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Abstract

The Weibull statistic is currently used in designing mechanical components made of composite materials. This work presents useful

formulae to describe the behaviour of the Weibull modulus estimator, which in turn may be described by means of a three parameter Weibull

distribution. Expressions for the parameters of this latter distribution, dependent on the sample size, are also given in the paper, so, the

percentage points, published until now in tabular form, may be directly calculated. Empirical expressions are derived for determining the A

basis and the B basis material properties as a function of the sample size.
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1. Introduction

Unlike most traditional structural materials, whose

mechanical behaviour is assumed to be homogeneous and

isotropic, mechanical properties of composite materials

exhibit intrinsic statistical dependence. In particular, their

strength properties are usually scattered due to their inho-

mogeneity and anisotropic characteristics and to the brittle-

ness of the matrices and fibres. So, careful statistical

analysis is indispensable for the understanding of the

mechanical characterisation of these materials.

The Weibull statistic [1] has been widely used in the

recent years to describe the statistical behaviour of the

strength properties of many materials, such as advanced

ceramics [2], metallic matrix composites [3], ceramic

matrix composites [4], and polymeric matrix composites

[5]. The Weibull distribution also describes the fatigue

behaviour of materials and the scatter of the fracture tough-

ness of steels in the ductile–brittle transition region, where

failure occurs by cleavage [6,7].

The two-parameter Weibull distribution function is given

by:

F�s� 1 2 exp 2
s

s0

� �m� �

�1�

where F is the probability of rupture of the material under

uniaxial tensile stress s , m is the shape parameter or

Weibull modulus, and s 0 is the scale parameter of the distri-

bution. Weibull modulus, m, is related to the scatter of the

data: the higher the m the lower the dispersion of fracture

stress. It becomes the most important parameter of the

distribution. The scale parameter is closely related to the

mean fracture stress.

Since the evaluation of the parameters of Weibull

distribution is made from a finite number of tests, the

estimators of their true values have a statistical charac-

ter, and thus the uncertainty of the estimation must be

known. In this work a three-parameter Weibull distribu-

tion is also proposed for the estimator of the Weibull

modulus. Formulae for the three parameters defining

such a distribution, dependent only on the sample

size, are given below.

To design structural and mechanical components, the

determination of the s -values, corresponding to a prede-

fined failure probability, is of great interest to the engineer.

These values coincide with their percentiles of the distribu-

tion. In particular, the values corresponding to the percen-

tiles of 90 and 99%, estimated with a confidence level of

95%, are known [8] as the A basis and B basis material

property, respectively. These values are obtained from the

estimations of m, s 0, and in terms of two parameters,

PA and PB, which depend only on the sample size and

on the estimation method used, and are usually obtained

from tables [8]. In this paper, to simplify the calculus of

these parameters, fitted equations are developed for two

estimation methods: maximum-likelihood and weighted

regression.
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2. Theoretical background

Several procedures are available for the determination of

the Weibull distribution parameters. From the maximum

likelihood method, the estimators of the Weibull para-

meters, m̂ and ŝ 0; should satisfy the following equations:
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Although Eq. (2) is non-linear, it has a unique positive solu-

tion [9], and may be solved by the Newton–Raphson itera-

tion technique or by any other method.

Eq. (1) becomes a straight line if a double logarithmic

transformation is made, i.e.

ln ln
1

1 2 F�s�

� �� �

m ln s 2 m ln s0 �4�

The F values are assigned on the basis of the ith position of a

value among the n ordered s -values forming the sample.

Thus the general linear regression method may be used to

obtain m̂ and ŝ 0:

Several estimators of F can be considered

Fi

i 2 0:5

n
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Different authors [10,11] have pointed out the convenience

of using a weight function, Wi, in performing the linear

regression. Bergman [10] proposed the weight factor

given by

Wi ��1 2 Fi� × ln�1 2 Fi��2 �6�

and Faucher and Tyson [11] suggested the following:

Wi 3:3Fi 2 27:5�1 2 �1 2 Fi�0:025� �7�

Using the general linear regression method, from the n pairs

of values (s –F), the estimators of the Weibull parameters

can be calculated as
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ŝ 0 exp 2
a

m̂

� �

�9�

where

zi ln si �10�

yi ln ln
1

1 2 Fi

� �� �

�11�

a

P

Wiyi 2 m̂
P

Wizi
P

Wi

�12�

Finally, applying the moments method, in which the sample

moments are equated to those of the distribution, the esti-

mators of m and s 0 are the solutions of

�s

S

G 1 1
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where �s and S are, respectively, the mean and the standard

deviation of the experimental data, and G is the Gamma

function. Eq. (13) may be solved using the Newton–Raph-

son procedure.

Thoman et al. [12] showed that if the maximum likeli-

hood method were used, the variables m̂=m and m̂ ln�ŝ 0=s0�
are distributed independently of the true values of m and s 0,

and they have the same distribution as m̂11 and m̂11 ln�ŝ 0�11;
respectively, which correspond to m 1 and s0 1: The

percentage points of these distributions were calculated by

Thoman et al. [12] from Monte Carlo simulations.

For a two-parameter Weibull distribution, the A-basis,

sA, and B-basis material properties, sB, might be obtained

[8] as

sA ŝ 0 ln
1

PA

� �� �1=m̂

�15�

sB ŝ 0 ln
1

PB

� �� �1=m̂

�16�

Usually the values of the parameters PA and PB are calcu-

lated by means of the maximum-likelihood method and, so

far, their values have been presented in a tabular form [8].

Herein the values of PA and PB may be computed as

PA �1 2 0:01�exp�2C0 01� �17a�

PB �1 2 0:1�exp�2C0 1� �17b�

where the constants C0.01 and C0.1 are, respectively, the 95
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percentage points of the pivotal variables m̂ ln�ŝ 0:01=s0:01�
and m̂ ln�ŝ 0:1=s0:1�; i.e. should verify

Pr m̂ ln
ŝ 0:01

s0:01

� �

# C0:01

� �

0:95 �18a�

Pr m̂ ln
ŝ 0:1

s0:1

� �

# C0:1

� �

0:95 �18b�

Fernández-Sáez et al. [13] showed that the variable

m̂ ln�ŝ p=sp� is distributed independently of the true percen-
tile value and, Barbero et al. [14] have proved that, in order

to estimate the percentiles of the two-parameter Weibull

distribution, the best method is the weighted regression

one, using Eq. (5c) to estimate Fi, and Eq. (7) to calculate

Wi, if sample size is above 7, or Eq. (6) otherwise.

3. Numerical simulation

To obtain the statistical distribution of the pivotal vari-

ables m̂=m and m̂ ln�ŝ p=sp�; a simulation procedure, based

on the Monte Carlo method, has been used. In this procedure

(see Fig. 1 for better understanding) a set of n values was

generated as

s i s0 ln
1

R

� �1=m

�19�

In this work we select m 1 and s0 1: Note that, as

stated above, the analysis is independent of the true values

[12].

R is a random variable with uniform distribution in

the [0,1] interval. From each sample so obtained,

{s1;s2;s3;…;sn}; estimations of the Weibull parameters,

m̂ and ŝ 0; and the p-percentile ŝ p; were obtained. From

these estimations, the variables m̂=m and m̂ ln�ŝ p=sp�
could also be built. Repeated application of this procedure

provides a statistical distribution for the two latter variables.

In this work we have computed 20,000 values for m̂=m and

m̂ ln�ŝ p=sp� for each sample size, which, in turn was

progressively increased from 5 up to 120.

The values of C0.01 and C0.1, defined by Eqs. (18a) and

(18b), were also computed, and from these, the values of PA

and PB were obtained using Eqs. (17a) and (17b),

respectively.

For the estimation of m̂=m; the maximum-likelihood

method (method 1) was utilised, while the authors have

used three estimation methods for the calculation of PA

and PB: maximum-likelihood (method 1) and weighted

regression, with two different weighted functions: Eq. (6)

(method 2), and Eq. (7) (method 3).

4. Parameter fitting

From the 20,000 values of the pivotal variable m̂=m; its

average value, �m̂=m�ave was calculated. In order to fit this

value to the sample size, the following four-parameter func-

tion is proposed:

m̂

m

� �

ave
A 1 B

1

ln�Dn�

� �C

�20�

where A, B, C, and D are the fit parameters given in Table 1,

and n is the sample size. As shown in Fig. 2, the fit seems to

be very good, with a maximum error of 0.23 %. If parameter

D were taken as unity, the increment of the maximum error

would become negligible and thus three parameters would

suffice. The average value of the pivotal variable approaches

unity (the estimator approach to the true value) when sample

size n increases, which agrees with the Khalili et al. [15]

results.

The standard deviation of the variable m̂=m was computed

as a function of the sample size. Its value decreases to zero

as the sample size increases, as Khalili et al. [15] observed.
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Fig. 1. Flow chart of the simulation procedure.

Table 1

Average and standard deviation of variable m̂=m; according to Eq. (20)

Parameter

A B C D

Average 0.9807 1.7001 2.5873 1.0408

Standard deviation 20.1357 0.5297 0.7303 0.3087
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To fit the standard deviation we used the same type of

function as before for the average value. Fig. 3 shows the

dependence of the standard deviation on the sample size.

The fit parameters are given in Table 1 and the maximum

error was 2.07%.

Percentage points of the pivotal variable were also calcu-

lated numerically. These results, published by Thoman et al.

[12] in tabular form, showed that the variable m̂=m is normal

asymptotically with an average value of 1 and standard

deviation
���������

0:608=n
p

; which means that the percentiles of

the variable could be calculated from those of a normal

distribution. One improvement to this approach would be

to consider that the variable m̂=m is normally distributed

with the average and the standard deviation given by Eq.

(20) using the parameter obtained from Table 1.

In this paper a three-parameter Weibull distribution is

proposed for the variable m̂=m; i.e.

F 1 2 exp 2
�m̂=m� 2 P1

P2

� �P3
� �

�21�

where P1, P2, and P3 are, respectively, the position, scale and

form parameters, that may be fitted as a function of the

sample size, n, by

Pi mi1 1 mi2�ln n�mi3 ; i 1; 2; 3 �22�

the empirical parameters mi1, mi2, and mi3 being those shown

in Table 2.

This last approach seems to be better than those cited

above for the calculation of the percentiles, as shown in

Fig. 4, which gives the variation of the error with the sample

size for the 0.985 percentile of the variable m̂=m using differ-

ent methods: the three-parameter Weibull distribution;

normal distribution of average 1 and standard deviation
���������

0:608=n
p

; and finally normal distribution with the average

and standard deviation values calculated from Eq. (20).

Also, the values of PA and PB, obtained using Eqs. (17a)

and (17b) from the numerical simulation results have been

fitted by means of the following equation:

PA �or PB� M1 1 M2 exp�n2M3� �23�

The parametersM1,M2, andM3 are shown in Tables 3 and 4.

Fig. 5 shows a comparison of the numerical values of PB

with the corresponding ones obtained from Eq. (23). The fits

for both PA and PB are very good, with errors below 0.3% in

all the cases. Once PA and PB values are known, the A-basis

and B-basis material properties may be obtained from Eqs.

(15) and (16).
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Fig. 2. Variation of the average of the variable m̂=m as a function of the
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Fig. 3. Variation of the standard deviation of the variable m̂=m as a function

of sample size, n. Empirical fit according to Eq. (20).

Table 2

Three-parameter Weibull distribution for the variable m̂=m; according to

Eqs. (21) and (22)

Parameter

m1 m2 m3

P1 0.5268 0.0591 1.0572

P2 20.2109 1.5299 20.8318

P3 0.2297 0.7140 0.8027
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Fig. 4. Error of estimation of the 0.985 percentile of the variable m̂=m for

different methods. Curve 1: three-parameter Weibull distribution. Curve 2:

normal of average 1 and variance 0:608=n: Curve 3: normal of average and

variance calculated using Eq. (20).
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5. Practical examples

To illustrate the above methodology two examples are

included in this paper, although it is worth noting that

they can be applied in their integrity to any kind of compo-

site material. In the first example, the estimation of the

confidence intervals of the Weibull modulus for the static

flexural strength of a CMC is considered, whereas in the

second, the A-basis and B-basis values of the dynamic flex-

ural strength of a CFRP are computed. In these examples,

the loading rate and the sample size are different.

5.1. Example 1: estimation of confidence intervals of

Weibull modulus

In the first example, the confidence intervals of the

Weibull modulus (90% and 99% confidence levels), for

the static flexural strength of a ceramic matrix composite,

are estimated.

The composite material was an alumina (CONDEAAPA-

0.5, 99.97% of purity) matrix reinforced by 30% of zirconia

particles (Tosoh 3YB), processed by uniaxial pressing under

87 MPa and pressureless sintering at 16508C for 2 h [16].

Three-point bending tests of 15 prismatic specimens of

10 × 10 × 55 mm3 were carried out using a universal testing

machine (INSTRON 8016) with a 5 kN load cell. The tests

results (flexural strength) are shown in Table 5. From these

values an estimation of the Weibull modulus and scale para-

meters were obtained by the maximum likelihood method

[14], which gave

m̂ 5:398; ŝ 0 331:5 MPa

Fig. 6 gives the experimental results and the fitted values

using the Weibull distribution.

From the parameters A, B, C and D of Table 1, the values

of the average and standard deviation of the pivotal variable

are calculated by Eq. (20) with n 15 were

Average of
m̂

m

� �

1:1050

Standard deviation of
m̂

m

� �

0:2521

To find the percentage points of the estimator of the Weibull

modulus, its distribution function, Eq. (21), may be used.

The values of Pi in this equation were computed from Eq.

(22) and the parameters m1,m2 andm3 from Table 2. For n

15 the following values were obtained:

P1 0:6962 P2 0:4571 P3 1:8182

The percentiles of variable m̂=m to be used to calculate the

confidence levels of the 99 and 90% are shown in Table 6.

From such values the interval of the variable m, correspond-

ing to the 99% confidence level, is

2:934 , m , 7:487

Table 3

Estimation of PA as a function of sample size, according to Eq. (23)

Method m1 m2 m3 R Maximum error (%)

1 0.2758 0.2685 0.0030 0.9991 0.22

2 0.4777 0.1928 0.0028 0.9981 0.01

3 0.9766 0.0103 0.1250 0.9992 0.03

Table 4

Estimation of PB as a function of sample size, according to Eq. (23)

Method m1 m2 m3 R Maximum error (%)

1 21.3102 0.8651 0.0106 0.9980 0.30

2 0.8132 0.0840 0.2227 0.9977 0.27

3 0.8070 0.1003 0.3529 0.9914 0.17
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Fig. 5. Variation of the parameter PB as a function of sample size, n.

Empirical fit according to Eq. (23).

Table 5

Example 1: flexural strength (MPa) of a 30% zirconia alumina composite

Sample Strength (MPa) Sample Strength (MPa)

1 203 9 310

2 225 10 325

3 239 11 345

4 265 12 360

5 270 13 365

6 275 14 400

7 289 15 425

8 295

Table 6

Example 1: percentiles of variable m̂=m; calculated according Eqs. (21) and

(22)

Percentile Value

Confidence level: 99%

0.005 0.72103

0.995 1.8398

Confidence level: 90%

0.050 0.78544

0.950 1.5320
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and for the 90% confidence level

3:523 , m , 6:873

5.2. Example 2: estimation of the A basis and B basis

material properties

In this example, the A-basis and B-basis material proper-

ties (dynamic flexural strength) of a polymeric matrix

composite were calculated.

The composite material is a 2.4 mm thick carbon/epoxy,

Hexcel AS4/350-61, [0/90]2S laminate, manufactured by

SACESA.

Thirty dynamic three-point bending tests were performed

using a CEAST Fractovis drop weight tester. The specimens

were 2:4 × 20 × 105 mm3 beams. The drop weight was

3.608 kg and its velocity 4.08 m/s. The flexural strength

results are given in Table 7. For this example the estimations

of the Weibull modulus and scale parameters were

m̂ 21:67; ŝ 0 972:29 MPa

Fig. 6 gives the experimental results and the fitted values

using the Weibull distribution.

From Eq. (23) and Tables 3 and 4, the parameters PA and

PB are estimated for a sample size of 30. The values

obtained for the three methods cited in this article are

shown in Table 8, which also gives the A-basis and B-

basis material properties.

6. Summary

This work presents useful formulae to analyse the varia-

bility of the mechanical properties of composite materials.

The study is focused on the two-parameter Weibull distri-

bution, currently used to describe statistically the strength

properties of many kinds of materials. In order to obtain the

percentage points of the estimator of the Weibull modulus,

published until now in tabular form, a three-parameter

Weibull distribution is proposed. Empirical expressions

for these three parameters, dependent only on the sample

size, are also given. The A-basis and B-basis material

Fig. 6. Flexural strength distribution of an alumina 30% zirconia composite (Example 1) and 0/90 carbon/epoxy laminate (Example 2).

Table 7

Example 2: flexural strength (MPa) of [0/90] carbon/epoxy composite

Sample Strength (MPa) Sample Strength (MPa)

1 864 16 941

2 891 17 945

3 900 18 950

4 904 19 959

5 904 20 965

6 904 21 975

7 910 22 980

8 915 23 986

9 922 24 990

10 922 25 998

11 926 26 1010

12 928 27 1022

13 931 28 1022

14 936 29 1027

15 938 30 1040

Table 8

Example 2: estimation of A-basis and B-basis

Method PA PB sA (MPa) sB (MPa)

1 0.9995 0.9728 694 834

2 0.9976 0.9562 745 853

3 0.9974 0.9519 749 857

6



properties based on Weibull statistics can be derived from

the estimations of the Weibull parameters and the values PA

and PB, which depend only on the sample size and the type

of estimation method. Expressions for PA and PB, estimated

by the maximum likelihood, and two selected weighted-

regression methods, are given.
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[13] Fernández-Sáez J, Chao J, Durán J, Amo JM. Estimating lower-bound

fracture parameters for brittle materials. Journal of Materials Science

Letters 1993;12:1493 6.
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