝑚𝑚ξ − 0.00106844ξ2 

with R2 = 24.33 %, mean absolute error= 0.0352834, and Durbin-Watson statistic = 1.61063 (P=0.0426), confidence 

interval θe = [0.30854;  0.38938]. The response surfaces are:  

 

 
Figure 13: Kinematic transmission error for a correction factor 𝛏𝛏 = 𝟎𝟎.𝟐𝟐𝟐𝟐 as a function of the 𝒎𝒎 and 𝜱𝜱. 

 

 
Figure 14: Kinematic transmission error for a modulus 𝒎𝒎 = 𝟎𝟎.𝟒𝟒𝟎𝟎 mm as a function of 𝛏𝛏 and 𝜱𝜱. 

 

6.3 Fatigue strength 
The equation for the fitted model is: 𝑆𝑆𝑓𝑓 = −2.23008 +  0.34134ϕ + 0.960787𝑚𝑚 + 2.35171ξ − 0.007408ϕ2 + 0.0194722ϕ𝑚𝑚 − 0.05992ϕξ− 1.21444𝑚𝑚2 − 0.117778𝑚𝑚ξ − 0.0370667ξ2 

with R2 = 69.95 %, mean absolute error = 0.135503, Durbin-Watson statistic = 2.60236 (P=0.7453), confidence 

interval 𝑆𝑆𝑓𝑓 = [1.77552;  2.34368]. The response surfaces are: 
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Figure 15: Fatigue safety factor for a correction factor 𝛏𝛏 = 𝟎𝟎.𝟐𝟐𝟐𝟐 as a function of the 𝒎𝒎 and 𝜱𝜱. 

 
Figure 16: Fatigue safety factor for a modulus 𝒎𝒎 = 𝟎𝟎.𝟒𝟒𝟎𝟎 mm as a function of 𝛏𝛏 and 𝜱𝜱. 

 

6.4 Pitting life 
The equation for the fitted model is: 𝑁𝑁𝑝𝑝 = −5.5651E91 + 4.5532E90ϕ − 6.3185E89𝑚𝑚 − 4.5535E90ξ − 9.1065E88ϕ2 + 9.1499E82ϕ𝑚𝑚− 1.098E83ϕξ + 1.2647E91𝑚𝑚2 − 2.2766E91𝑚𝑚ξ + 1.8213E91ξ2 

with R2 = 31.73%, mean absolute error = 1.954E90, Durbin-Watson statistic = 2.94603 (P=0.9418), confidence 

interval 𝑁𝑁𝑝𝑝 = [2.33704E90;  3.85479E90]. The response surfaces are: 

 

 
Figure 17: Pitting life for a correction factor 𝛏𝛏 = 𝟎𝟎.𝟐𝟐𝟐𝟐 as a function of the modulus and the pressure angle. 
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Figure 18:  Pitting life for a modulus 𝒎𝒎 = 𝟎𝟎.𝟒𝟒𝟎𝟎 mm as a function of the correction factor and the pressure angle. 

 

References 
 

1. Gervini, V.I., S.C.P. Gomes, and V.S. Da Rosa, A New Robotic Drive Joint Friction Compensation Mechanism 

Using Neural Networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003. 25(2): p. 

129-139. 

2. De Lucena, S.E., M.A. Marcelino, and F.J. Grandinetti, Low-cost PWM speed controller for an electric mini-baja 

type vehicle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2007. 29(1): p. 21-25. 

3. Jeon, H.S. and S.H. Oh. A study on stress and vibration analysis of a steel and hybrid flexspline for harmonic 

drive. in 10th International Conference on Composite Structures, November 15, 1999 - November 16, 1999. 1999. 

Melbourne, Aust: Elsevier Ltd. 

4. Kayabasi, O. and F. Erzincanli, Shape optimization of tooth profile of a flexspline for a harmonic drive by finite 

element modelling. Materials and Design, 2007. 28(2): p. 441-447. 

5. Ostapski, W., Analysis of the stress state in the harmonic drive enerator-flexspline system in relation to selected 

structural arameters and manufacturing deviations. Bulletin of the Polish Academy of Sciences: Technical 

Sciences, 2010. 58(4): p. 683-698. 

6. Gandhi, P.S. and F. Ghorbel, High-speed precision tracking with harmonic drive systems using integral manifold 

control design. International Journal of Control, 2005. 78(2): p. 112-121. 

7. Tuttle, T.D. and W.P. Seering, Nonlinear model of a harmonic drive gear transmission. IEEE Transactions on 

Robotics and Automation, 1996. 12(3): p. 368-374. 

8. Ostapski, W. and I. Mukha, Stress state analysis of harmonic drive elements by FEM. Bulletin of the Polish 

Academy of Sciences: Technical Sciences, 2007. 55(1): p. 115-123. 

9. Péter, J. and G. Németh, Results of laboratory tests of harmonic gear drive. Design of Machines and Structures, 

2012. 2(1): p. 35-51. 

10. Dong, H. and D. Wang. Elastic deformation characteristic of the flexspline in harmonic drive. in 2009 

ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, June 22, 

2009 - June 24, 2009. 2009. London, United kingdom: IEEE Computer Society. 

11. Tjahjowidodo, T., F. Al-Bender, and H. Van Brussel, Theoretical modelling and experimental identification of 

nonlinear torsional behaviour in harmonic drives. Mechatronics, 2013. 23(5): p. 497-504. 

12. Sobieszanski-Sobieski, J., J.F. Barthelemy, and K.M. Riley, Sensitivity of optimum solutions to problem 

parameters. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and 

Materials Conference, 1981(Pt 1): p. 184-205. 

13. Mastinu, G., M. Gobbi, and C. Miano, Optimal Design of Complex Mechanical Systems. 2010: Springer. 359. 

14. Sadler, W.C., Kinematics and Dynamics of Machinery. 3rd ed. 2003: Pearson Education. 

15. González Rey, G., P. Frechilla Fernández, and R. José García Martín, Coeficiente de corrección en engranajes 

cilíndricos como factor de conversión entre sistemas AGMA e ISO. Ingeniería Mecánica, 2007. 10(3): p. 63-69. 

16. SolidWorks, Simulation premium: Nonlinear handbook. 2010: Massachusetts, USA. 



 16 

17. Córdoba, E., et al., Transmisión flexondulatoria armónica. 2011, Bogotá, Colombia: Universidad Nacional de 

Colombia. 

18. Bathe, K.J., Finite Element Procedures. 2003. 

19. International, A., Metal Handbook. 2nd ed. 1998, USA: Editorial Advisory Board. 

20. Collins, J., H. Busby, and S. G., Mechanical design of machine elements and machines - a failure prevention 

perspective. 2nd ed. 2009, USA. 

21. T., S. and W. W., Mechanical failure: definition of the problem. Vol. NBS special publication 423. 1974, 

Washington D.C., USA: National Bureau of Standards. 

22. Norton, R., Machine design, an integrated approach. 5th ed. 2010, USA: Prentice-Hall Inc. 

23. Quinones, A., et al. Influence of the friction force, the tooth correction coefficient and the normal force radial 

component in the form factor and the stress in the feet of spur gear's teeth. in Proceedings of the ASME Design 

Engineering Division 2005, November 5, 2005 - November 11, 2005. 2005. Orlando, FL, United states: American 

Society of Mechanical Engineers. 

 


	Abstract
	Nomenclature
	1. Introduction
	2. Materials and Methods
	2.1 CAD model and simulation parameters
	2.2 Kinematic error analysis
	2.3 Stress analysis, fatigue and pitting strengths
	2.4 Design of experiments

	3. Results and Discussion
	3.1 Load capacity
	3.2 Kinematic error analysis
	3.3 Bending fatigue and pitting

	4. Final remarks
	5. Acknowledgments
	6. Appendix – Fitted models
	6.1 Load capacity
	6.2 Kinematic transmission error
	6.3 Fatigue strength
	6.4 Pitting life

	References

