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Abstract Agent-based models are a natural choice for modeling complex social systems. In such models
simple stochastic interaction rules for a large population of individuals on the microscopic scale can lead to
emergent dynamics on the macroscopic scale, for instance a sudden shift of majority opinion or behavior.
Here we are introducing a methodology for studying noise-induced tipping between relevant subsets of
the agent state space representing characteristic configurations. Due to a large number of interacting
individuals, agent-based models are high-dimensional, though usually a lower-dimensional structure of the
emerging collective behaviour exists. We therefore apply Diffusion Maps, a non-linear dimension reduction
technique, to reveal the intrinsic low-dimensional structure. We characterize the tipping behaviour by
means of Transition Path Theory, which helps gaining a statistical understanding of the tipping paths
such as their distribution, flux and rate. By systematically studying two agent-based models that exhibit
a multitude of tipping pathways and cascading effects, we illustrate the practicability of our approach.

1 Introduction

Understanding tipping pathways and tipping cascades
in social systems are very important for our inter-
connected world. Tipping is defined as a qualitative
change from one rather stable state to another one
upon a small quantitative change, e.g., of a parame-
ter, or due to noise. One can distinguish between the
following general types of tipping [2]: in bifurcation-
induced tipping, the state of a parameter-dependent
system changes qualitatively due to an external control
parameter crossing a threshold value. The parameter
is assumed to vary infinitesimally slowly such that one
studies transitions of stationary dynamics. Often this
threshold value is called the tipping point or the point of
no return. In noise-induced tipping, noisy fluctuations
result in the system escaping from the neighborhood of
a metastable state. Last, rate-induced tipping happens
when the control parameter changes faster than a cer-
tain critical rate of change such that the system fails to
track the continuously changing attractor.

Social systems are complex systems and as such char-
acterized by rich, nonlinear and usually local (i.e., only
between neighbours) interactions among a large num-
ber of individual constituents [10,11]. The individual
entities are ignorant of the behaviour of the system as a
whole and only respond to local information. Social sys-
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tems are usually open, i.e., continuously in interaction
with their environment, and, therefore, often not in a
simple equilibrium. Moreover, the history of the system
affects the present. Hierarchies and multi-scale struc-
tures are present in complex social systems [62]. When
modeling social systems, agent-based models (ABMs)
are a natural choice. One defines the characteristics of
a large sample of discrete entities, the so-called agents
(e.g., people, animals, cars, companies, . . . ), and a set
of possible actions and local interactions rules for the
agents. Often these are stochastic, thus reflecting the
unpredictability and individuality of the agents. From
the interplay of local interactions, global patterns can
emerge [39].

The complexity of social systems is inherited by their
tipping dynamics. In [75], it is argued that tipping in
social systems, such as an epidemic, a social contagion
process of ideas or norms [20,48], a crash in a finan-
cial system, or the diffusion of a new technology [59],
faces several difficulties and can be much more complex
than tipping in climate or ecological systems. “Tipping
in realistic social systems can usually not be linked to a
single control parameter, instead multiple interrelated
factors act as a forcing of the transitions (e.g. poli-
cies, communication, taxation, . . . ). Moreover, there is
a larger number of mechanisms that cause tipping and
various pathways of change towards a greater number
of potentially stable post-tipping states.“ [75] Recently,
there has been an increasing interest in studying tip-
ping cascades, i.e., cascading effects in interacting sys-
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tems where the tipping of one sub-system influences the
tipping likelihood of another one. Interactions between
tipping elements have been studied in the climate sys-
tem [7,33], in ecological systems [55], and also in social
systems [59].

The aim of this paper is two-fold: (i) We pro-
pose a methodology how noise-induced tipping in
high-dimensional agent-based models can be analysed
by combining several existing methods such as non-
linear dimensionality reduction and Transition Path
Theory [43,73]. The method can be applied with-
out any restrictive assumptions about the models
and only relies on given simulation data. Its effi-
cacy depends implicitly on (possibly unknown) low-
dimensional structures in the dynamics. (ii) We demon-
strate the applicability of the approach on two typical
models of social network-based opinion and behavioural
change. The first model describes the threshold-based
activation of people for some collective action and is
adapted from [21,72] to exhibit noise-induced tipping.
We introduce a second model of opinions and possibly
differing actual behaviours that displays cyclic tipping.

The idea of our approach is to first reduce the dimen-
sion of the model by means of a nonlinear dimension
reduction technique, Diffusion Maps, thereby relying
on the existence of some lower-dimensional structure
on which the ABM dynamics essentially takes place.
This assumption can be made for most ABMs, since
the emergence of macro-scale patterns and collective
behaviour is a key property of ABMs. Central to this is
that we do not need to know which macroscopic features
the system eventually evolves along, but we can learn
the associated coordinates from sufficiently rich dynam-
ical data [30]. Diffusion Maps have already been applied
for finding low-dimensional coordinates, so-called col-
lective variables, reaction coordinates, or order parame-
ters, of ABMs [37,40].

Since tipping in stochastic ABMs is characterized by
the existence of many metastable states and a multitude
of transition pathways between them, we will apply
Transition Path Theory (TPT) to the reduced model,
and thereby gain a complete statistical understanding
of the ensemble of transition paths between two cho-
sen subsets A and B of the state space [43,70,73]. For
studying noise-induced tipping between two metastabil-
ities, one chooses A and B as metastable sets, i.e., two
sets in which the system is trapped for a comparatively
long time, but can eventually also escape from them.
But TPT does not restrict A and B to be metastable,
one can also study transitions between other relevant
subsets of the state space, for instance given by via-
bility constraints. TPT builds on the information that
is contained in the forward and backward committor
functions, i.e., in the hitting probability of B forward
in time and of A backward in time. The advantage of
studying tipping by TPT is that it allows to unravel the
full range of transition pathways between sets A and B
by computing the flux of transition paths, as well as
other statistical properties of the transition paths, e.g.,
their distribution, rate and mean duration.

Recently, the forward committor has been singled
out as the central object for quantifying the risk of
future tipping [18,38]. Several papers study how one
can solve for high-dimensional committors using neural
networks [31,34,35,38]. Very much related to tipping is
the concept of resilience, which in its simplest form is
the system’s ability of returning to the original state or
region after a perturbation. Using similar objects as in
TPT, namely escape probabilities and committors, this
form of resilience of a system when in some or other
attractor can be studied by analysing their stochastic
basin of attraction [36,57,58].

TPT was originally developed for studying rare
transitions in statistical mechanics, e.g., protein fold-
ing [46], and chemical reactions, but was later also
applied for analysing transition events in the cli-
mate system [17] and marine debris dynamics [44].
Bifurcation diagrams of high-dimensional ABMs have
already been studied [60,66], as well as the various
bifurcation-induced transition pathways in a coupled
social-ecological model [41], but to our knowledge noise-
induced tipping in agent-based models has not been
considered yet.

We will illustrate our approach on two paradigmatic
models that exhibit tipping. The first model is based on
Granovetter’s threshold model [21] and describes the
social activation of people for some collective action,
such as rioting. Therein, when at least a certain fraction
of an agents’ neighbourhood is active in the collective
action, the agent has a high chance of also becoming
active. The second model considers agents that influ-
ence each other regarding their opinions and actual
behavioural choices with respect to certain behavioural
options, such as a more or less climate-friendly lifestyle
or following certain epidemic countermeasures more or
less stringently. The crucial feature of this model is
that opinions and actual behaviours do not always have
to agree. In particular, the model assumes that the
more agents in the population hold the opinion that
“one should do A” (e.g., wear a face mask), the more
likely an agent can be convinced by her social peers
to switch from choosing behaviour non-A to behaviour
A for themselves. At the same time, the more agents
in the population actually exhibit behaviour A, the
more likely an agent can be convinced by her social
peers to switch from the opinion “one should do A”
to “one should not do A”, since it may seem that the
issue addressed by behaviour A is already sufficiently
dealt with. This negative feedback loop then induces
oscillatory dynamics. We will study both models on
highly modular interaction networks, where the differ-
ent blocks of agents (i.e., densely connected groups)
influence each other. When the majority of agents in
one block change their state, i.e., the block “tips”, con-
nected blocks are more likely to also tip. Thus tip-
ping happens as a tipping cascade among connected
blocks.

Our overall approach has the perspective of giving
a quantitative analysis of noise-induced tipping with-
out making any prior structural assumptions about the
system. Instead of studying tipping points in bistable
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systems or the stability of the attractors, Transition
Path Theory offers a new perspective onto tipping
by quantitatively characterising the dominant path-
ways along which tipping happens. This allows for
a more detailed understanding of the tipping pro-
cess especially for complicated systems, as well as
for finding new ways of bypassing and preventing
tipping. The introduced methodology could in the
future be applied to more complex agent-based mod-
els.

In the following, we will first in Sect. 2 introduce two
agent-based models that exhibit noise-induced tipping.
In Sect. 3 we will show how we can find a reduced rep-
resentation in terms of collective variables by using the
Diffusion Maps algorithm. This allows us to finally in
Sect. 4 analyse the tipping pathways using Transition
Path Theory.

2 Two agent-based models exhibiting

tipping

We start by introducing two agent-based models (ABMs)
that exhibit tipping. The two presented models are
part of the large class of models of opinion and
behavioural change due to social dynamics [63]. The
models in this class range from having discrete (e.g.,
the voter model [24]) to continuous states (e.g., the
Deffuant-Weisbuch model [15]), as well as from having
pair-wise interactions (also called simple contagion) to
higher-order interactions (also named complex conta-
gion) [5,9]. Often in these models one is interested in
understanding the emergence of a stable macro-state of
either opinion consensus or synchronous behaviour on
the one hand, or opinion polarization or asynchronous
behaviour on the other hand. In contrast to this, we are
interested in the transitions between states of locally
converged agents and have thus chosen models where
the stochasticity enables tipping.

To be more specific, in our models agents are making
binary behavioural decisions and change their binary
opinions in reaction to the social influence of their
network neighbours, potentially mediated by an addi-
tional macroscopic interaction (thus interactions are
complex). Apart from their fixed position in the net-
work, agents are identical. We will assume interaction
networks consisting of several groups of nodes which
are densely linked among themselves but with only few
connections to the other groups. The densely linked
agents in each block are nearly identical because they
are connected to very similar sets of other agents, and
thus behave rather similarly due to the local interac-
tion rules. Thus both ABMs have many metastable
states, where agents behave collectively in each of the
blocks.

Many ABMs can be written as Markov chains or
Markov jump processes, see [27] for some examples. The
Markovianity assumption means that the next state of
the system only depends on the current state and not

the history.1 The two models that we consider can be
viewed as Markov chains (Xt)t∈Z. They have a finite,
but large state space and are irreducible, thus ergodic,
as well as aperiodic. Due to these properties, both
ABMs exhibit tipping, i.e., transitions between several
metastable states. Later, we are interested in studying
noise-induced tipping and tipping cascades between two
diametrically opposed metastable regions of the dynam-
ics. For the tipping analysis, we consider the models in
stationarity.

For a comprehensive introduction to Markov chains
we refer the reader to the book of Norris [47]. Note
that we follow the convention to use uppercase letters
X for random variables and lowercase letters x for their
possible realizations.

2.1 A threshold model of social contagion or

activation

We will introduce and discuss a very simple ABM
of social contagion to describe phenomena such as
the spreading of cultural fads, hypes or consumption
behaviours, or the activation for some collective action
such as rioting.

Let us consider a population of agents where each
agent can be in one of two discrete states: being inac-
tive or active in the collective action. The interaction
topology between agents is given by a fixed network. A
threshold-like influence is exerted by the social neigh-
bours when an agent makes a binary decision: if more
than a certain fraction of neighbours are in the oppo-
site state to that of the agent, the agent will switch its
state with a high probability. Thus each agent aligns its
state with the state of the majority of its social neigh-
bours. In addition, there is a small probability for the
agent to switch its state without social influence, which
can either be interpreted as a form of exploration or
as representing otherwise unmodelled additional causes
for switching one’s state.

This ABM is ultimately based on Granovetter’s
threshold model, but Granovetter considered a fully
mixed population [21]. More recently, several network-
based versions of his original idea have been pro-
posed [72,74], also containing different classes of agents
such as stubborn agents that have a fixed state. Often,
threshold distributions for the population are stud-
ied as well as deterministic interactions resulting in
only one decision-making cascade through the popu-
lation [21,72,74]. We instead consider the threshold to
be constant for all agents and assign probabilities to
the activity changes, thus our system can escape from
the metastable regions.

Let us define our threshold model in more detail:

Interaction rules We consider a system of N interacting
agents with social connections among them given by the

1 This does not necessarily mean that agents have no mem-
ory or cannot be influenced by their past. By enlarging the
state space formally to include a memory of past states,
Markovian dynamics can be retained.
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edges of a static network G of N vertices. The state of
each agent i at the discrete time point t is denoted by
Xi

t ∈ {0, 1} corresponding to being inactive or active
in the collective action, respectively.

At each time t = 0, 1, . . . , each agent i in state Xi
t = 0

(resp. 1) will change their state to Xi
t+1 = 1 (resp. 0)

• with probability p, if more than or exactly a fraction
θ of neighbouring agents at time t are in the opposite
state 1 (resp. 0),

• or with the exploration probability e, if less than a
fraction θ of neighbours is in the opposite state,

where we assume 1 > p ≫ e > 0 such that social influ-
ence is stronger than exploration.

We can also view the system as a Markov chain
(Xt)t∈Z on the state space X = {0, 1}N , where we
denote the population state at time t by Xt = (Xi

t)
N
i=1.

Since agents in every time step change their state syn-
chronously and independently of each other, the tran-
sition matrix on X decomposes into the product of the
“transition probabilities” for each individual agent

P (x,y) := P(Xt+1 = y | Xt = x)

=
N∏

i=1

P(Xi
t+1 = yi | Xt = x). (1)

The exploration probability ensures that agents are
never stuck in a state. In every time step an agent has a
positive probability to remain in the same state as well
as to change the state, i.e., P(Xi

t+1 = 0 | Xt = x) > 0

and P(Xi
t+1 = 1 | Xt = x) > 0 respectively. Thus by

(1) there is a positive probability to go from any popu-
lation state to any other within one-time step, implying
that the Markov chain is irreducible and also aperiodic.

Interaction network We assume that the interaction
network G has two scales: it consists of blocks, some-
times also referred to as communities or clusters, in
which the nodes are densely connected, whereas nodes
of different blocks are sparsely connected. One popu-
lar approach to randomly generate such a network is
by the stochastic block model. Each node i is uniquely
assigned to a block Bk, k = 1, . . . , K. When node i
belongs to Bk, we also write i ∈ Bk. After defining a
symmetric matrix W = (Wkl) of size K × K that con-
tains the edge wiring probabilities between a node of
block Bk and one of block Bl, we go through all pairs of
nodes independently and with probability Wkl place an
edge between them when they belong to blocks Bk and
Bl. The diagonal entries of W determine the edge wiring
probabilities for agents from the same block. In the case
of only one block, this is equivalent to the Erdős–Rényi
random graph model.

Resulting dynamics If we consider a population where
every agent is interacting with every other agent, i.e.,

Fig. 1 Realization of the threshold model with 50 agents
that are interacting on a complete network, i.e., each agent is
influenced by the whole population. The dynamics switches
between two metastable macrostates. The model parameters
are e = 0.3, p = 0.7, θ = 0.5

they are interacting on a complete network2, then in
the interesting parameter regime the system switches
between two metastable regions: (i) where a majority
of agents is inactive and (ii) where most agents are
active, see Fig. 1 for a realization with 50 agents. If we
now study a population consisting of several (complete
or mostly complete) blocks, with some connections
between the blocks, then this structure is multiplied.
Each block can switch between two such metastable
regions, but depending on the number of connections
between the blocks, all blocks are either synchronized,
only weakly influencing each other, or behaving mostly
independently. We set parameters to the case where tip-
ping occurs and the blocks are weakly influencing each
other to avoid a trivial behaviour and to focus on the
most interesting dynamical regime.

Example 1 The first example we will consider through-
out the paper is a small population of just 10 agents
that are evenly split into two blocks. We set the change
probability as p = 0.3 and the exploration probability
as e = 0.03. As long as p ≫ e, the actual scale of
the probabilities determines mostly how fast agents are
changing their behaviour. The threshold was set to the
most focal value of θ = 0.5, meaning that agents are
influenced by the majority behaviour in their neigh-
bourhood. With a size of |X| = 210, the state space is
already nontrivial, but still small enough to be able to
do direct computations of the state space. In Fig. 4a
we show a realization on the small agent network that
is shown in Fig. 4b. The realization indicates that the
system remains in four metastable regions most of the
time: where (i–ii) a majority in block 1 (resp. 2) but
not in the other block is active, (iii) a majority in both
blocks is inactive, and (iv) a majority in both blocks
is active. It seems that those states (i–ii) where the
two blocks show a differing majority activity are less
metastable than those states (iii–iv) where agents in
both blocks are conform. Moreover, the realization sug-
gests that the tipping of one block induces the other
block to also tip. By “tipping” we understand a tran-
sition from one metastable region to another, i.e., one

2 We call a network complete if every node of the network
is connected to every other node of the network.
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block of agents drastically changes its state from the
majority of agents active to majority inactive (or vice
versa). Sometimes we might refer to the tipping of
the whole population, i.e., when all blocks drastically
change between the majority of agents being active and
the majority being inactive. This happens via the indi-
vidual blocks’ successive tipping, i.e., via a tipping cas-
cade.

Example 2 As a second example, we consider a large
population structured into four blocks of different sizes.
Block 1 contains 20 agents, all other blocks consist of
25 agents, see Fig. 9d for the network. The four blocks
are circularly connected, and the network is generated
by the stochastic block model where each agent has a
wiring probability of 0.9 to agents in the same block and
of 0.04 to agents from circularly neighboured blocks. We
set e = 0.23, p = 0.66, θ = 0.5. In this example, there
are potentially 16 metastable regions, since agents in
each block can be mostly active or not and there are
four blocks. One can again assume that the tipping of
one block induces neighbouring blocks to also tip, see
Fig. 5a for a realization.

2.2 An oscillating, bivariate complex contagion

model

In this second ABM, we are modeling the changes
of binary opinions and separately of binary actual
behavioural choices with respect to a certain behavioural
option, such as a climate-friendly lifestyle or a certain
preventive measure against an epidemic. For illustra-
tive purposes, we use the context of climate-friendly
lifestyles and the metaphor of “green” behaviour. We
hence say that each agent has a non-green or green
opinion, and also displays a non-green or green actual
behaviour.

The model again considers a complex contagion pro-
cess [9], where the social reinforcement from multiple
agents at the same time is needed for an agent to change
its state. But this time an agent’s state has two compo-
nents: opinion and actual behavioural, and the model
also does not have a sharp threshold-like rule. Instead,
the state change in opinion resp. actual behaviour of
an agent is triggered upon interacting with two neigh-
bours that both hold the opposite opinion resp. both
display the opposite behaviour. Additionally, the actual
probabilities with which these switches then occur also
depend on the macroscopic state of the agent’s block.
In the model a switch in an agent’s actual behaviour
is made more likely by the respective opinion in the
agent’s block (e.g., the more agents have a green opin-
ion, the more agents switch to a green behaviour),
whereas a change of opinion is amplified if the block
displays the opposite behaviour (e.g., the more agents
display a green behaviour, the more agents will switch
to a non-green opinion), the resulting dynamics leads
to oscillations, i.e., is cyclic.

This model shows that opinions and actual behaviours
do not always have to be aligned. There might be a time
lag between holding a certain opinion and behaving

accordingly. Additionally, the incentive to hold a cer-
tain opinion drops when many agents in the block are
behaving in that way. It seems that there is no longer
the need to hold the respective opinion since enough
action is taken by other agents.

In more detail the model is formulated as follows:

Setting We consider a system of N agents, each agent
i with a binary opinion Oi

t ∈ {0, 1} and a binary
behaviour Bi

t ∈ {0, 1} at time t. For illustration we
consider 0 as non-green and 1 as green. In each time
step, each agent is interacting with two randomly drawn
neighbours in a static social network G. We again
assume an interaction network with many communi-
ties, e.g, generated by the stochastic block model, and
that each agent has at least two neighbours. Further,
each agent i is influenced by the set of agents within the
same block. For an agent i ∈ Bl, we define the following
block fractions:

Ōi
t :=

|{j ∈ Bl : Oj
t = 1}|

|Bl|
,

i.e., the fraction of agents with a green opinion in the
same block as i, and

B̄i
t :=

|{j ∈ Bl : Bj
t = 1}|

|Bl|
,

the fraction of agents with a green behaviour in the
same block. Note that these quantities, viewed as func-
tions of the agents’ index i, are constant on each block.

Below, the parameters b, c ∈ [0, 1] determine how
strongly a green resp. non-green change in behaviour
is influenced by the opinions in the block. Likewise, the
parameters f, g ∈ [0, 1] determine how strongly a green
resp. non-green change in opinion is influenced by the
actual behaviour in the block. The general rate param-
eter τ ∈ (0, 1) is for scaling the amount of change per
time step.

Interaction rules At each discrete time point t, each
agent i independently chooses two distinct neighbours
j, k uniformly at random.

A behaviour change occurs:

• if Bj
t = Bk

t = 1, Bi
t = 0: agent i changes its

behaviour to Bi
t+1 = 1 with probability τ(b Ōi

t +
(1 − b)),

• if Bj
t = Bk

t = 0, Bi
t = 1: agent i changes its

behaviour to Bi
t+1 = 0 with probability τ(c (1 −

Ōi
t) + (1 − c)),

• or else, with a small exploration probability e, agent
i changes its behaviour.

Thus an agent has a higher chance of changing its
behaviour to green when interacting with two neigh-
bours of green behaviour and the more likely the more
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Fig. 2 Realization of the complex contagion dynamics
for one complete network of 50 interacting agents. a The
dynamics is strongly cyclic in the plane spanned by the
two coordinates “number of agents with green opinion” and

“number of agents with green behaviour”. b Therefore, we
can also visualize the dynamics by plotting the clockwise-
angle in the coordinate plane, i.e., the phase θt. The model
parameters are b, c, f, g = 0.7, e = 0.02, τ = 0.99

agents in his block have a green opinion.3 An agent is
more likely to change its behaviour to non-green, when
interacting with two neighbours of non-green behaviour
and the more agents in his block show a non-green
behaviour.

Conversely an opinion change happens:

• if Oj
t = Ok

t = 1, Oi
t = 0: with probability τ(f (1 −

B̄i
t)+(1−f)), agent i changes its opinion to Oi

t+1 =
1,

• if Oj
t = Ok

t = 0, Oi
t = 1: with probability τ(g B̄i

t +
(1 − g)), agent i changes its state Oi

t+1 = 0,
• or else: with a small probability e, agent i changes

its opinion.

This is now the other way around when an agent with a
certain opinion (e.g., green) meets two neighbours of a
different opinion (e.g., non-green) the change probabil-
ity is higher the more agents in his block do not show
this behaviour (i.e., the more show a green behaviour).

The exploration probability e should be small com-
pared to τ . Since an agent first has to interact with two
agents of a different state at the same time to have a
higher chance for switching its state, it is hard for the
dynamics to escape from a situation where agents in a
block have converged. As a consequence, the dynamics
are metastable. The exploration probability only offers
a small chance for an agent to change its state.

The dynamics of the whole population can again be
viewed as a Markov chain (Xt)t∈Z on the state space
X = {0, 1}2×N , where we denote the population state at
time t by Xt = (Bt,Ot) = (Bi

t, O
i
t)

N
i=1. Requiring 0 <

e, τ < 1 ensures that the Markov chain is irreducible
and aperiodic.

3 Note that if we disregard the rate τ , the first behaviour-
change probability is a convex combination with factor b

between the probabilities Ōi
t (“fraction in block with green

opinion”) and 1 (“change with certainty to the behaviour of
the two chosen neighbors”).

Resulting dynamics If we consider a fully-connected
population, in other words a complete network, and
choose a large block influence strength b, c, f, g = 0.7,
then the dynamics cycles in one direction through the
four possible metastable regions where the large major-
ity of agents share the same opinion and display the
same behaviour (either the one aligned with the shared
opinion or the opposite one), see Fig. 2a. Starting from
a majority in the population with a non-green opinion
and behaviour, first the majority changes their opinion
to green, then after some time switches their behaviour
also to green, followed by a change to a non-green opin-
ion, and then also a non-green behaviour. Since the
angle of rotation in the coordinate plane (also called
phase) contains all information about the dynamics, we
can essentially reduce the plot to 2 (b), where we show
how the phase θt ∈ [0, 2π) varies in time. Whenever the
phase remains approximately constant for some time,
the system is in a metastable state.

For this model, we are at the end interested in the
possible transitions from a majority of agents with non-
green opinion and behaviour to a majority of agents
with green opinion and behaviour, which is a succession
of several transitions between metastable states, i.e., a
tipping cascade.

Example 3 As an example throughout the paper, we
consider a slightly larger population of 40 agents split
into two blocks, see Fig. 6b for the network. In Fig. 6a
we show for a short realization how the phase θj

t varies
in time for each block Bj . The block-wise phase is the
angle of rotation at time t of the state in the coordi-
nate plane of “number of agents with green opinion in
block Bj” vs “number of agents with green behaviour in
block Bj” as measured from the center point (10, 10).
We see that most of the time the phases of the two
blocks are synchronized or mimicking each other, but
they can also be completely out of synchrony. As model
parameters we set b = c = f = g = 0.7, e = 0.02 and
τ = 0.99. The internal wiring probability in each block
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Fig. 3 Distribution over time of the order parameter Rt,
Eq. (2), for the complex contagion model with different edge
wiring probabilities W12 between the two blocks

is W11 = W22 = 1, thus both blocks are complete. An
edge wiring probability of W12 = W21 = 0.055 between
the two blocks ensures that the two blocks are mostly
synchronized but still behave separately. The two blocks
can also be viewed as two coupled oscillators where the
coupling strength between oscillators is given by the
edge wiring probability between the blocks.

In Fig. 3 we study the distribution of the order
parameter

Rt =
∣
∣
∣

2∑

j=1

exp(i θj
t )

∣
∣
∣, (2)

in time, which is a basic measure of synchronization
between coupled oscillators [1,49]. Here, i denotes the
imaginary unit. In our case we compare the level of
synchronization for different edge probabilities W12

between the two blocks. By placing every oscillator
according to its phase θj

t on the unit circle, the order
parameter measures the distance of the average of the
positions on the unit circle from the origin. Thus when
all oscillators are evenly spread out on the unit circle,
Rt is close to 0, while when all oscillators are on the
same spot, Rt is 1. The results in Fig. 3 confirm that
for our chosen edge wiring probability the two blocks
are synchronized most of the time.

3 Collective variables and reduced

dynamics

One difficulty when analysing agent-based models lies
in their high dimensionality. The size of the state space
grows exponentially with the number of agents, and
usually one is interested in studying a rather large pop-
ulation of agents. If the system state resides most of the
time in the vicinity of some low-dimensional manifold,
then we can search for collective variables, also called
reaction coordinates or order parameters,

ξ : X → R
d

that allow an approximate description of the actual sys-
tem’s dynamics in a “reduced” state space with much

lower dimension d than that of the original agent state
space X. The reduced model approximately reproduces
the emergent collective behaviour of the full ABM. The
reduction allows us to better understand the structure
of the dynamics and eases numerical computations.

Fortunately, the dynamics of many ABMs have a low
intrinsic dimension. On the one hand, groups of people
in many social situations are behaving rather collec-
tively and are influenced by their peers, e.g., through
copying and imitating their peers or the opposite, being
repelled from their neighbours’ behaviour. On the other
hand, real-world social networks are often highly mod-
ular [19,67], i.e., contain many communities, as well
as being scale-free, i.e., having a few nodes with very
high degree, which additionally encourages coherent
behaviour within sub-populations.

When agents are rather homogeneous or identical,
one can usually guess suitable collective variables based
on an intuition about the system’s dominant feedbacks.
Moreover, if the collective variables are a “simple” func-
tion of the agent state space, e.g., the number of agents
that are in each of the different possible states, one
can analytically derive mean-field approximations that
take the form of coupled ODEs or SDEs [45,50] and
whose continuous-time formulation simplifies an analyt-
ical treatment even further. In our two example ABMs,
we have identical agents which are however heteroge-
neous due to their different positions in the network.
This makes it more complicated to guess collective vari-
ables and also deteriorates the approximation quality
of rather straightforward mean-field approximations. In
many ABMs there are further forms of heterogeneity,
such as varying interaction parameters.

We therefore seek an automated way of finding col-
lective variables ξ, which should allow us to represent
the dominant model behaviour, as well as all the dom-
inant and important transition pathways between the
metastable regions in state space. We have selected here
TPT as a very promising approach for studying transi-
tion dynamics. To be able to apply TPT to the result-
ing reduced model, we must also make sure that the
projections of these metastable regions onto the low-
dimensional manifold spanned by the sought collective
variables are well separated from each other.

A similar task is performed by nonlinear manifold
learning approaches. Given a cloud of sampled data
points, D, they try to parameterize the nonlinear man-
ifold from which the data has been sampled. In our
case, we want to parameterize the manifold close to
which a large share of the observed system states,
D = {x1, . . . ,xM}, lies once the system has become sta-
tionary. We will use the dominant coordinates produced
by the Diffusion Maps algorithm [12,32] as collective
variables (introduced in Sect. 3.1). Diffusion Maps have
already been applied for finding collective variables of
ABMs [37,40], and for the data-driven computation
of dynamical quantities [65] such as committor func-
tions. Diffusion Maps benefit from several properties
that are needed for our application and that give them
an advantage over other popular non-linear manifold
learning methods. The algorithm is robust against noise
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(compared to the Isometric Feature Mapping [53,64]
and the locally-linear embedding [54]), is computation-
ally not too expensive, and an out-of-sample extension
exists, which can be employed for the interpolation of
the non-linear coordinates on data points not contained
in D. Compared to the t-distributed stochastic neighbor
embedding [69], the Diffusion Maps method is deter-
ministic and always yields the same embedding.

As the ABM dynamics is described by the Markov
chain’s large microscopic transition matrix, it will be
suitable to also describe the identified collective vari-
ables’ time evolution by a similar but much smaller
macroscopic transition matrix. To find this reduced
transition matrix on the reduced state space ξ[X],
we will discretise the projected space and perform a
Monte-Carlo estimation of the transition matrix, see
Sect. 3.3.

3.1 Diffusion maps

We want to apply Diffusion Maps [12,32] to a set of data
points D = {x1, . . . ,xM} ⊂ X with the goal of finding
a low-dimensional projection ξ : X → R

d of the given
sample. The dimension d should be small compared to
the dimension of the original space X. For this to work
well, we assume that the data points approximately lie
on a d−dimensional manifold M embedded in the high-
dimensional space X.

The general idea of Diffusion Maps is to define a
random walk on the data points D, where the tran-
sition probability between similar or near points is high
and between far points is close to zero. The random
walk traverses the manifold and only follows its intrin-
sic structure, since the distances between near points in
the original space are a good approximation to the local
distances on the manifold. The dominant eigenvectors
of the resulting transition matrix scaled by the corre-
sponding eigenvalues can then be used as a nonlinear
projection.

The transition matrix on the data points D is con-
structed as follows:

1. Choose a kernel kǫ(x,y) = h
(

d(x,y)2

ǫ

)

that describes

the similarity of two data points, for example the
popular Gaussian kernel given by h(z) = exp(−z).
Moreover one has to set the scale parameter ǫ > 0,
e.g., by using the heuristic from [6,32], and a dis-
tance function d(·, ·) that is suitable for the data set,
e.g., the Euclidean or Mahalanobis metric.

2. Letting qǫ(xi) =
∑M

m=1 kǫ(xi,xm), we form the new
anisotropic kernel

k̃ǫ(xi,xj) =
kǫ(xi,xj)

qǫ(xi) qǫ(xj)
,

which has some desirable properties compared to kǫ,
for more details see [12].

3. Applying row-normalization by dǫ(xi) =
∑M

m=1 k̃ǫ

(xi,xm), we arrive at the transition matrix

P ǫ(xi,xj) =
k̃ǫ(xi,xj)

dǫ(xi)
.

The matrix P ǫ can be interpreted as the normalized
Laplacian of a weighted undirected graph whose weights
correspond to the anisotropic kernel k̃ǫ. As such it is
reversible with respect to the stationary distribution

π(xi) = dǫ(xi)∑
j

dǫ(xj)
.

The right eigenpairs (λj , ψj), j = 0, . . . , M − 1 of
P ǫ contain information about the geometric structure
of D at different scales and are real-valued due to P ǫ

being reversible. We order the eigenpairs by decreasing
magnitude of their eigenvalues. Then the leading eigen-
vectors, i.e., with the largest eigenvalues in magnitude,
scaled by their corresponding eigenvalue, are a good
projection of the large-scale structures in the data

ξ(xi) = (ξ1,i, ..., ξd,i) = (λ1 (ψ1)i, ..., λd (ψd)i) ∈ R
d,

where (ψj)i is the ith component of the jth eigenvec-
tor. Since the eigenvector corresponding to the largest
eigenvalue is just the 1-vector and contains no informa-
tion, we exclude it from the projection. As d we usually
choose the number of remaining eigenvalues above the
spectral gap. The Euclidean distances in these coordi-
nates approximately correspond to the local diffusion
distances on the manifold.

The computational cost of computing pair-wise dis-
tances and the eigenvectors of P ǫ becomes very expen-
sive if not impossible for very large data sets. To cir-
cumvent that, one can sub-sample the data set, com-
pute the diffusion matrix and eigenpairs only for the
sub-sample and interpolate the computed eigenvectors
at the remaining data points with the help of the out-
of-sample extension [13]. We refer the reader to [32] for
an explanation of the extension.

3.2 Collective variables of the two ABMs

Next we show the results of using the dominant Dif-
fusion Map coordinates as collective variables for our
two ABMs. We used the Diffusion Maps implemen-
tation from [61] and applied the algorithm to a sam-
ple of 20,000 population states D = {x1, . . . ,x20,000}.
As a kernel we used the Gaussian kernel and com-
puted the distance d(xi,xj) between two data points
via the Hamming distance, which measures the distance
between two binary strings as the number of entries
where they differ and is therefore suitable for binary
population vectors. Further, we estimated an appropri-
ate scale parameter ǫ using the heuristic from [6].

Threshold model Since we set up the model such that
agents in each block are nearly indistinguishable, the
obvious choice for collective variables for this system is
just the number of active agents in each block (or equiv-
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Fig. 4 Threshold model with two blocks of 5 agents each
as in Example 1 : a the realization is shown using a stackplot,
i.e., the number of active agents in B2 is plotted vertically
on top of the number of active agents in B1. Several tipping
events are shown. b Modular agent network of two blocks. c
Projection of population states into the dominant two Diffu-

sion Maps coordinates, the Diffusion Maps scale parameter
turned out to be ǫ = 0.25. To better understand the projec-
tion, the data points are colored according to the number
of active agents in each block and the activity of agents 0, 4
and 6

alently, inactive agents). So let us see how the Diffusion
Maps algorithm projects the data.

Example 1 continued: The projection into the domi-
nant two coordinates can be found in Fig. 4. The sam-
ple of 20,000 population states are embedded into a
square. The coloring of the data points indicates that
the two orthogonal directions encode the number of
active agents in each block. Moreover, note that the first
Diffusion Map coordinate encodes the total number of
active agents in the population and the second refines
this by splitting them into two blocks. The Diffusion
Map coordinates are refining the structure of the man-
ifold with each additional coordinate and are ordered
by the scales they encode. Looking more closely, we can
see that the projected groups of points (correspond-
ing to a certain number of active agents in each block)

consist of some substructures on a smaller scale. These
substructures encode whether agent 6 is active or not,
and how many of agent 0 and 4 are active (see Fig. 4).
Higher-order Diffusion Maps coordinates, in this case
the coordinate ξ4, also decode the information about
the activity of agents 0, 4 and 6 (not shown in the fig-
ure). We will later investigate the importance of agents
0, 4 and 6 with respect to the dynamics.

Judging from the location of the spectral gap of the
Diffusion Maps spectrum, the intrinsic dimension of the
dynamics seems to coincide with the number of blocks,
i.e., d = 2.

Example 2 continued: The projection onto the two
most dominant coordinates out of the four dominant
ones can be found in Fig. 5. Though it is not so easy to
see from just the dominant two coordinates, the data set
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Fig. 5 Threshold model
dynamics with four
incomplete blocks as in
Example 2: a the
realization is shown as a
stackplot. Several small
tipping events (where
agents in just one block
switch their state) as well
as tipping cascades (where
nearly all agents change
their activity) are
apparent. b The diffusion
maps projection into the
first two coordinates is
colored according to the
number of active agents in
each block which suggests
the tesseract structure.
The Diffusion Maps scale
parameter came out as
ǫ = 0.15

of 20,000 samples from a long realization are embedded
into a four-dimensional hypercube, a tesseract, whose
corners correspond to the states where the majority of
agents in a certain set of blocks are active and the others
not. The edges of the hypercube are much less visible
but also present. They are not visited that frequently,
since they correspond to the rare transitions between
metastable regions. For our computations later we will
use all four Diffusion Map coordinates.

Remark Note that the Diffusion Maps algorithm approx-
imately preserves the local distances on the manifold
on which the dynamics takes place. In some situations,
e.g., for visualization purposes, it might be of interest
to find even lower-dimensional embeddings that do not
necessarily preserve the local distances but are still non-
overlapping. For instance, the net of the 3-D cube can
be embedded into 2-D without overlapping edges by a
planar graph projection.

Complex contagion model For this model one would
guess that the number of agents with green opinion
in each block and the number of agents with green

behaviour in each block will constitute good collec-
tive variables. Or, to reduce it further since the blocks
behave like coupled oscillators, one could try using only
these oscillators’ phase angles in the plane spanned by
the number of agents with green behaviour and opinion
in each block.

Example 3 continued: In Fig. 6 we show the Diffu-
sion Maps projection into the dominant three coordi-
nates, though four coordinates are needed to describe
the dominant dynamics as indicated by the number of
dominant eigenvalues of P ǫ. Still, the three dominant
coordinates in the figure already visually indicate that
the data are projected onto a 4-D hypercube.

Diffusion Maps is not designed to embed a circle
into a 1-D torus, only into a 2-D Euclidean space.
Similarly, Diffusion Maps cannot embed the tesseract
onto a 2-D torus. Here we will try to further post-
process the embedding of D into R

4 and project the
net of the tesseract onto a 2-D torus. The tesseract
can be projected onto the 2-D torus without crossing
edges. We choose two two-dimensional planes in R

4 that
are orthogonally meeting in the center of the projected
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Fig. 6 Dynamics of the
complex contagion model
with two blocks as in
Example 3 : a for both
blocks we plot how the
phase θ

j
t varies in time.

Most of the time the two
blocks have a synchronized
phase, when one block
changes its state, the other
block follows with some
time lag. But it is also
possible (see the beginning
of the realization) that the
two blocks are completely
out of phase. b Network. c

Projection of the data set
into the first three
Diffusion Maps coordinates
with scale parameter
ǫ = 0.1, the data is
projected into the skeleton
of a tesseract. d

Post-processing of the 4D

Diffusion Maps projection
(first three dimensions are
shown in c) by visualizing
the data points on a torus
(this means that the
opposite sides of the plot
are identified with each
other) and thereby
unfolding the tesseract net.
The data points are
colored according to the
number of agents of a
certain opinion and
behaviour in each block

tesseract and such that when measuring the angles in
these planes, we can untangle the net of the tesseract
without edges crossing each other. See Fig. 6 for the
resulting net of the tesseract on the 2-D torus. All the
computations will still be done using the four Diffusion
Maps coordinates, the projection onto the 2-D torus is
only for visualization purposes.

Even though the projection indicates that the dynam-
ics essentially takes place on a tesseract, we yet cannot
infer how the dynamics moves along the edges of the
tesseract. We know the model is strongly non-reversible,

so on the edges there will be a dominant direction of
the probability flux.

3.3 Estimating the dynamics on the projected space

To study the reduced dynamics and apply Transition
Path Theory to a Markov chain, we need its transi-
tion matrix. We will explain how one can estimate a
low-dimensional transition matrix that describes the
dynamics on the projected space ξ[X] from simulation
data of the ABM.
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We assume that we have sampled i.i.d. pairs of
consecutive states (xk,yk)K

k=1 of the Markov chain,
in our case of the ABM. This means that xk is
sampled from the stationary distribution π and yk

is sampled from the conditional transition probabili-
ties P (xk, ·). Their projection into collective variables is
given by (ξ(xk), ξ(yk))K

k=1.
4 After partitioning the pro-

jected state space into M Voronoi cells {V1, . . . , VM},
e.g., by using the K-Means clustering algorithm for find-
ing the cell centers, we can estimate a transition matrix
P ξ(m,n) = P(ξ(Xt+1) ∈ Vn | ξ(Xt) ∈ Vm) on the
state space S = {1, . . . , M} identified with the Voronoi
cells. Compared to regular box discretizations, Voronoi
cells allow a discretization that is better fitted to the
distribution and geometry of the trajectory data. We
estimate P ξ using Ulam’s method by counting the pro-
portion of transitions that went from Vm to Vn within
one time step [42,56,68]:

P̂ ξ(m,n) = K−1
K∑

k=1

1Vm
(xk)1Vn

(yk).

Instead of using many one-step trajectories, one can
also use one long ergodic trajectory and count the one-
step transitions therein. But for systems with many
metastable regions, the ergodic trajectory needs to be
very long to correctly sample the stationary density and
to attain a good estimate of the transition probabilities.

4 Studying tipping

When we are interested in the transitions from one sub-
set A ⊂ S to another subset B ⊂ S, we can study the
ensemble of trajectory pieces that start in A, end in B,
and in between only pass states in C := S\(A ∪ B),
the so-called reactive trajectories. TPT is a frame-
work to get statistical information, e.g., the rate, den-
sity, flux and mean duration, about the reactive tra-
jectories [43,70,73]. If A and B are chosen as two
metastable sets, then TPT studies the noise-induced
tipping between metastable regions. But A and B can
be any meaningful sets between which one wants to
study the transition dynamics. TPT becomes particu-
larly useful when tipping is very uncertain and there is
a multitude of pathways linking A to B.

The forward and backward committors contain all
the essential information about the possible future and
past transitioning behaviour and generate the various
statistics of the ensemble of reactive trajectories. The
forward committor gives the probability to first reach
B not A when starting in x ∈ S

q+(x) := P(τ+
B (t) < τ+

A (t) | Xt = x),

4 In our examples, we will apply Diffusion Maps to a
sub-sample of the states (xk,yk)K

k=1 and interpolate ξ at
the remaining data points with the Diffusion Maps out-of-
sample extension.

where the random variable τ+
S (t) := inf{s ≥ t : Xs ∈

S} is the first hitting time of the set S ⊂ S with the con-
vention inf ∅ := ∞. The backward committor gives the
probability to have last visited A not B when currently
in x,

q−(x) := P(τ−
A (t) > τ−

B (t) | Xt = x),

where we denoted the last exit time of the set S ⊂ S

by τ−
S (t) := sup{s ≤ t : Xs ∈ S}, sup ∅ := −∞. Due to

the assumption of a stationary process, the committors
are time-independent.

Since we are in a stochastic setting, where tipping is
usually not certain, we cannot define an interesting tip-
ping point as a point of no return. Instead, the tipping
points or edge states can be identified with the points
where tipping to B is as likely as going back to A, i.e.,
those states with q+(x) close to 1/2. Recently it has
been argued that the forward committor is the relevant
object to quantify the risk of tipping to a certain state
in the future [18,38].

In this section, we study ABMs described by a dis-
crete Markov chain (Xt)t∈Z on the reduced state space
S = {1, . . . , M} that are stationary, irreducible and
aperiodic. The ABM dynamics on S is described by
the transition matrix P ξ. In the following we will for
simplicity write P .

In the following, we will first introduce TPT before
applying it to our two ABMs and studying their tipping
behaviour in depth.

4.1 Transition path theory

We are interested in characterizing the transitions from
one subset of the state space A ⊂ S to another
B ⊂ S (both non-empty and disjoint) in an irreducible
and aperiodic Markov chain (Xt)t∈Z on a finite state
space S. The time-homogeneous transition probabili-
ties between states x and y are given by P (x, y) =
P(Xt+1 = y | Xt = x). Since we assume the process
to be stationary, the distribution for all t ∈ Z is given
by the stationary probability distribution π, the unique
probability-vector solution to π⊤P = π⊤.

TPT provides statistics about these transitions link-
ing A to B in a stationary Markov chain by making
use of the information contained in the forward com-
mittor q+(x), the probability to first hit B rather than
A when starting in x ∈ S, and the backward commit-
tor q−(x), the probability to have last come from A
not B when in x. The forward committor function q+

uniquely solves

⎧

⎪⎨

⎪⎩

q+(x) =
∑

y∈S

P (x, y) q+(y) x ∈ C

q+(x) = 0 x ∈ A
q+(x) = 1 x ∈ B,

(3)

while the backward committor function q− is the unique
solution to the linear system
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⎧

⎪⎨

⎪⎩

q−(x) =
∑

y∈S

P−(x, y) q−(y) x ∈ C

q−(x) = 0 x ∈ B
q−(x) = 1 x ∈ A

(4)

where P−(x, y) = P(Xt−1 = y | Xt = x) = π(y)
π(x)P (y, x)

are the backward-in-time transition probabilities.
Next, we will define some statistics of the ensem-

ble of reactive trajectories. As a reactive trajectory we
consider trajectory snippets (xt, xt+1, . . . , xt+T ) that
start in xt ∈ A, end in xt+T ∈ B and in-between
only pass through xt+1, . . . , xt+T−1 ∈ C. The excur-
sion (xt+1, . . . , xt+T−1) through the transition region C
is called an inner reactive trajectory. When on a reac-
tive trajectory it holds that both τ−

A (t) > τ−
B (t) and

τ+
B (t + 1) < τ+

A (t + 1), while on an inner reactive tra-

jectory we have τ−
A (t) > τ−

B (t) and τ+
B (t) < τ+

A (t). The
ensemble of reactive trajectories is the collection of all
reactive trajectory pieces that can be pruned out from
the ensemble of stationary trajectories.

The distribution of inner reactive trajectories is
defined as

μAB(x) = P(Xt = x, τ−
A (t) > τ−

B (t), τ+
B (t) < τ+

A (t))

= q−(x) q+(x)π(x)

and indicates where inner reactive trajectories spend
most of their time, and thus also the bottlenecks during
transitions. The function μAB is not normalized, but
can be normalized by dividing by

ZAB = P(τ−
A (t) > τ−

B (t), τ+
B (t) < τ+

A (t)),

the probability to be on an inner reactive trajectory at
time t.

The current or flux of reactive trajectories fAB

denotes the probability of a reactive trajectory to visit
x and y consecutively:

fAB(x, y) = P(Xt = x,Xt+1 = y,

τ−
A (t) > τ−

B (t), τ+
B (t + 1) < τ+

A (t + 1))

= q−(x)π(x)P (x, y) q+(y).

Again, this function is not normalized w.r.t. the pair
(x, y) and gives only the share of probability current
accounting for reactive trajectories from A to B. While
the usual probability current P(Xt = x,Xt+1 = y) sums
to 1, the reactive current sums to

P(τ−
A (t) > τ−

B (t), τ+
B (t + 1) < τ+

A (t + 1)) =: HAB ,

which is the probability to be on a reactive trajectory.
The reactive current into a state x ∈ C equals the

reactive current out of that state. A and B act as a
source and sink of the reactive current, and the total
reactive current out of A equals the reactive current

Fig. 7 Splitting of a reactive trajectory into one produc-
tive path from A to B (in blue) and several unproductive
cycles (yellow)

into B:

∑

x∈A,y∈S

fAB(x, y) =
∑

x∈S,y∈B

fAB(x, y).

We denote this quantity by kAB , it specifies the rate of
reactive trajectories, since it estimates the number of
reactive trajectories that are started in A per time step,
or equivalently, that end in B per time step. Further, by
dividing the probability to be reactive by the transition
rate, we obtain the mean duration of an inner reactive
trajectory,

tAB =
ZAB

kAB
.

For us, the reactive current is the most important quan-
tity, since it reveals the multitude of transition path-
ways from A to B and their respective weight. Often one
is interested in cycle-erased reactive trajectories from A
to B, which are free from uninformative cycles and only
contain the progressive parts from A to B. In the case of
reversible dynamics, the effective current, which gives
the net amount of reactive current from state x to y:

f+(x, y) := max{fAB(x, y) − fAB(y, x), 0}

reduces to π(x)P (x, y)(q+(y) − q+(x)) for q+(y) >
q+(x) and 0 else, and is therefore free of cycles.5 For
non-reversible processes, such as the ones we study, the
effective current is however not guaranteed to be cycle-
free and we have to take a different approach. Moreover,
it might be interesting to study the cycles of reactive
trajectories separately.

Flux decomposition into productive and unproductive
parts In [4] it is proposed to decompose the reactive
flux fAB = fP + fU into the flux fP coming from pro-
ductive, cycle-free paths linking A to B and the flux fU

from unproductive cycles. In Fig. 7 we sketch the pro-
ductive piece of a reactive trajectory linking A with B
as well its two unproductive cycles.

Denote by ΓP the set of non-intersecting paths γ =
(x1, . . . , xs) that start in x1 ∈ A, end in xs ∈ B, and go

5 If this were not the case, then the committor would have
to strictly increase along a cycle for f+(x, y) to be positive,
but this is impossible.
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through the transition region x2, .., xs−1 ∈ C. By non-
intersecting we mean that all of the traversed states xr

are pairwise different, thus ensuring that the path is
free of cycles. Further, all the visited edges (xr, xr+1)
along the path need to have a positive transition proba-
bility P (xr, xr+1) > 0. By ΓU we denote the set of non-
intersecting paths γ = (x1, . . . , xs) through the transi-
tion region xr ∈ C that are closed. Since the path is
closed, it additionally contains the edge (xs, x1). Non-
intersecting, closed paths are also called cycles. Note
that self-cycles γ = (x), i.e. paths that go from x to x,
are also considered as cycles.

Now we are equipped to decompose the reactive cur-
rent into the current from cycle-free productive paths
ΓP and the current from unproductive cycles ΓU [4]

fAB(x, y) =
∑

γ∈Γ P

w(γ)Cγ(x, y)

︸ ︷︷ ︸

fP

+
∑

γ∈Γ U

w(γ)Cγ(x, y)

︸ ︷︷ ︸

fU

,

where Cγ is the incidence function of the path γ

Cγ(x, y) =

{
1, if γ = (. . . , x, y, . . . )

0, else

and w(γ) encodes the path weight. w(γ) can be under-
stood as an average along an infinitely long ergodic tra-
jectory (xt)t∈N as follows

w(γ) = lim
T→∞

Nγ
T

T
, (5)

where Nγ
T counts the number of times that (xt)t=1,...,T

passes through γ while reactive. The edges of γ have to
be passed in the right order but excursions to one or
more other cycles in between are allowed.6

This decomposition into a productive and unproduc-
tive flux allows an interpretation of how much reactive
trajectories are passing the different paths and cycles.
The easiest way to numerically estimate this decompo-
sition is as follows:

1. Sample a long trajectory (xt)t=1,...,T that contains
sufficiently many transitions from A to B. Since we
only need the reactive trajectory pieces for the com-
putation of (5) but correctly weighted by HAB com-
pared to the non-reactive pieces, one can also use
a transition matrix that only samples the reactive
pieces of the trajectory correctly and maps all the
non-reactive pieces to a single state [8,71].

6 The original derivation in [4] proceeds slightly differently.
They modify the reactive current to also include current
from B to A, and then apply the stochastic cycle decompo-

sition [28,29] for conserved currents to uniquely decompose
the modified current into cycles solely in C and cycles that
contain an edge from B to A.

2. Estimate w(γ) by averaging along this sample tra-
jectory [3]. First prune out all the reactive pieces.
Then for each reactive snippet iteratively cut out
all the cycles by going through the trajectory until
for the first time a state is revisited, i.e., until we
find r such that xr = xm, m < r. Take out the
cycle (xm, . . . xr−1) = γ and increment Nγ

T by 1.
Repeat until from the reactive snippet only a cycle-
free transition path γ is left, increment Nγ

T accord-
ingly. Then move to the next reactive trajectory
piece.

Flux aggregation In order to assess the flux through
certain subsets of the state space, e.g., through differ-
ent channels or other regions of the state space, we can
aggregate states together and compute the reaction cur-
rent between aggregate region. First we partition the
state space into groups of states Ls ⊂ S, in such a way
that the disjoint union of elements in {L1, . . . , LS} is
the whole state space S and that the boundaries of A
and B are preserved. Then we can compute the reactive
macro-current FAB between the group of states Lr and
Ls as follows [46]:

FAB(r, s) =
∑

x∈Lr,y∈Ls

fAB(x, y).

These macro-currents fulfill the same properties as the
micro-currents, namely, the total flux out of A equals
the total flux into B, moreover the flux into a parti-
tion element Lr equals the flux out of that partition
element Lr. We can also compute the effective macro-
current F+ between partition elements from the reac-
tive macro-current.

4.2 Tipping analysis of the ABMs

In this section, we apply TPT to the two reduced ABMs
to understand the possible tipping pathways.

When the two presented ABM dynamics are con-
sidered for modular agent networks, they have many
metastabilities of different quality and strength. A mul-
titude of transition paths exists that go from some
region of interest A, via several stopovers in metastable
regions, to some other region B. These transition path-
ways from A to B are forming a transition network.
We can understand the tipping dynamics also in terms
of tipping cascades among connected blocks: when one
block tips, it influences the probability of other con-
nected blocks to also tip.

Threshold model For the threshold model we are
interested in studying how the activity in collective
behaviour spreads through the population. Therefore,
we will set A as all the states where a small propor-
tion of agents is active and B as all the states where
the majority of agents in the population is active. Note
that we have to be able to express A and B via the
collective variables. We used the TPT code from [23].

Example 1 continued : We discretized the space spanned
by ξ into 36 Voronoi cells, and estimated the transition
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Fig. 8 Tipping analysis for Example 1: a, b Estimated
committors on the discretized space. c Effective current,
A and B are indicated by the two shaded areas. d Effec-

tive macro-current through the three channels indicated in
shaded blue, yellow and green. e Reactive distribution. f

Agents as indicators of the overall tipping

123



3264 Eur. Phys. J. Spec. Top. (2021) 230:3249–3271

matrix on this discrete space by using short trajectory
snippets of total length T = 100, 000.

The results of the tipping analysis between A = {≤
2 agents are active} and B = {≥ 8 agents are active}
are presented in Fig. 8. In the panels a and b we show
the committors on the reduced state space.

The original state space is small enough to be able
to solve the system of linear equations (3) and (4) for
the exact forward and backward committors, denoted
below by q±

exact. Thus we can study the relative error
in the π-weighted l2-norm between the estimated com-
mittors and the exact committors:

√
∑

x∈X

(
q±
exact(x) − q±(x)

)2
π(x)

√
∑

x∈X

(
q±
exact(x)

)2
π(x)

.

The weighting with the stationary distribution π is the
natural weighting for the dynamics. The relative error
of both committors is 0.03 and confirms that the collec-
tive variables allow a good approximation of the tipping
dynamics.

The forward committor is not perfectly symmetric
with respect to the two blocks: when block 1 has com-
pletely tipped but block 2 has not (these are the states
around ξ1 = 0 and ξ2 > 0.005, compare with Fig. 4c),
the forward committor is much higher than in the oppo-
site scenario, when block 2 has tipped but block 1 not
(the states around ξ1 = 0 and ξ2 < −0.005). Also
the reactive distribution is higher when block 1 has
tipped and 2 has not. The transition rate amounts to
kAB = 0.0039 meaning that in a stationary trajectory,
a transition from A to B of duration tAB = 18.85 is
started on average every 1/kAB ≈ 256th time step.
From the effective current7 in Fig. 8e we can see that
most of the transition flux from A to B goes along two
pathways:

(I) A → agents in block 1 get active → agents in block
2 get active → B

(II) A → agents in block 2 get active → agents in block
1 get active → B.

To better compare the likelihood of both transition
channels, we group the states of each channel together
by hand, compare the coloring in Fig. 8f, and com-
pute the reactive macro-currents FAB and the effective
macro-currents F+ through these channels. Transitions
along channel (I) contribute 53% to kAB , while channel
(II) only contributes 41% to the rate. We can now con-
firm that there is more effective current going through
channel (I). The reason should lie in the asymmetry of
the network between block 1 and 2: Agents 0 and 4 of
block 1 are both connected to agent 6, see the network
in Fig. 4b. And from the ABM interaction rules, we can

7 The threshold model is only very slightly non-reversible,
therefore we are not doing a flux-decomposition into cycles
and productive parts and instead use the approximately
cycle-free effective current.

deduce that the likelihood that agent 0 and 4 become
active when agent 6 is active is smaller than the likeli-
hood that agent 6 becomes active after agents 0 and 4.
These results also fit with the asymmetry in the com-
mittor: as soon as block 1 has become active, it is very
likely that block 2 also becomes active.

To further study the role of each individual agent
with respect to the overall tipping between A and B, we
consider the expected forward committor conditioned
on agent i being active. When the forward committor
is conditioned on agent i being active, the agents with
the largest

E(q+(Xt) | Xi
t = 1) =: IAB

i

are the best (individual-agent) indicators that the over-
all tipping of the population will soon happen. When
these agents are active, the system is the most likely
to tip to B, thus one should especially consider these
agents to access the tipping likelihood.

We can estimate IAB
i by a Monte-Carlo approxima-

tion with a sufficiently long stationary ABM trajectory
(xt)t=1,...,T :

IAB
i =

E

(

q+(Xt)1{Xi
t=1}

)

P
(
Xi

t = 1
)

=

∑

x∈X
q+(x)1{xi=1}(x)π(x)

∑

x∈X
1{xi=1}(x)π(x)

≈

∑T
t=1 q+(ξ̃(xt))1{xi

t=1}(xt)
∑T

t=1 1{xi
t=1}(xt)

,

where we introduced the discrete collective variable
ξ̃(x) = m whenever ξ(x) ∈ Vm. From Fig. 8 we can
see that the agents from block 1 are the better tipping
indicators. Moreover, agents 0 and 4 are the best indi-
cators of tipping, while agent 6 is the best indicator of
block 2. This is probably due to them being connected
to the other block, thus increasing the tipping likeli-
hood when they are active. One has to be careful in
the interpretation of IAB , it only shows us the correla-
tions of the state of agent i and the forward committor
and not a causation, i.e., which agent has the largest
individual impact on the overall tipping.

Example 2 continued : After discretizing the projected
state space into 150 cells and estimating a transition
matrix using trajectory snippets of total length T =
40, 000, 000, we show the tipping analysis for a popula-
tion of four connected blocks in Fig. 9. As A we consider
states where ≤ 25% of agents are active, and as B the
states where ≥ 75% are active. The dominant Diffusion
Maps coordinate encodes the number of agents that
are active, and from Fig. 9a we can see that along this
coordinate the forward committor increases in distinct
steps from 0 to 1. Due to the faster decorrelation inside
each metastable set, i.e., in the regions where agents in
the same block are behaving conform, the committor
is constant there. From the committors we computed
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Fig. 9 Tipping analysis of Example 2: a Forward com-
mittor against the dominant Diffusion Maps coordinate. b

Mean forward committor on the macrostates that are placed
on a torus. We denoted macrostates as a 4-D vector of 0’s
and 1’s decoding the majority activity in each of the four
blocks, e.g., [0, 0, 1, 0] reads as majority of agents in block

1,2 and 4 are inactive and majority in block 3 is active. c

Effective macro-current, the color and width of the arrow
indicates the magnitude of the current. d Number of neigh-
bours of each agent as well as the total number of connec-
tions inside and between blocks. e Agents as indicators of
overall tipping
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Fig. 10 Tipping analysis of Example 3: a Forward and b

backward committor. c Productive, cycle-free current from
A to B (note the logarithmic colour scale). d Unproductive
current of cycles whose length is larger than 3. To get a
clearer picture, we only plotted the flux produced by large

cycles. For c and d we labeled the important macrostates
by a table that indicates whether for that macrostate the
majority in a block has a non-green or green opinion (O) or
behaviour (B)

transition statistics, such as the average duration of
reactive trajectories tAB = 79.3 and their frequency:
In a long stationary trajectory, a transition from A to
B is completed on average every 1/kAB ≈ 627th time
step.

We again are interested in clustering states together
to easier understand the transition dynamics and get a
transition network. Since the system is much larger this
time, we want to group cells together which are dynam-
ically close by means of a clustering algorithm such as
the well-known fuzzy clustering method PCCA+ [52]
which stands for Robust Perron Cluster Cluster Anal-

ysis. We will use PCCA+ for non-reversible pro-
cesses [14,16,51], implemented in [61], which takes the
dominant real Schur vectors of the transition matrix
and by a linear transformation maps them into a set of
non-negative membership vectors that form a partition
of unity and are as crisp as possible. Other optimiza-
tion criteria also exist [52]. By assigning each point to
the block with the highest membership value, we can
make the clustering crisp. The advantage of PCCA+
compared to other fuzzy clustering algorithms is that
it takes the dynamical information into account and
results in a clustering that tries to preserve the slow
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time scales of the dynamical process. Since we expect
the macrostates to be of the form where the majority of
agents in each block is either inactive or active, we clus-
ter the states into 24 macrostates. These macrostates
also correspond to the corners of the tesseract. The
macrostates were then placed on a 2-D torus such that
the transition network can easily be visualized.

In Fig. 9b, c we show the mean forward commit-
tor on the macrostates as well as the resulting transi-
tion network given by the effective macro-current. The
macro-current is larger between macrostates where a
neighbouring block tips than for a non-neighbouring
block. Thus the dominant pathways from A to B are
of the form of a tipping cascade from one block to
its neighbours and then to their neighbours etc. The
macro-current also indicates that it is most likely for
block 4 to tip first and for block 1 to tip last. This
can be explained as follows: Every agent in block 4 has
on average 21.92 neighbours from the same block and
1.68 neighbours from the other blocks. Compared to
the other blocks, agents from block 4 have the highest
proportion of neighbours from the same block. Thus
block 4 is the most independent block and therefore
can change its activity most freely. The role of block 1 is
also special. It is the smallest block with only 20 agents
and also the block where each agent has the largest
proportion of extraneous neighbours. The role of block
1 is also reflected in the mean forward committor val-
ues: Out of all the macrostates, where only one block
has tipped, the committor is the smallest when only
block 1 has tipped. This indicates that when block 1
has tipped, it easily tips back due to the strong influ-
ence from its neighbouring blocks. Moreover, out of all
the macrostates where three blocks have tipped, the
forward committor is the highest when block 1 is the
still inactive block.

For the network of four blocks we can study which
agents are the best indicators of the overall tipping,
see Fig. 9e. We can immediately see that the values of
IAB
i do not differ that much for the different agents,

possibly due to the four blocks being of a rather simi-
lar size and similarly connected. Still, block 3 seems to
result in the highest expected forward committor when
an agent of that block is active. Block 3 has the most
connections to other blocks, and can therefore possibly
exert the most influence on neighbouring blocks. This
might explain why the expected forward committor is
the largest when an agent from block 3 is active.

Complex contagion model In this model we are inter-
ested in analysing the tipping pathways between states
where the majority has a non-green opinion and
behaviour to states, where the majority has a green
opinion and behaviour.

Example 3 continued : We discretized the projected
space into 150 Voronoi cells and estimated the transi-
tion matrix on this space using 100, 000 short trajectory
snippets. The tipping analysis between the regions

A =

{≤ 20% of the population have a green opinion and behaviour},

B =

{≥ 80% of the population have a green opinion and behaviour}

is shown in Fig. 10. To better understand the pro-
jected states, one can compare with the coloring in
Fig. 6d or the indicated macro states in Fig. 10c, d.
The two blocks behave as coupled oscillators that are
mostly synchronized in a stationary regime. When the
majority of agents in one block changes their behaviours
or opinions in the cyclic fashion, the other block will
likely follow. There is a strong direction in the dynam-
ics, i.e. the dynamics most of the time follow the same
path, thus the forward committor is close to determin-
istic for many states, i.e., takes values close to 0 and
1, see Fig. 10a. When the two blocks first change their
opinions and then their behaviours from non-green to
green, the forward committor is close to 1 and when
they change their opinions and behaviours back to non-
green, the forward committor is close to 0. But there are
also some states with a committor around 1

2 and thus
the future states thereafter are less predictable. The
backward committor is similarly very deterministic for
a large part of the statespace. We will next look at the
current to understand the possible transition pathways
from A to B and understand what happens when the
committors are close to 1

2 .
Due to high non-reversibility, the effective flux is no

longer cycle-free. Instead we can decompose the reactive
flux into a productive, cycle-free and an unproductive
cyclic flux, see Fig. 10c, d. From the decomposition we
see that the dominant productive pathways are of the
form:

(I) A → agents in one of the blocks change their opin-
ion to green → agents in the other block change
their opinion to green → agents in one of the blocks
change their behaviour to green → agents in the
other block change their behaviour to green → B,

while there are also some less likely productive paths:

(II) A → agents in one of the blocks change their opin-
ion to green → agents in the same block change
their behaviour to green → agents in the other block
change their opinion to green → agents in the other
block change their behaviour to green → B.

The dominant unproductive cycles are of the general
form:

(III) Both blocks have a non-green behaviour, major-
ity of agents in block 1 (resp. 2) have a green
opinion → agents in block 2 (resp. 1) change their
opinion to green → agents in block 2 (resp. 1)
change their behaviour to green → agents in
block 2 (resp. 1) change their opinion back to
non-green → then agents in block 2 (resp. 1)
change their behaviour back to non-green.
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In these unproductive cycles, one block does a solo-
cycle through the behaviour and opinion space. These
are also common in coupled oscillators and called “2π
phase jumps” [1,49].

By comparing the strength of the flux along the dom-
inant productive paths (I) (around 9×10−4−10−3) with
the values of the current along the dominant unproduc-
tive cycles (III) (around 4×10−5−6×10−5) in Fig. 10c,
d, we can deduce that the pathways (I) are visited
15−25 times as much as the dominant cyclic structure
(III).

Beyond the dominant pathways, we can give some
general quantitative statements: conditioned on being
on a reactive trajectory, the probability to be on a
productive path is (HAB)−1

∑

x,y fP (x, y) = 0.05
0.285 =

0.175, while the probability to be on a cycle of length
> 3 is (HAB)−1

∑

x,y fU,>3(x, y) = 0.004
0.285 = 0.014. The

remaining conditional probability is attributed to cycles
of length ≤ 3.

5 Conclusion

In this paper we showed how to quantitatively study
noise-induced tipping pathways in high-dimensional,
stationary models of heterogeneous agents. For compli-
cated agent-based models, analytically deriving reduced
equations, e.g., ODEs or SDEs, is no longer possi-
ble or one has to accept large approximation errors.
Here we instead relied on simulations of the model to
estimate a low-dimensional representation of the pop-
ulation states in terms of collective variables. In our
two guiding models, agents are strongly affiliated with
a subpopulation. Due to the local interaction rules,
those population states, where the individual agents in
the same subpopulation agree on their actions or atti-
tudes, are metastable. The population states approx-
imately lie on the skeleton of a hypercube that can
be parametrized with just a few coordinates. The cor-
ners of the hypercube represent the metastable states
while the edges make up the transition paths between
metastable states. Thus the estimated reduced states
can describe all the macro-scale patterns and large
shifts and changes in the population of agents. In the
two considered ABMs, tipping between the two extreme
metastable regimes in the system happened as a tipping
cascade among connected subpopulations. We applied
Transition Path Theory to quantify the tipping dynam-
ics and could for instance uncover the dominant cascad-
ing pathways as well as possible loop-dynamics on the
way from A to B.

It is noteworthy to mention that TPT can quantify
the tipping paths without relying on actual sampled
transition paths. By estimating the transition matrix
from short samples, the local information in the short
samples can be combined to solve for the global commit-
tor functions. Still the simulation data needs to cover
all the important parts of the model state space, i.e.,
the sets A and B as well as the visited states during
transitions.

By studying which agent i results in the highest
expected forward committor conditioned on them being
in a certain state, IAB

i , we could assess which agents in
the network are the best indicators for tipping towards
B.

Several open aspects and questions remain:

1. In order to better understand the quantity IAB
i , one

could systematically study IAB
i for different small

networks, similar as in [25,26], as well as compare it
to different centrality measures for network nodes.

2. By studying other general types of ABM dynamics
or interactions on non-modular networks, could one
find other generic forms of the low-dimensional man-
ifold on which the population states concentrate?

3. Another prospect would be the study of more real-
istic ABMs or dynamics on real-world networks.

4. In this paper we studied tipping in stationary ABMs
where the tipping is only due to the noise facil-
itating rare transitions. But as mentioned in the
introduction, agent-based models are often not sta-
tionary. Therefore at next it would be important to
also consider tipping in non-stationary ABMs, e.g.,
ABMs influenced by some external parameter vari-
ations [22].
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