
Statistical Analysis of the Processes Controlling Choline
and Ethanolamine Glycerophospholipid Molecular
Species Composition

Kourosh Zarringhalam1., Lu Zhang1., Michael A. Kiebish2, Kui Yang2, Xianlin Han3, Richard W. Gross2,

Jeffrey Chuang1*

1Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America, 2Division of Bioorganic Chemistry and Molecular Pharmacology,

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 3 Sanford Burnham Medical Research Institute,

Diabetes and Obesity Research Center, Orlando, Florida, United States of America

Abstract

The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are
critical for biological homeostasis during development, health and disease. These complex mechanisms control the
architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2
positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in
membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the
first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-
throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass
spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and
liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species
regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains
with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated
than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous
approach to determine cooperativity based on a modified Fisher’s exact test using Markov Chain Monte Carlo sampling. This
computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation.
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Introduction

The cellular lipidome is comprised of diverse classes of

sphingolipids, phospholipids, glycerolipids, sterol lipids, and lipid

metabolites, whose molecular species coordinate biomembrane

structure, intra- and extra-cellular communication, metabolic

efficiency, and signaling cascades that are critical for cellular

functionality in development and disease [1,2]. Identification and

quantification of thousands of lipid molecular species, including

regioisomers, are now possible due to advances in soft ionization

mass spectrometry as well as novel chemical strategies [3–6]. As

with other -omics sciences, lipidomics now requires more

advanced integration of computational and statistical approaches

to interpret accruing datasets of complex distributions of lipid

molecular species, which have broad and potent functional

significance [7]. Thus, advances in computational lipidomics can

dramatically improve our understanding of the functions of the

cellular lipidome.

Glycerophospholipids comprise the vast majority of membrane

lipid content. Each is composed of a glycerol backbone, a head

group esterified to a phosphate that connects to the glycerol at the

sn3 position, and acyl chains located at the sn1 and the sn2

positions of the glycerol [8]. Multidimensional mass spectrometry-

based shotgun lipidomics (MDMS-SL) using dimensional, chem-

ical, and computational strategies have shown that lipid molecular

species have diverse, highly regulated acyl chains at specific

positions [3,4]. The distribution and content of molecular species

are selectively regulated by the complex homeostatic balance of

biosynthesis, remodeling (transacylase or acyltransferase), and

catabolism [9,10]. In the vast majority of tissues and membranes,

the two most abundant glycerophospholipids are PC and PE. It is

roughly known that shorter, saturated acyl chains are localized in

the sn1 positions and longer, more unsaturated acyl chains are

enriched in the sn2 positions, likely due to biophysical stringency

and positional functional recognition by phospholipases. However,

such characterizations of PC and PE acyl chains have not been

analyzed in any statistical framework, in spite of the fact that high-

throughput lipidomic data are now available. Lipidomic data

provide an opportunity for rigorous identification of PC and PE
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acyl chain behaviors, a vital step in determination of mechanisms

of acyl chain regulation.

Some computational approaches have been developed for

lipidomics, notably for the problems of identifying low abundance

lipid molecular species or for dissecting lipid metabolic signaling

pathways at the class level [7,11–16]. Processes controlling species

composition have been previously investigated for the tetra-acyl

phospholipid cardiolipin [17], in the context of a simplified model

of independent and identical behavior of the acyl chains.

However, the extent of cooperative interactions among acyl

chains within a single phospholipid (e.g. cooperation between sn1

and sn2 positions, an idea proposed for cardiolipin by Schlame et

al [18]) is poorly understood. Quantification of phospholipid acyl

behaviors is vital for understanding the regulation of biochemical

functions controlled by phospholipids. Knowledge of these

behaviors will also improve detection of molecular species lying

just below current limits of lipidomic measurement technology via

cryptoanalytical approaches that combine chemical detection with

computational simulation of acyl chain remodeling behaviors [15].

Lipid biochemistry will soon rely increasingly on this type of

mechanistic strategy to further penetrate and integrate the cellular

lipidome.

In this study, we present a computational analysis of the

dependence between acyl chains in the phosphatidylcholine and

phosphatidylethanolamine molecular species. PC and PE are

critical molecules because of their dominance in the phospholipid

composition of cellular membranes. Also because these molecules

each have only two acyl chains, they are the simplest types of lipids

for which to investigate cooperative effects. For this analysis, we

have analyzed MDMS-SL measurements of PC and PE in mouse

heart development (at days 1, 7, 14, 21, 28, 35, and 120) as well as

three other mature mouse tissues (brain, lung, liver).

We demonstrate several key findings. We show that in PC and

PE sn1 and sn2 positions are largely independent, though for low

abundance species there may be processes controlling species

composition that involve both the sn1 and sn2 chains simulta-

neously, leading to cooperative effects. Chains with similar

biochemical properties appear to be regulated similarly. We also

see that the regulation of the sn2 position is more complex than at

the sn1, and that PC exhibits stronger cooperative effects than PE.

The distributions of fatty acids we analyze are the result of the

homeostatic balance between the rates of biosynthesis, acyl-chain

remodeling, and degradation, as well as the spectrum of fatty acids

available. Since the samples we study are not connected by an

explicit mechanistic process, our statistical analyses describe the

aggregate effect of all processes, rather than distinguishing

individual effects. A key aspect of our work is a novel statistically

rigorous approach to determine whether chains at the sn1 and sn2

positions behave cooperatively based on contingency tables and

Markov Chain Monte Carlo sampling. Thus by application of

multiple computational approaches to lipidomic data we are able

to determine the dependence between the sn1 and sn2 positions in

choline and ethanolamine glycerophospholipids, quantifying the

stringent molecular species regulation of these dominant lipid

classes.

Methods

MDMS-SL quantification of lipids
Individual lipid extracts were reconstituted with 1:1 (v/v)

CHCl3/CH3OH, flushed with nitrogen, and stored at {200C

prior to electrospray ionization-MS using a TSQ Quantum Ultra

Plus triple-quadrupole mass spectrometer (Thermo Fisher Scien-

tific, San Jose, CA) equipped with an automated nanospray

apparatus (Advion Biosciences Ltd., Ithica, NY) and customized

sequence subroutine operated under Xcalibur software. For each

tissue type, 3–4 biological replicates were performed. C57BL/6J

(B6) mice were euthanized at indicated ages during development

or at 4 months of age. Tissues were excised, briefly washed in 106

diluted PBS and immediately freeze clamped using liquid nitrogen.

All animal procedures were performed in accordance with the

Guide for the Care and Use of Laboratory Animals and were

approved by the Animals Studies Committee at Washington

University School of Medicine.

Identification of individual lipid molecular species
Lipidomic analysis was performed as previously described

[4,15,19] and will be briefly described as follows. Both isobaric

and isomeric species have the same nominal mass and therefore

overlap in the spectrum acquired on a low to moderately high

accuracy/resolution mass spectrometer. Isobaric lipid species are

normally from different lipid classes and therefore have different

head groups and thus different acyl composition (e.g., protonated

16:1-22:6 diacyl PE and 16:0-18:0 diacyl PC have different acyl

composition but the same nominal mass of 762). Isomeric lipid

species are from the same lipid class and therefore have identical

acyl composition (e.g., 18:0-18:2 diacyl PE and 18:1-18:1 diacyl

PE have identical acyl composition, i.e. total carbon number of 36

and total double bond number of 2).

In MDMS-SL, generally each lipid class or category is first

selectively ionized through intrasource separation followed by a

class-specific diagnostic scan to generate an ion peak list of the

molecular species in a lipid class of interest for further acyl chain

identification. This list is generated by matching the m/z values of

the detected ion peaks in the diagnostic scan with those of the

candidate species in the pre-established virtual database of the

lipid class of interest. The list therefore contains information about

the total number of carbon atoms and the total number of double

bonds of the acyl chains. The presence of isobaric species, unlike

the presence of isomeric species, does not affect acyl chain

identification due to their differential total carbon number and

total double bond number which discriminate them.

There are two types of isomeric lipid species, i.e., the acyl chain

compositional isomers (e.g., 18:0-18:2 diacyl PE and 18:1-18:1

diacyl PE) and the regioisomers (e.g., 18:0-18:2 diacyl PE and

18:2-18:0 diacyl PE). The sum of the intensities of the paired acyl

carboxylates in their corresponding PIS or in product ion scans in

negative ion mode is used to assign the ratio between the acyl

chain compositional isomers. For example, if the ratio of the sum

of the intensities of 18:0 and 18:2 carboxylates to the intensity of

18:1 carboxylate is 2:1, then the 18:0-18:2 and 18:2-18:0 diacyl PE

is 67%, and the 18:1-18:1 diacyl PE is 33%.

The regioisomer ratio is assessed by the ratio of the intensities of

the paired acyl carboxylates. The ratio of sn1 and sn2 acyl

carboxylates in each lipid class or subclass is pre-determined by

extensive examination of numerous product ion spectra of

synthetic lipid standards with known sn1 and sn2 acyl chain

composition. For example, the ratios of sn2 to sn1 acyl

carboxylates are found to range from 2:27 to 3:77 and center at

2:94+0:4 for molecular species in diacyl PE class (See File S1).

If the intensity ratio of 18:2 carboxylate to 18:0 carboxylate is 3

or larger in the above example, this PE species is identified as 18:0-

18:2 diacyl PE and therefore the final assignment for this example

is 18:0-18:2/18:1-18:1 at 67%=33%. If the intensity ratio of 18:2

carboxylate to 18:0 carboxylate is 0:3 or less, this PE species is

identified as 18:2-18:0 diacyl PE and therefore the final assignment

is 18:2-18:0/18:1-18:1 at 67%=33%. If the intensity ratio of 18:2

carboxylate to 18:0 carboxylate is between 0:3 to 3, the
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regioisomers of 18:0-18:2 and 18:2-18:0 are both preseent. For

example, if the intensity ratio is 2, the relative fractions of 18:0-

18:2 and 18:2-18:0 are 83%=17% and the final assignment is 18:0-

18:2/18:2-18:0/18:1-18:1 at 56%=11%=33%. The details of the

method as well as the effect of using a different threshold value

(i.e., other than 3) on the subsequent statistical analysis are

discussed in File S1.

Two corrections are specifically considered for the determina-

tion of the intensities of carboxylates. One is the correction of the

effect of 13C isotopologue on the carboxylate intensities as

previously described [5]. Another is the correction for the reduced

abundance of fatty acyl carboxylate containing multiple double

bonds (e.g., 22:6, 20:4 and 18:3 with a total double bond number

of 3 or larger ) due to the facile loss of CO2 during collision

induced dissociation (CID) in tandem mass spectrometry as

previously demonstrated [4].

The analyzed spectroscopic molecular species datasets are

provided in File S2. The relative abundances of isomers listed for a

species were calculated as described above and annotated for

mature heart, brain, lung, and liver. For the heart developmental

data, the relative abundances of isomers were homogeneously

estimated based on the described procedure. The relative

abundances of isomeric species were approximated as 75%/

25%, 64%/27%/9%, 50%/21%/21%/8% for di-, tri-, and tetra-

isomers respectively.

Positional independence model
Let T denote a phospholipid with two fatty acid chains (i.e. PC

or PE). Assume that V~ a1, � � � ,aNf g is the pool of possible fatty

acid chain types that can be incorporated in either the sn1 or the

sn2 positions of T . Incorporation of the fatty acid chains in the sn1

and the sn2 positions of T can be viewed as random processes,

with random variables X and Y for the processes in the two

respective positions. The joint random variable (X ,Y ) is

distributed on the sample space V|V.

Let pij
� �

denote the joint probability Pr(X~ai,Y~aj), which

can be obtained from the experimental concentration of the PC (or

PE) species with chains (X~ai,Y~aj) normalized so that they

sum to 1. Denote the marginal probabilities by pizf g and pzj

� �

,

where piz~
P

j pij and pzj~
P

i pij . If the random variables X

and Y are independent, the joint probabilities should equal the

product of their marginals. We wish to distinguish the null

hypothesis of independence from the alternative hypothesis of

cooperativity:

H0 : pij~pizpzj

H1 : pij=pizpzj

for all i and j. Sufficient statistics under the null hypothesis of

independence are the column and row marginals.

To test the independence model, it is necessary to consider the

measurement uncertainty in the pij and determine whether

deviations from pij~pizpzj are statistically significant. For a

given tissue type, the mean p̂pij and standard deviation ŝsij were

calculated for each ij using the replicates for the tissue type. We

modeled the variation in pij across replicates by a binomial process

whose effective sample size would give the observed standard

deviation. To determine this effective sample size, we calculated

the variance effective sample size for each species ij as

nij~
p̂pij(1{p̂pij)

ŝsij
2

ð1Þ

We then averaged these values of nij over all ij to get an effective

sample size n for the tissue type. For this averaging, outlier values

of nij were excluded at the significance level of 0:1, based on an

assumed normal distribution for the nij values. In the resulting

model, probabilities p̂pij correspond to absolute counts mij
representing the total number of sampled molecules for each ij

in the tissue type (see File S1).

For each tissue type, we then simulated 15 sets of values for the

mij using p̂pij as weights and n as the number of sampled molecules

with a multinomial sampling process. For each of these simulated

sets, the positional independence model was then evaluated by

performing the Fisher’s exact test. The p-value in the Fisher’s test

was calculated by summing the probabilities of all permissible

tables with equal or more extreme arrangement than the observed

table [20,21]. In cases where n is large, it is impractical to

enumerate all possible tables. Thus Markov Chain Monte Carlo

(MCMC) was used to explore the space of permissible tables and

approximate the p-value [21]. In our implementation, we used the

R package aylmer.test and 10000 permissible tables were

generated in the MCMC simulations to calculate the p-values.

In the MCMC procedure, cells with zero counts were kept fixed.

For each tissue type, the p-value for independence was reported as

the average of the p-values of the 15 simulated sets.

For testing of the quasi-independence model, we selected subsets

of chain types at the sn1 and sn2 positions. The subsequent

statistical test was performed on the partial frequency table as

described above.

Clustering Analysis
The conditional probability Pr(Y~bDX~a)~

Pr(X~a,Y~b)

Pr(X~a)

describes the probability of observing chain type b at the sn2

position given that chain type a is at the sn1 position. We performed

clustering on the conditional distributions to determine whether

there are acyl chains in the sn1 position that influence chains at the

sn2 position in the same way. To do this clustering, for every pair of

sn1 chain types we measured the distance between their sn2

conditional distributions, Pr(Y~bDX~a1) and Pr(Y~bDX~a2),

using Jensen-Shannon Divergence. We then performed hierarchical

clustering on the distance matrix. By examining the clustering from

all tissue types, which showed similarities, we defined a set of

canonical/noncanonical chains types at each of the sn1 and sn2

positions.

In the test of quasi-independence, we selected a set Vsn1 of the 2

most similar sn1 canonical chain types for a given tissue type. A

second hierarchical clustering of sn2 canonical chain types was

performed based on sn1 conditional distributions, i.e.,

Pr(X~aDY~b) for a[Vsn1. All pairs of clustered sn2 chain types

Vsn2 were considered. Tests of independence were performed on

these subsets. For any subset where the null hypothesis was not

rejected at threshold p-value 0:05, we continued searching for a

larger subset by including the next closest sn1 or sn2 chain types.

Deviation from Independence
The deviation of each ij from the independence model was

quantified by the standardized residual

Quasi Independence in Phospholipid Remodeling
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dij~
Oij{m̂mij

ŝsij
~

Oij{m̂mij
ffiffiffiffiffi

m̂mij
p ð2Þ

where Oij denotes the observed frequency and m̂mij denotes the

expected frequency of the cell (i,j). Note that here, the counts in

the table are modeled as realizations of an independent Poisson

random variable. This is equivalent to testing the hypothesis of

independence in a multinomial model [20]. See File S1 for details.

Jensen-Shannon Divergence
Jensen-Shannon Divergence (JSD) is a statistical measure of the

divergence of two or more probability distributions. We used JSD

to compare multiple phospholipid distributions as:

J (P1,P2, � � � ,Pm)~H(
X

m

j~1

vjP
j){

X

m

j~1

vjH(Pj), ð3Þ

Here H(P)~{
P

i pi log2 (pi) is the Shannon entropy,

P1,P2, � � � ,Pm are the probability distributions, and
~vv~(v1,v2, � � � ,vm) is a vector of weights with vjw0,
Xm

j~1
vj~1. For the comparison of the observed and the

independence distributions, m~2 and the weights are assigned

uniformly i.e., ~vv~(
1

2
,
1

2
). For comparing the observed distribu-

tion across the tissues (mature heart, brain, lung, and liver), m~4

and the weights are assigned equally as well, i.e., ~vv~(
1

4
,
1

4
,
1

4
,
1

4
).

For the comparisons of the marginal distributions across time

points, the weights were scaled to be proportional to the interval

between the successive time points, i.e. vj~
DTj

Xm

j~1
DTj

. More

specifically, given time points T~1,7,14,17,21,28,35, the com-

puted weights were ~vv~(
1

35
,
6

35
,
7

35
,
3

35
,
4

35
,
7

35
,
7

35
). This scaling

allows us to take the timespans at which the lipid concentrations

were measured into consideration and attain an unbiased

evaluation of the changes in the molecular species profiles.

Results

In this work, we statistically analyzed lipidomic data for PC and

PE in 11 types of mouse tissues. These were brain, heart, lung, and

liver from 4 month old C57BL/6J(B6) WT mice; and developing

heart from C57BL/6J(B6) WT mice at 1, 7, 14, 17, 21, 28, and 35

days of age [15]. Each tissue type was measured in 3–4 biological

replicates. For each tissue type, the probability distribution for

lipid molecular species was calculated by normalizing concentra-

tions to sum to one and averaging among replicates. This yielded

probabilities for molecular species with X at the sn1 position and Y

at the sn2 position Pr(X ,Y ).

Characterization of processes controlling species
composition from sn1 and sn2 marginal distributions
The distributions of fatty acids at the sn1 and the sn2 positions

of phospholipid provide valuable information about the processes

controlling species composition. The marginal distribution at the

sn1 position quantifies the acyl composition at the sn1 irrespective

of the sn2, and vice versa for the marginal distribution at the sn2

position. For each tissue type and lipid class we calculated the

marginal probability of observing chain b at the sn2 position as

Pr(Y~b)~
P

a Pr(X~a,Y~b) as well as the marginal proba-

bility of observing a at the sn1 position

Pr(X~a)~
P

b Pr(X~a,Y~b).

Comparing PC and PE marginal distributions, we found that

they are generally similar. For both types of molecules, the

predominant fatty acids at the sn1 position are 16:0 and 18:0,

while the fatty acids at the sn2 position are generally the longer

and unsaturated fatty acid chains 18:2, 20:4, and 22:6. This is

consistent with many previous findings [22–24]. However, PC and

PE marginal distributions display different levels of similarities

across samples.

To quantify similarities between PC and PE, we measured

Jensen-Shannon Divergence (JSD) between PC and PE marginal

distributions for each sample and at each sn position. JSD

measures the dissimilarity between probability distributions

symmetrically with values ranging from 0 (when distributions are

identical) to 1 [25]. PC vs. PE comparisons for all samples are

shown in Figure 1. In general, PC and PE are more similar at the

sn1 position than at the sn2 position. In 9/11 tissues, the sn1 JSD

is lower than the sn2 JSD. The exceptions are for mature heart

and mature brain. The sn2 acyl distributions of mature heart PC

and PE have the lowest JSD of any comparison (JSD=0.070).

This is likely due to the presence of the dominant 20:4 and 22:6

acyl chains which tend to highly localize in the sn2 position in both

PC and PE. However, for mature brain, the sn1 acyl distributions

have the second highest JSD of any comparison (JSD=0.261),

likely because of the presence of more monounsaturated acyl

chains (e.g. 18:1) in brain PC than in brain PE. It is worth noting

that for all comparisons, the JSDs are low on an absolute scale

(max. 0.266 for sn2 lung). This indicates that, despite some small

variations by tissue type, PC and PE are largely regulated by

similar processes (also see Figure 2). Thus, PC and PE appear to be

governed by a common set of constitutive acyl chain regulatory

processes, with distinctions from this behavior occurring only

occasionally in specific tissue types.

Interestingly, we observed a trend of PC and PE becoming

more similar during heart development from day 7 to day 35. This

can be seen by the decrease in JSD with time at both the sn1

(R2
~0:9439) and sn2 (R2

~0:6678) positions. However, the

mechanisms leading to this increased similarity of PC and PE

differ by position. The slope of change at the sn2 position

(b~{0:00187) is much smaller than that at the sn1 position

(b~{0:00078). It is notable that the day 1 sn1 JSD is unusually

low relative to the other sn1 timepoints. This is likely due to

stronger maternal bias and the presence of dominant nascent

immature species containing less unsaturated acyl chains at day 1,

with subsequent days reflecting the processes controlling species

composition activated during development.

To better understand the processes that distinguish PC and PE,

we examined the trajectory of marginals during heart develop-

ment. Figure 2 shows the PC and PE marginals for two abundant

chain types at the sn1 position (16:0, 18:0) as well as the two

abundant chain types at the sn2 position (20:4, 22:6). The general

similarity in processes controlling PC and PE species composition

can be seen in the trajectories for the sn1 18:0, sn2 20:4, and sn2

22:6 marginals. All 3 of these marginals track closely between PC

and PE, suggesting that they are substrates of the two phospho-

lipids’ shared regulatory processes. However, the PC and PE sn1

16:0 curves diverge during development. This suggests that a

process specific to 16:0 chains in the sn1 position becomes active

during heart development, and that this process acts distinctly for

PC and PE. Thus comparative consideration of marginals can be

used to reveal the existence of tissue- and acyl-specific regulatory

processes.

Quasi Independence in Phospholipid Remodeling
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Characterization of processes controlling species
composition from sn1-sn2 conditional distributions
We next investigated cooperative effects between sn1 and sn2

positions, i.e. whether a particular chain at one position influences

the distribution of chains at the other position. To evaluate

association between the positions, we considered the conditional

probability Pr(Y~bDX~a), i.e. the distribution of chains b at the

sn2 position given chain a at the sn1 position. Figure 3(C) shows

conditional distributions of the sn2 chains given the sn1 chain for

PC mature heart. These conditional distributions vary greatly

depending on the sn1 chain. For example, when the sn1 chain is

18:2, the major sn2 chain is 22:6. However, when the sn1 chain is

18:3, the predominant sn2 chain is 18:2. This suggests that for

specific class of sn1 chains, the enzymes involved in regulatory

processes at the sn2 position also interact with the acyl chain at the

sn1 position.

To investigate the similarity among these conditional relation-

ships, we clustered the sn2 distributions Pr(Y~bDX~a) as a

function of the sn1 chain (see Methods). Interestingly, a group of

sn1 chain types, Vsn1~f16:0, 18:0, 18:1, 18:2g display very

similar conditional sn2 distributions. For these sn1 chains, the

predominant sn2 chain is always 22:6, with smaller but consistent

contributions from 20:4 and 18:1. Thus, while enzymes that

regulate the acyl chain at the sn2 position also recognize the acyl

chain at the sn1 position, they are indifferent among the sn1 chains

in the set above.

We also considered the dependence Pr(X~aDY~b), with

results for PC mature heart shown in Figure 3(D). As expected, we

observed that the sn2 chain affects the distribution at the sn1

position (contrast Y= 16:1 versus Y=22:6). However, we also saw

groups of sn2 chains with comparable influence on the sn1

position. Clustering of Pr(X~aDY~b) by b results in a set of

chains Vsn2~f16:0, 18:1, 18:2, 20:3, 20:4, 22:5, 22:6g with similar

sn1 conditional distributions.

Similar behaviors were observed for all the tissue types studied,

although the particular conditional patterns vary from one sample

to another (see File S1 for clustering figures). Based on these

observations, we defined universal canonical chain types, f16:0,
16:1, 18:0, 18:1, 18:2g for sn1 and f16:0, 18:1, 18:2, 20:0, 20:1,
20:3, 20:4, 20:5, 22:3, 22:4, 22:5, 22:6g for sn2 respectively, which

tend to cluster together across samples. Remarkably, for most

samples, the canonical chain types include the most abundant

chain types at the given position, such as 16:0, 18:0 for sn1 and

18:2, 20:4, 22:6 for sn2. 16:0 and 18:0 are among the three most

abundant chain types at the sn1 position for every tissue type and

lipid class. 20:4 and 22:6 are among the three most abundant

chain types at the sn2 position for 9/11 tissue types for PC and 11/

11 tissue types for PE. In general, there is only weak association

between the sn1 and the sn2 acyl chains when the most abundant

canonical chain types are considered, but for noncanonical chain

types we observe stronger associations.

Figure 4 shows the trajectories of the conditional probabilities

Pr(Y~bDX~a) of the four major sn2 chain types: 18:1, 18:2,

20:4, 22:6, given sn1 (a[Vsn1) for PC during heart development.

Although these conditional probabilities show distinct behaviors as

a function of a at day 1, they converge by the time the mouse

reaches maturity (day 120). In particular, the distributions

Pr(Y DX~16 : 0) and Pr(Y DX~18 : 0) show a striking similarity,

as these values (red and blue dots) are very close at all

developmental timepoints and for all sn2 chains. Similar behavior

was observed for PE trajectories (see File S1). 16:0 and 18:0 are

notable because of their common biochemical characteristics of

similar length and lack of unsaturated bonds. These data indicate

that the enzymes involved in controlling species composition are

indifferent among adjacent acyl chains with similar biochemical

properties. We will examine the extent of this indifference in the

next section.

 

 

Figure 1. Jensen-Shannon divergence of PC and PE marginal acyl distributions. For each of sn1 (A) and sn2 (B) positions, the dissimilarity
between PC and PE marginal acyl distributions was measured by Jensen-Shannon Divergence (JSD). The highest similarity was observed for mature
heart sn2 (JSD~0:07), while the lowest similarity was observed for mature lung sn2 (JSD~0:266). A trend of decreasing JSD was observed during
heart development from day 7 to day 35, for both sn1 (R2

~0:9439, b~{0:00187) and sn2 (R2
~0:6678, b~{0:00078).

doi:10.1371/journal.pone.0037293.g001
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Quantifying independence between sn1 and sn2 chains
While the previous section suggests the existence of sn1-sn2

dependencies for acyl chains with different biochemical properties,

the hypothesis that sn1 and sn2 acyl chains influence one another

has not been directly tested. We can do this by comparing the

experimentally observed joint (X ,Y ) probability distribution for

PC (or PE) to the product of the sn1 and sn2 marginal

distributions. Figure 5 shows heatmaps of the joint and product

distributions as well as their standardized residuals for the mature

heart PC and PE. The qualitative similarity between the joint and

the product distributions suggests that sn1 and sn2 chains will be

generally independent.

To formally test independence, we designed a novel, statistically

rigorous approach based on the Fisher’s exact test. For the Fisher’s

test it is necessary to use counts rather than probabilities. Based on

the mass of lipids analyzed, the number of molecules of PC or PE

in each sample can be estimated, which could in principle be used

to scale probabilities to counts. However, counts on this scale

would be computationally infeasible for a Fisher’s test, and this

problem would be exacerbated by the disparate concentrations of

species. Therefore we instead mapped probabilities to counts using

the variance effective sample size (see Methods). This approach

effectively makes use of the experimentally observed variation in

the data while allowing a reasonable computation time.

Note that our Fisher’s-based approach is necessary because

more commonly used tests of independence such as the Pearson’s

x2 test are unreliable on this type of data. Table 1 shows an

example of the contingency table of mapped counts for PC mature

heart sample using the canonical chains. As can be seen, the table

contains many species with zero counts. The Pearson’s x2 test of

independence will not produce reliable p-values for data with such

zero counts. This is because the accuracy of the x2 test is

dependent on asymptotic behavior of the Pearson’s x2 test

statistics, but this behavior often fails when counts are low. The

Fisher’s exact test provides an accurate alternative not affected by

such small counts. Another important consideration is that the

variance effective sample size n is in general still large, making it

impractical to enumerate the entire permissible tables. Therefore

we used Markov Chain Monte Carlo (MCMC) to explore the

space of permissible tables and approximate the p-value.

Figure 2. PC and PE acyl chain marginal probabilities during heart development. Trajectories of marginal probabilities of PC (red circles)
and PE (blue triangles) for sn1 16:0 (A), sn1 18:0 (B), sn2 20:4 (C), and sn2 22:6 (D). PC and PE marginal probabilities closely follow each other in B, C,
and D, suggesting these chain types are substrates of these two phospholipids’ shared processes controlling species composition. The two curves in
A are divergent, indicating that acyl chain regulation of sn1 16:0 in PC and PE differs.
doi:10.1371/journal.pone.0037293.g002
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Our results indicate the presence of cooperative effects between

the sn1 and sn2 positions in all tissue types when all chains are

considered. For each tissue type, we performed the Fisher’s exact

test to test the null hypothesis of independence of sn1 and sn2

positions, with zero count cells kept fixed. We found that the null

hypothesis of independence was rejected at cut-off p-value of 0:05
for all tissue types when including all chain types in the analysis.

This indicates the presence of cooperative associations.

Given the general independence of sn1 and sn2 positions

suggested by Figure 5, we hypothesized that in each tissue the sn1

and sn2 position would be ‘‘quasi-independent’’, i.e. there would

be a few dependencies between individual classes of acyl chains,

but there would also be groups of chains for which the sn1 and sn2

positions are independent. To determine groups of chains with

such independence, we considered the sn1 and sn2 chains in the

canonical clusters Vsn1~f16:0, 16:1, 18:0, 18:1, 18:2g and

Vsn2~f16:0, 18:1, 18:2, 20:0, 20:1, 20:3, 20:4, 20:5, 22:3, 22:4,
22:5, 22:6g. For each tissue type, we then tested whether there are

sufficient statistical evidence for independence among subsets of

chains in these canonical clusters.

To find these subsets we first selected the 2 closest sn1 canonical

chain types, based on their clusterings described in the previous

section. We then performed the test of independence on these 2

sn1 chains against all possible pairs of clustered canonical sn2

chain types. For any subset where the null hypothesis was not

rejected (significance level w0:05), we continued searching for a

larger subset by adding the next closest sn1 or sn2 chain types and

then testing independence again. In all tissue types, we found at

least one subset of sn1 and sn2 chain types for which the

independence hypothesis was not rejected. The subsets contribut-

ing the most to the total concentrations are reported in Tables 2

and 3.

For example, in mature heart data, the sn1 fatty acids

16 : 0,18 : 0f g and sn2 fatty acids 20 : 4,22 : 6f g meet the

independence test, and these species contribute 65.58% of the

total PC concentration. Therefore processes controlling species

composition in this tissue appear to be a mixture of position-

independent and cooperative mechanisms with independence

being the more common behavior. This analysis confirms the

findings in the previous section that chains with similar biochem-

ical properties (length and saturation) have a similar effect on the

acyl chain remodeling of other chains in the molecule. For PC, the

shorter saturated chains 16:0 and 18:0 often group at the sn1

position, and the longer unsaturated chains 20:4 and 22:6

frequently group at the sn2 position.

Trends in processes controlling species composition
The divergence of the observed species distribution from the

predicted independent distribution provides a useful quantification

of how independent the sn1 and sn2 positions are. We used

Jensen-Shannon Divergence to quantify the difference between

two distributions (see Methods). Figure 6 shows the JSD of the

observed joint distribution when compared to the independent

distribution for PC and PE and for each sample. Lung PE has the

lowest JSD (0:0268), indicating strong independence of the

Figure 3. Conditional distributions and clustering of acyl chains. For PC mature heart, a set of sn1 chain types
Vsn1~ 16 : 0,18 : 0,18 : 1,18 : 2f g (C) and a set of sn2 chain types Vsn2~f16:0, 18:1, 18:2, 20:3, 20:4, 22:5, 22:6g (D) were each clustered. Within
each of these clusters, conditional acyl distributions were highly homogeneous. It is interesting to note that at each of the sn1 and sn2 positions, the
most abundant chains (panels A and B) tend to be clustered together (panels C and D), indicating similar conditional effects.
doi:10.1371/journal.pone.0037293.g003
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processes controlling species composition at the sn1 and sn2

positions. Liver PE has the highest JSD (0:1851), indicating greater
cooperativity.

We also observed systematic trends in species composition.

During heart development, PC JSD decreases from days 7 to 35

(linear fit: R2
~0:9562, b~{0:0028). This indicates that

processes that act on the sn1 and sn2 positions independently

become increasingly important over time. However, there is no

systematic change in PE JSD during development (linear fit:

R2
~0:1966, b~{9|10{5). During heart development, PE JSD

is lower than PC JSD at every time point, though mature heart PE

JSD is slightly larger than that of PC JSD. PE is also more

independent in mature brain and lung, though PE appears to be

subject to unusually extensive sn1 and sn2 cooperativity in liver.

Comparing complexity of sn1 and sn2 acyl chain
remodeling
Which sn position is controlled by more complex regulation?

We hypothesized that if the regulatory mechanisms on one

position are more complex, the acyl chain distribution at that

position should display greater variation across conditions. This is

analogous to how the expression of highly regulated genes varies

widely across conditions while the expression of housekeeping

genes is constitutive. For instance, if there is greater temporal

regulation of acyltransferase/transacylase activity at one position,

one would expect to see more variability in the distribution of acyl

chains at that position through time. Similarly, if anatomy-specific

regulation is greater at one of the positions, the distribution of the

acyl chains at that position should show more variability across

tissues. On the other hand, if the regulation scheme is simpler at

one position, then we expect to see a more stable acyl chain

distribution across conditions. We calculated and compared the

variation in sn1 and sn2 marginal distributions across conditions

using a multi-distribution Jensen-Shannon Divergence (higher JSD

corresponds to more variation).

Figure 7 shows the JSD for marginal distributions during heart

development. The sn1 position exhibits less variation than the sn2

in PE (blue). This is also the case for PC. Similarly, the JSD of the

marginal probabilities across different anatomies (mature heart,

brain, lung, and liver) indicates a higher variability of the sn2

position than in the sn1 position for both PC and PE. According to

the above hypothesis, these data indicate that sn2 positions are

subject to more complex regulation than the sn1. Interestingly, the

Figure 4. PC acyl chain conditional probabilities during heart development. The sn2 conditional probabilities given sn1 chain types,
Vsn1~ 16 : 0,18 : 0,18 : 1,18 : 2f g closely follow each other. Shown are conditional probabilities for the four major sn2 chain types 18:1 (A), 18:2 (B),
20:4 (C), and 22:6 (D).
doi:10.1371/journal.pone.0037293.g004

Quasi Independence in Phospholipid Remodeling

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e37293



PE JSD values at the sn2 position are noticeably lower than the PC

JSD values at the sn2 position (PC sn2 has the highest JSD). This is

consistent with the prior observation that PC exhibits stronger sn1-

sn2 cooperativity than PE. Stronger cooperative effects allow for

finely tuned regulation of PC species distributions. However, the

weaker sn1-sn2 cooperativity in PE is likely to be less functionally

important, since PE species distributions do not appear to be as

regulated.

Discussion

Using novel statistical approaches, we have identified the major

dependence relationships between sn1 and sn2 acyl chains in PC

Table 1. PC mature heart.

sn2

16:0 18:1 18:2 20:0 20:1 20:3 20:4 20:5 22:4 22:5 22:6

16:0 296 829 901 ½0� 22 159 1212 107 ½0� 612 7341

16:1 ½0� 24 ½0� ½0� ½0� ½0� 7 ½0� ½0� ½0� ½0�

18:0 431 392 474 ½0� ½0� 120 1040 ½0� ½0� 324 6401

sn1 18:1 ½0� 119 ½0� ½0� ½0� 26 173 ½0� ½0� ½0� 468

18:2 ½0� 407 149 ½0� 13 ½0� 73 ½0� ½0� ½0� 1066

Two-way Contingency table for mature heart PC sample. The structural zeros are denoted by ½0�. The variance effective sample size is 24242.
doi:10.1371/journal.pone.0037293.t001

Figure 5. Comparison of joint and product distributions for mature heart. Heatmaps of the joint distribution (left), the independent
product distribution (middle), and their standardized residual (right) for mature heart PC (top) and PE (bottom). The joint and the product
distributions are similar, suggesting that the acyl chains at the sn1 and the sn2 positions are largely independent.
doi:10.1371/journal.pone.0037293.g005
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and PE, the two most common phospholipids in eukaryotic

membranes. While the mechanisms which determine acyl

distributions (synthesis, degradation, and acyl chain remodeling)

generally do not yield sn1-sn2 cooperativity, their effects are

clearly position-specific. This behavior is different from the tetra-

acyl phospholipid cardiolipin (CL) [17]. For CL, it was shown that

the tetra-acyl distributions in most tissues were well-fit by a model

in which the four positional acyl distributions were identical and

lacked cooperativity, and that a model that allowed distinct

behavior between sn1 and sn2 positions did not fit the data better.

PC and PE are notably different from CL for their strong

distinction in sn1 and sn2 behavior.

Cooperative effects between sn1 and sn2 acyl chains are more

apparent for low abundance species, while canonical chains with

high abundance generally exhibit independence between sn1 and

sn2 positions. The observed cooperative effects are not due to

variation among the biological replicates, which are taken into

account by the Fisher’s test. However, it should be noted that in

the case of minor species, the identification of regioisomers is

sensitive to uncertainties in sn1 and and sn2 relative carboxylate

formation during the mass spectrometry procedure, which in turn

may affect the test of independence (see File S1 for full details).

On the other hand some of the low abundance species

consistently deviate from independence model across tissues and

they tend to be more abundant than expected from the

independence model. The consistency in the deviation is

statistically significant, suggesting that the observed cooperativity

might arise from preferential recognition by regulatory enzymes

(see File S1 for full details). If correct, we speculate that the low

abundance, cooperatively regulated phospholipid species may

provide specialized functions for particular tissues or at a

particular developmental stages, analogous to the manner in

which highly regulated gene expression leads to precise tissue- or

timing-specific enzyme production. Such phospholipid composi-

tional regulation may also influence properties such as signaling

scaffolds, membrane fluidity, and energy metabolism in a tissue-

and timing- specific manner. This provides a mechanism for how

lipid regulatory enzymes controlling species composition may play

key roles in individualized biological functions.

Table 2. Test of quasi-independence on PC molecular species distributions.

Sample Name Sample Size sn1 FA sn2 FA p-value % of Total Species

heart day 1 5949 16:0, 18:0 18:2, 20:3, 20:4, 22:5, 22:6 0.0637 31.91%

heart day 7 11148 16:0, 18:0 18:0, 18:2, 20:4, 22:6 0.1090 38.10%

heart day 14 6220 16:0, 18:0 18:0, 18:2, 20:4, 22:6 0.0724 39.80%

heart day 17 9333 16:0, 18:0 18:2, 22:6 0.3228 32.32%

heart day 21 3900 16:0, 18:0 18:2, 20:4, 22:6 0.1013 46.89%

heart day 28 12170 16:0, 18:0 20:4, 22:6 0.0835 42.57%

heart day 35 49212 16:0, 18:0 20:4, 22:6 0.0799 39.57%

heart 4 mon 24242 16:0, 18:0 20:4, 22:6 0.4948 65.58%

liver 4 mon 5955 16:0, 18:0, 18:1 20:3, 20:4, 20:5, 22:6 0.1832 42.92%

lung 4 mon 32310 16:0, 18:0 18:1, 18:2 0.2506 28.85%

brain 4 mon 4567 16:0, 18:0 18:1, 18:2, 20:3, 22:4 0.7338 28.64%

For each sample, we identified subsets of sn1 and sn2 fatty acids (FA) for which the subsets passed the independence test (p§0.05). The % of Total Species indicates
the total fraction of PC made up by species in the independent set for the tissue type.
doi:10.1371/journal.pone.0037293.t002

Table 3. Test of quasi-independence on PE molecular species distributions.

Sample Name Sample Size sn1 FA sn2 FA p-value % of Total Species

heart day 1 2178 18:0, 18:1 18:1, 18:2, 20:4, 22:3, 22:4, 22:6 0.1860 43.37%

heart day 7 6461 18:0, 18:1 18:1, 20:0, 20:4, 22:4, 22:6 0.3197 43.23%

heart day 14 4640 18:0, 18:1 18:1, 18:2, 20:0, 20:4, 22:3 0.4231 24.91%

heart day 17 6452 18:0, 18:1 18:2, 20:0, 20:4, 22:4, 22:6 0.0652 46.18%

heart day 21 3471 18:0, 18:1 18:1, 18:2, 20:0, 20:1, 20:4, 22:4, 22:6 0.3723 50.73%

heart day 28 7010 18:0, 18:1 18:1, 22:3, 22:5 0.7417 12.74%

heart day 35 9878 18:0, 18:1 18:2, 20:0, 20:1, 20:4, 22:4, 22:6 0.0517 52.39%

heart 4 mon 7204 16:0, 18:0 20:4, 22:4, 22:5 0.1326 14.27%

liver 4 mon 28197 16:0, 16:1 18:2, 20:4 0.3516 12.08%

lung 4 mon 26989 16:0, 18:1 18:1, 18:2, 20:4, 22:4, 22:6 0.0545 45.34%

brain 4 mon 26242 18:0, 18:1 20:4, 22:5 0.4927 26.14%

For each sample, we identified subsets of sn1 and sn2 fatty acids (FA) for which the subsets passed the independence test (p§0.05). The % of Total Species indicates
the total fraction of PE made up by species in the independent set for the tissue type.
doi:10.1371/journal.pone.0037293.t003
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The enzymes responsible for these cooperative effects remain an

important area for further study. In mammalian cells, it is known

that PC is synthesized predominantly via the CDP-choline

pathway, and the PE N-methyltransferase (PEMT) pathway

accounts for 30% of synthesis in liver and a smaller fraction in

other tissues [26,27]. In liver, PC species with mono- or di-

unsaturated sn2 acyl groups such as 16:0-18:1/16:0-18:2 are

preferentially created in the CDP-choline pathway [26]. Similarly

in heart, PC species with mono-unsaturated acyl groups at their

sn2 position are preferentially synthesized, regardless of the chain

type at the sn1 position (e.g., 18:0-18:1/18:1-18:1/16:0-18:1) [28].

Meanwhile, the PEMT pathway shows no substrate specificity for

 

 

Figure 6. Deviation from independence, as a function of tissue type. The overall deviation of the joint distribution from the expected
independent distribution was scored using JSD for PC (A) and PE (B). The lowest JSD was observed in lung PE (0:0268), while the highest was
observed in liver PE (0:1851). During heart development from day 7 to day 35, a trend of decreasing JSD was observed in PC (R2

~0:9562,
b~{0:0028), while PE displayed stable JSD during the time period, (R2

~0:1966, b~{9|10{5).
doi:10.1371/journal.pone.0037293.g006

Figure 7. Comparing complexity of sn1 and sn2 acyl chain remodeling. For each of PC sn1, PE sn1, PC sn2, PE sn2, the variation of their
marginal distributions across conditions was quantified using a multi-distribution JSD. The sample conditions in (A) are heart development time
points: day 1, 7, 14, 17, 21, 28, 35. The sample conditions in (B) are four different anatomies: mature heart, brain, lung, and liver. We found that the sn2
position varies more than sn1, suggesting sn2 positions are more subject to regulation than sn1. This conclusion is consistent for each of PC and PE
for both temporal variation and anatomical variation.
doi:10.1371/journal.pone.0037293.g007
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PE, phosphatidyl-N-monomethylethanolamine, or phosphatidyl-

N,N-dimethylethanolamine [29], although modest specificity for

16:0-22:6/18:0-22:6 has been reported [26]. In our data, we did

not observe a preferential enrichment of 16:0-22:6/18:0-22:6 in

liver PC or a depletion in liver PE. This suggests that in our liver

samples the PC acyl chain remodeling processes have overwritten

the distributions created during PEMT synthesis. The biosynthesis

of PE involves the CDP-ethanolamine (Kennedy) pathway and the

decarboxylation of phosphatidylserine (PS) [30,31]. These two

alternative routes contribute differently to overall PE synthesis in

different tissues. For example, in liver and heart, the CDP-

ethanolamine pathway was reported to produce the majority of

PE, whereas in many other types of cells PS decarboxylase makes

w80% of PE [32,33]. It has also been shown that these two

pathways generate different PE molecular species [34]. The CDP-

ethanolamine pathway preferentially synthesizes PE species with

mono- or di-unsaturated fatty acids at sn2 position, (e.g., 16:0-

18:2/18:1-18:2). The PS decarboxylation pathway preferentially

generates PE species with polyunsaturated fatty acids at sn2

position such as 18:0-20:4 [34]. We did observe slight enrichment

of both PE 18:1-18:2 and 18:0-20:4 in liver, implying modest

dependencies between the fatty acids in sn1 and sn2 positions in

PE synthesis.

After de novo synthesis, PC and PE acyl chain remodeling

involves transacylation or deacylation by PLA2 or PLA1, followed

by reacylation mediated by various acyltransferases. Although acyl

chain remodeling behaviors have been investigated primarily for

only one sn position at a time, cooperative effects have not been

extensively observed [22,35,36]. This fact supports a quasi-

independence model, i.e. sn1 and sn2 positions are independent

for canonical high abundance species, with cooperative effects

important primarily for low abundance species. A more subtle

possibility is that there may be cooperative effects for high

abundance species, but that all high abundance species are subject

to the same effects. A study by Kazachkov et al supports this idea,

as they observed that the activity of the sn2 acyl transferase

LPCAT3 was influenced by the chain at the sn1 position, but all

saturated sn1 chains (which are more abundant) yielded higher

activity than unsaturated sn1 chains [37]. What controls the

abundance of noncanonical species in membranes is an important

question for further study. In addition to acyl transfer and

transacylation, direct chemical modifications and transport may

also play a role [38].

Our method can set the stage for elucidating the processes

controlling lipid species composition using large-scale lipidomic

measurements. Of particular interest are pulse-chase timecourse

experiments that provide measurements of metabolism of heavy-

isotope labeled glycerophospholipid species [9,39]. These ap-

proaches provide highly detailed information on remodeling of

exogenously added glycerophospholipids. While prior studies have

shown qualitatively that remodeling rates at the sn1 and sn2

positions depend on the saturation states of the chains at the two

positions [39], accurate determination of the network of acyl chain

flux and inference of the acyl chain remodeling processes from

these comprehensive and complex datasets are challenging tasks.

The results we have presented here indicate that sn1/sn2

independence can be assumed for most high abundance chains,

with deviations only for minor species. This finding suggests that

the complexity of the dynamical system that governs phospholipid

remodeling can be greatly simplified from one in which there are

frequent sn1-sn2 dependencies. This will significantly reduce the

number of parameters to be inferred. Since the rate parameters of

these reactions are unknown a priori, reduction of the complexity

is an important step in computational inference of the remodeling

processes (manuscript in preparation).

Our method also suggests it will be feasible to analyze the

essential acyl chain remodeling behaviors in other acyl-containing

phospholipids, such as phosphatidylglycerol (PG), phosphatidyl-

serine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), and

acyl-containing glycerolipids such as triacylglycerol (TAG), as well.

Integrating these species together into a lipid synthesis and acyl

chain remodeling network will be an important challenge. There is

a growing requirement to develop further bioinformatics tools for

the analysis of high throughput mass spectrometry lipidomic data

[40]. Statistical models for such data will be vital for elucidating

disease mechanisms that act via the lipidome.
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