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A statistical procedure for classifying word-initial voiceless obstruents is described. The data 
sel to which the analysis was applied consisted of monosyllabic words starting with a voiceless 
obstruent. Each word was repeated six times in the carrier phrase "I can say __, again" by 
each of ten speakers. Fast Fourier transforms (FFTs), using a 20-ms Hamming window, were 
calculated every 10 ms from the onset of the obstruent through the third cycle of the following 
vowel. Each FFT was treated as a random probability distribution from which the first four 
moments (mean, variance, skewness, and kurtosis) were computed. Moments were calculated 
from linear and Bark transformed spectra. Data were pooled across vowel contexts for 
speakers of a given gender and input to a discriminant analysis. Using the moments calculated 
from the linear spectra, 92% of the voiceless stops were classified correctly when dynamic 
aspects of the stop were included. Even more important, the model constructed from the 
males' data correctly classified about 94% of the voiceless stops produced by the female 
speakers. Classification of the voiceless fricatives when all places of articulation were included 
in the analysis did not exceed 80% correct when the moments from either the linear or Bark 
transformed scales were used. However, classification of only the voiceless sibilants was 98% 
correct when the moments from the Bark transformed spectra were used. As with the stops, 
the classification model held across gender. 

PACS numbers: 43.70.Fq 

INTRODUCTION 

The purpose of the present article is to describe a quanti- 
tative approach to classifying obstruent spectra. The notion 
of classifying obstruent spectra according to certain articula- 
tory dimensions--such as place of articulation--has held 
the interest of researchers for over 3 decades (see summary 
in Fant, 1973, pp. 160-170). Specifically, researchers have 
been interested in the nature of variability in consonant spec- 
tra, especially as it may be conditioned by vowel contexts. 
This interest stems, in part, from a desire to determine how 
perceptual constancy is derived from acoustically distinct 
signals. Recently, Blumstein and Stevens (1979), Kewley- 
Port ( 1983 ), and Kewley-Port and Luce(1984) have shown 
how qualitative analysis of spectral shape for stops, either 
confined to a single interval following the burst or spanning a 
sequence of such intervals, provides a means to reveal unique 
spectral characteristics of the three places of stop articula- 
tion in American English. The appeal of these results is that 
the spectral uniqueness is maintained even in the face ofvari- 

ation in (1) following vowel context, (2) voicing status of 
the stop, and, to a lesser degree, (3) speaking rate. 

The analysis employed by Blumstein and Stevens 
(1979) involved the construction of graphic templates of 
spectral features associated with the three places of articula- 
tion in English. These templates, which were based on a lin- 
ear predictive code (LPC) analysis of a 25.6-ms inlerval be- 
ginning at the stop burst (half-Hamming window, 0- to 
5-kHz bandwidth), were developed by careful examination 
of multiple stop spectra and trial and error adjustment of the 
template features. Classification was dependent on the shape 
of the spectrum; bilabials had either a fiat or failing spec- 
trum, alveolars were characterized by an upward spectral 
tilt, and velars were defined by a compact, central spectral 
peak. Blumstein and Stevens (1979) used the final version of 
the templates to classify correctly an average of 84% of stops 
produced in the syllable-initial position by six talkers. 

Kewley-Port (1983) and Kewley-Port and Luce 
(1984) argued that the static spectral analyses of Blumstein 
and Stevens could miss important, time-varying spectral lea- 
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tures in the interval following the stop burst, and implemen- 
ted a runningspectralanalysis [LPC, Hamming window (20 
ms), 0- to 5-kHz bandwidth] of stops to classify place of 
articulation. In Kewley-Port's experiments, the classifica- 
tion of spectra was based on experimenter-defined features 
that were applied by trained judges to the running-spectra 
displays. Kewley-Port's judges identified correctly an aver- 
age of 88% of voiced stops from absolute frequency displays 
(Kewley-Port, 1983) and 90% of voiced and voiceless stops 
from spectral displays modified to reflect the spectral pro- 
cessing characteristics of the human auditory system. Based 
on these results, Kewley-Port has argued that time-varying 
spectra are preferable to static spectra in the classification of 
stop place of articulation. 

In addition to the obvious application of these findings 
to theories of speech perception (see, for example, Stevens 
and Blumstein, 1978; Kewley-Port et al., 1983), the cate- 
gorization ofobstruent spectra is also interesting for the un- 
derstanding of disordered speech production, specifically 
concerning the relationship of a speaker's intended phono- 
logical units to his/her vocal tract output. In our own work 
with misarticulating children and adults, for example, we 
have been perplexed by obstruent productions that seem on 
perceptual analysis to be unclassifiable in the phonemic sys- 
tem of English. Some of these sounds appear to be "between" 
two phoneme categories (e.g., not a/d/or/g/, but having 
both/d/- and/g/-like characteristics), or simply unlike any 
phonemes. 

A rare example of the application of a spectral categori- 
zation strategy to the analysis of disordered speech is found 
in Shinn and Blumstein (1983), who used the Blumstein and 
Stevens (1979) templates to classify production errors of 
aphasic speakers as phonetic or phonemic. Shinn and Blum- 
stein (1983) found that, when the templates were used to 
classify those stops that were perceived consistently as the 
intended target, classification scores were very similar to 
those reported for normal speakers by Blumstein and Ste- 
vens (1979). Such a restriction on the material to be classi- 

fied, however, makes the success of the study unsurprising 
and supports Ziegler's (1984) contention that the Blumstein 
and Stevens template system is too coarse to be of much 
success in understanding obstruent errors in aphasia. The 
system described by Kewley-Port and Luce (1984) would 
also not be likely to produce useful results with disordered 
speakers, as these investigators had to impose several ad hoc 
adjustments of their system to get acceptable scores for nor- 
mally produced stops. A highly desirable approach to spec- 
tral analysis of obstruents produced by disordered speakers 
would be one that was strictly objective and could specify 
spectral distances between an aberrant token and some mod- 
el of the target obstruent. Such distance measures would be 
especially useful for obstruents that are unclassifiable on the 
basis of spectral template or auditory analysis. 

A quantitative approach to the classification of voiceless 
stops described by Kobatake and Ohtani (1987) provides 
the desired analysis objectivity. Using principal components 
analysis of the onset spectra, they found unique patterns that 
correctly classified 90% of their voiceless stop tokens. How- 
ever, the classification data were the same set used to con- 

struct the patterns, thereby making high classification accu- 
racy unsurprising. The use of a model derived from one data 
set to classify a new data set presents difficulties for a linear 
model, such as principal components analysis. A simple fre- 
quency shift in the spectrum peak can result in a complex 
variation of the linear parameters that may be difficult to 
normalize across speakers. 

In the present study, we selected the moments of a prob- 
ability density function, which can be normalized for shifts 
in center frequency, as numerical indices of spectral shape 
and center of gravity. If successful in classifying obstruent 
spectra, such indices would be preferable to the classification 
schemes erdployed by Blumstein and Stevens (1979) and 
Kewley-Port and Lute (1984) which require human judg- 
ments that are subject to error even under optimal condi- 
tions (i.e., when the judges are sophisticated). These indices 
would also be preferable to Kobatake and Ohtani's (1987) 
procedure in that they are easily normalized for frequency 
shifts and could provide a metric to determine the relation- 
ship between correct and aberrant productions. The particu- 
lar statistical measures that we chose to investigate were the 
mean, skewhess, and kurtosis of the computed FFTs in the 
region of the stop burst and onset of frication noise. These 
measures were chosen because of their ability to summarize 
the concentration, tilt, and peakedhess of the energy distri- 
butions, the three spectral characteristics prominent in the 
categorical classification systems described previously 
(B!umstein and Stevens, 1979; Kewley-Port and Luce, 
1984). Furthermore, the nature of the relationship between 
the mean and higher moments would leave shape changes, as 
indexed by skewness and kurtosis, unaffected by scalar fre- 
quency shifts. We decided to investigate the classification 
utility of moments for both linear and Bark representations 
of stop and fricative spectra, because previous work (Kew- 
ley-Port and Luce, 1984; Bladon and Seitz, 1986) has sug- 
gested that "auditory" spectra provide the most meaningful 
profile ofobstruent acoustics. Other investigators have used 
moments to index the spectra associated with impulse noises 
(Errreich, 1986), spontaneous neuronal activity (Lansky 
and Radil, 1987), tidal ventilation (Butler and Mohler, 
1979), and EMG tests of endurance (Hary et al., 1982). 
Furthermore, moment analysis may be used as a general ap- 
proach to evaluating systems (Bendat and Piersol, 1980). 

I. METHOD 

A. Subjects 

Five males and five females ranging in age from 18-31 yr 
(mean age = 23.6, s.d. = 3.0) served as subjects. All sub- 
jeets reported normal hearing and had no history of speech 
or heating problems. 

B. Speech sample 

Table I presents a list of the test words that were ana- 
lyzed in this study. These words were a part of a larger 
speech sample (31 words) that was collected to serve as a 
baseline for data collected from phonologically disordered 
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TABLE I. Speech sample used in analysis. 

paid pop pay 
keen cot key 
tea tot two 

she see fat 

fought thought 

children. This larger speech sample was developed to sample 
errors commonly made by phonologically disordered speak- 
ers. Towards that end, the larger speech sample included 
series of words that could test for consonant-related phono- 
logical processes, such as consonant deletion, cluster reduc- 
tion, etc. The speech sample, then, was not geared toward 
testing vowel context effects. For that reason, the words that 
were analyzed in this study were not balanced for vowel con- 
text. However, there is more than one vowel context for most 

of the obstruents discussed in this report (/k/, /t/, /p/, /f). 
The vowels that are paired with these obstruents are distinct 
from one another and occupy rather different formant 
spaces, thereby affecting the obstruents differently (Stevens 
et al., 1966). This claim is supported further by Cohn's 
(1987) data that showed that templates constructed to'clas- 
sify stop q-/a/sequences did a poor job of classifying stop 
q-/u/,/i/, or/e/. Again, this would suggest that the vowels 
used in this study, though limited, would be expected to af- 
fect the obstruents rather differently. 

C. Procedures 

The subject's task was to repeat each stimulus word 
after it was presented via a loudspeaker. This elicitation pro- 
cedure was used to make the present task comparable to that 
used with the disordered speakers with which we, eventual- 
ly, want to compare the present data. The eliciting tape was 
prepared from a single recitation of each stimulus word pro- 
vided by a male speaker. The words were then low-pass fil- 
tered (fc = 5kHz) and digitized at 10 kHz on a Harris 800 
computer. After the peak intensity of the words was equated, 
each word was reproduced six times. The resulting list of 186 
words (31 words X 6 repetitions) was randomized and out- 
put to an audio tape with 5 s between items. 

Each subject was seated in a sound-treated room. The 
eliciting tape was played on a Tandberg 44-0 cassette record- 
er/reproducer, passed to a power amplifier (Amber 50 A), 
and transduced by a loudspeaker (Polk Audio 7c). The 
stimulus words were presented to the subject at a comfort- 
able listening level. Upon hearing the stimulus word, the 
subject repeated the word in the carrier sentence "I can say 
__, again." The subject's speech was transduced by a 
Shure (SMI[0A) microphone placed about 6 cm from his/ 
her lips and recorded on a Tandberg 420 tape recorder/re- 
producer. 

All data processing was accomplished on an IBM PC 
AT desktop. computer. The tape recording of the acoustic 
speech signal was low-pass filtered at 10 kHz with an eight- 
pole Butterworth filter (model 901El, Frequency Devices, 
Haverhill, MA) and subsequently sampled at 20 kHz using 
an analog-to-digital converter with 12 bits of numeric reso- 

lution (Labmaster, Scientific Solutions, Solon, O,H). Fol- 
lowing sampling, a two-pole digital high-pass filter with a 
70-Hz cutoff frequency (Milenkovic, 1986) was applied to 
the speech waveform. The high-pass filter served to reduce 
oscillations resulting from room vibration as well as to sup- 
press the microphone air blast artifact associated with plo- 
sive speech productions. 

The speech waveform was subsequently displayed on a 
computer CRT screen using CSpeech, a speech waveform 
analysis program developed by the third author, and cursors 
were manually placed to designate measurement points. In 
the case of steps, the initial cursor was placed at the onset of 
the burst. With fricatives, the initial cursor was placed at the 
onset of the frication noise waveform. In all cases, the final 
cursor was positioned at the end of the third pitch period 
cycle of the following vowel. 

For each waveform token, a sequence of spectra was 
computed. A 20-ms analysis window was used to compute 
each spectrum in the sequence. The initial spectru•m in the 
sequence was obtained by centering the analysis interval at 
the initial cursor position. Subsequent spectra in the se- 
quence were obtained by moving the analysis interval for- 
ward in time by 10-ms increments, resulting in 50% overlap 
of adjacent analysis intervals. The number of analysis inter- 
vals varied with the phone analyzed, ranging from a mini- 
mum of 7 intervals for/p/to 25 intervals for/s/. 

The Fourier spectrum was computed for each analysis 
interval using the following procedure. The speech signal 
was preemphasized by first differencing. A 400-point Ham- 
ming window was applied to the preemphasized speech sig- 
nal within each analysis interval, the 400-point data se- 
quence was extended with zeros, and a 512-point fast 
Fourier transform (FFT) was computed. 

The linear frequency scale spectral moments were de- 
rived from the Fourier spectrum by computing the power 
spectrum P(k) =Xre(k) 2 +Xim (k) 2, where Xr½ and Xim 
are the real and imaginary components of the Fourier spec- 
trum, and k denotes the Fourier frequency sample. For fre- 
quency samples k in the range 1 <k<256, the normalized 
power spectrum p(k) is computed as p(k) 
= P(k)/[P(O) + ... + P(256) ]. The frequency sample at 

dc, k = 0, is left out of the calculation because the acoustic 

recording system does not give meaningful data at dc. Fre- 
quency samples above k = 256 are disregarded, because for 
real valued signals x(n), P(k) = P(512 - k). 

The spectral moments were obtained by treating p(k) 
for 1 <k<256 as the probability values for a discrete. random 
variable k, which assumes integer values over the range 
(1,256). Because of the manner in whichp(k) was comput- 
ed, we can be assured that p(l) + '" +p(256) = 1 and 
p(k) < 1 andp(k) >0, givingp the properties of a probability 
that allow us to compute moments of a discrete probability 
distribution. The linear frequency scale moments are given 
by 

L• =fl P( 1 ) + '-. +fes6p(256), 

L2 = (fl -- L,)2P(1) + '" + (f256-- L,)2p(256), 
L3 = (fi -- L,)3p(1) + '" + (f:56-- L,)3p(256), 
L4= (f• -- L,)np(1) + ...+ (f256-- L,)4p(256), 
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FIG. !. (a) Two spectra that differ in mean and skewhess. The thin-lined 
spectrum has a mean of 1.0 kHz and a positive skewhess of 4.0. By contrast, 
the thick-lined spectrum has a mean of 4.5 kHz and a slight negative skew- 
ness of -- 1.2. (b) Two spectra with similar means and skewhess, but differ- 
ent kurtoses. The thin-lined spectrum has a kurtosis of -- 0.7, which is re- 
flective of its diffuse peaks, while the thick-lined spectrum has a kurtosis of 
6.7. All spectra were LPC smoothed for easier viewing. 

where the frequencyfk of the k th frequency sample is given 
by fk =f•k/SI2, where • is the sampling frequency at 
which the speech waveform is acquired. The moment Li has 
the units of frequency to the ith power. Dimensionless ver- 
sions of the third and fourth moments are computed accord- 
ing to/_• = L3/(L 2) 312, where 13 is the coefficient ofskewness 
and 14 = [L4/(L2) -• ] -- 3, where 14 is the coefficient of kur- 
tosis (see Newell and Hancock, 1984). These dimensionless 
versions of the third and fourth moments are normalized 

with respect to shifts in center frequency and frequency scale 
that can occur between subjects producing the same sound. 
Examples of spectra with different values for each of these 
moments are presented in Fig. 1. 

Bark transform frequency scale moments were comput- 
ed from the power spectrum using a somewhat different pro- 
cedure from the one used for the linear frequency scale mo- 
ments. The Bark transform is a nonlinear warping of the 
frequency scale performed according to formulas stated by 
Syrdal and Gopal (1986). This FFT algorithm computes the 
Fourier spectrum at the uniformly spaced frequency sam- 
ples fk- If we apply the Bark transform to the frequency 
scale, the corresponding Bark samples b& will be nonuni- 
formly spaced. The Bark moments were computed using the 
procedure outlined for the linear moments, where we re- 
placed the power spectrum P(k) with the weighted power 
spectrum (bk -- bk_ 1 )P(k) and we replaced the frequency 

samplesfk with their corresponding Bark samples b&. In this 
manner, nonuniform spacing of spectrum values on the Bark 
scale gave more weight over the region where the Bark scale 
was more sparsely sampled. 

The moments data from each subject were grouped 
across all repetitions of each target obstruent, independent 
of the vowel context. Moments calculated for each obstruent 

were then grouped according to the time interval from which 
they were derived. For example, all moments calculated 
from the first 10-ms interval for all repetitions of one sub- 
ject's production of/k/, were grouped; a similar grouping 
was made for the next 10-ms interval, etc. The data from all 
subjects of a given gender were then combined. 

Though the first four moments were calculated, it was 
determined that the second moment, the variance, did not 
add to the discriminability of the different obstruents, so it 
was not used as a discrete variable in our analyses. The effi- 
cacy of the remaining moments in differentiating place of 
articulation was evaluated by means of graphic representa- 
tion and discriminant analyses. 

Stepwise discriminant analyses (BMDP7M) were per- 
formed separately on the stops and fricatives. Basically, the 
discrimant analysis is a linear combination of"n" variables 
such that the resulting functions, or canonical variates, pro- 
vide maximum distance between members of different cate- 

gories while minimizing the distance between members of 
like categories. The number of canonical variates is depen- 
dent on the number of categories to which the data are to be 
assigned; there is one less canonical variate than the number 
of categories. Discriminant analysis is very sensitive to de- 
viations of the input variables from normality. For this rea- 
son, a Shapiro-Wilk (Shapiro and Wilk, 1965) test of nor- 
mality was performed on all input-variable distributions. All 
variables were normally distributed (p > 0.05). 

D. Results 

The moments data were used to construct three-dimen- 

sional graphs for each target place of articulation. The time 
interval (re: obstruent onset) from which the moments were 
calculated was used as a parameter. In this way, four rel- 
evant dimensions (mean, skewhess, kurtosis, time) could be 
displayed in three-dimensional space. Figure 2 presents rep- 
resentative graphs from one subject for the linear moments 
calculated from the first 10 ms (burst to burst + I0 ms) of 
each voiceless stop. The data are collapsed across all vowels, 
as are all data presented in this article. 

It can be seen in Fig. 2 that the simultaneous evaluation 
of mean, skewness, and kurtosis differentiates the place of 
stop articulation. For example,/p/and/t/differ consistent- 
ly in skewhess and mean but not in kurtosis;/k/is similar to 
/p/in mean and skewness but differs from the other places 
of articulation in kurtosis. The graphic representation of the 
linear moments suggests that labial and alveolar stops are 
distinct in terms of mean and skewness, while the velar stops 
are distinguished by their kurtosis. 

Figure 3 presents the Bark moments for the same time 
interval and subject as the linear moments presented above. 
As with the linear moments, differences can be seen in the 

three-dimensional space occupied by each place of articula- 
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FIG. 2. The mean frequency, skewness, and kurtosis are displayed for each 
voiceless stop for the burst interval. The moments plotted on this graph 
were calculated from linear spectra. 

FIG. 3. Mean frequency, skewness, and kurtosis are plotted for the Bark 
transformed spectra. Data for each voiceless place of articulation are plot- 
ted. 

tion, but perhaps on different dimensions. For example, 
skewness is not as useful in distinguishing/p/from/t/on 
the Bark scale, although means remain distinct for these two 
places. Kurtosis, however, is still the primary feature that 
distinguishes the velar stops from the other places of articu- 
lation. 

Graphic representation of the moments is useful if dis- 
crete areas in the three-dimensional space can be ascribed to 
distinct obstruents. For example, if a unique space could be 
defined for each stop, phonemic accuracy could be deter- 
mined. Productions that fell outside of the target space 

would indicate phonemic errors. Unfortunately, we were un- 
able to create unique areas with the moments data since only 
three variables could be viewed at one time, whereas earlier 
studies (Kewley-Port and Luce, 1984) would suggest that 
stop consonants can best be viewed in multidimensional 
space. 

Perhaps a better way to determine whether word-initial 
obstruents can be differentiated by the linear and/or Bark 
moments is to perform a discriminant analysis. Its stated 
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TABLE ![. Classification of voiceless stops from moments calculated from first 10 ms, re: burst. 

Males Females 

Percent Number of cases Percent Number of cases 

Phoneme correct p t k correct p t k 

Linear 

Bark 

p 84.0 74 10 4 
t 77.7 11 63 7 

k 78.0 !1 7 64 

p 86.4 76 12 0 
t 90.1 4 73 4 

k 67.1 9 18 55 

88.7 79 2 8 

88.6 7 28 3 

83.9 6 7 68 

82.0 73 11 5 

83.1 10 74 5 

70.3 9 15 57 

earlier, investigators have shown that dynamic aspects of the 
onset spectra are important in the description and percep- 
tion of word-initial stops (Kewley-Port et aL, 1983). If the 
moments analysis is to be useful in the quantification of the 
spectral properties of these obstruents, classification perfor- 
mance should improve as moments from sequential tempo- 
ral slices are added. We, therefore, performed discriminant 
analyses on the moments calculated in the interval sur- 
rounding the burst (burst to burst + 10 ms) and then per- 
formed additional analyses as we added the moments from 
spectral cross sections of successive intervals. 

In our first analysis, the input variables were the mean, 
skewness, and kurtosis from one spectral cross section, cov- 
ering the burst to burst + 10-ms interval for voiceless stops 
produced by the five male subjects. Table II presents the 
results of this analysis. On average, the linear moments cor- 
rectly classified 79.9% of the voiceless stops, whereas 81.2% 
of the voiceless stops were categorized correctly using the 
Bark moments. 

The data from the female subjects for this time interval 
were used to validate the classification functions derived 

from the male data. This procedure provides an empirical 
test of the validity of the discrimination of the classifying 
variables, in this case the voiceless stops. On the linear scale, 
the male categories correctly classified 87.1%, on average, of 
voiceless stops produced by the female subjects. The male 
categories derived from the Bark moments correctly classi- 
fied 78.5% of the voiceless stops produced by the females. 
This validation procedure suggests that the linear moments 
provide a better model for the classification of voiceless 
stops. 

The addition of a second cross section, thereby includ- 

ing spectral information from the first 20 ms of the stop, 
improved the classification accuracy for males based on the 
linear moments but did not affect the overall classification 

from the Bark moments. On the linear scale, 88.8% of the 
voiceless stops were, on average, correctly classified, while 
the Bark moments correctly classified 82.6% of the voiceless 
stops. 

The validity of the classification of voiceless stops from 
the linear moments from the first 20 ms (re: burst) was test- 
ed with the data from the female subjects. On average, the 
classification functions derived from the male speakers' lin- 
ear moments correctly categorized 91.2% of the females 
voiceless stops. While there was no improvement in the clas- 
sification of the stops using the Bark moments from the first 
20 ms of the VOT interval, the validity of the classification 
functions improved, compared to the model obtained with 
the first 10 ms of the stop. The classification functions de- 
rived from the male Bark moments from the first 20 ms of 

the stop correctly classified 85.7% of the female stops. The 
percent correct classification of each stop is presented in Ta- 
ble III. 

In an effort to improve classification, we added two 
more spectral cross sections and repeated the discriminant 
analysis of the males' data. Based on the linear moments 
from the first 40 ms, 95.4% of the/p/'s, 88% of the/t/'s, 
and 92.6% of/k/'s were classified correctly. Classification 
of the females' voiceless stop consonants based on the males' 
discriminant functions was correct for 90.5% of the/p/'s, 
96.5% of the/t/'s, and 93.6% of the/k/'s. The/p/'s and 
/t/'s were misclassified as/k/(i.e., no overlap between/p/ 
and/t/categories), whereas/k/was misclassified as either 
/p/or/t/. 

TABLE III. Classification of voiceless stops from moments calculated from first 20 ms, re: burst. 

Linear 

Bark 

Males 

Percent Number of cases 

Phoneme correct p t 

p 89.7 79 3 6 
t 91.3 3 74 4 

k 85.3 7 5 70 

p 94.3 83 5 0 
t 81.5 10 66 5 

k 72.0 3 20 59 

Females 

Percent Number of cases 

correct p t k 

87.6 78 3 7 

100 0 89 0 

86.1 6 5 70 

89.8 80 7 2 

92.1 2 82 5 

75.3 2 18 61 
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There was little improvement in the classification func- 
tions based on the Bark transformed moments when addi- 
tional spectral cross sections were included. Classification of 
the stops based on the Bark moments from the first 40 ms of 
the VOT interval yielded, on average, 85.7% correct classifi- 
cation. When the female data were classified by these func- 

tions, classification improved to approximately 89% cor- rect. On the Bark scale, classification errors caused/p/and 
/t/to be confused, while/k/was consistently misclassified 

as It/. From these analyses, it appears that the voiceless stops 
can be discriminated well by the mean, skewhess, and kurto- 
sis calculated from linear FFTs over the first 40 ms of the 

VOT interval. Group means of the discriminant functions 
calculated from the linear moments for the first 40 ms, and 
the distance of all points from those means, are plotted for 
the first two canonical variates in Fig. 3. Post hoc inspection 
of the canonical weights indicates that the first canonical 
vatlate relates to the mean frequency of the second and later 
spectral cross sections. This would include the first 40 ms of 
the VOT interval exclusive of the burst itself. The second 

canonical vatlate, as determined by the second highest ca- 
nonical weights, is an index of the skewhess and kurtosis of 
all spectral cross sections investigated. This variate includes 
the burst through the first 40 ms of the stop. 

Classification of the fricatives when all voiceless frica- 

tires were included in the analysis was not as successful as 
the classification of the voiceless stops. When the linear mo- 
ments from only the first 10-ms spectral cross section of the 
males' fricatives were used, correct classification ranged 
from 41.4% for/s/to 71.4% for/f/. The addition of a sec- 

ond spectral cross section did not improve classification 
(41.4% for/s/to 74.5% for/f/). The Bark moments from 
the first 20 ms of the fricatives yielded slightly better classifi- 
cation than the linear moments, but was still a rather poor 
estimate of the fricative categories (58.3% for/0 / to 75.4% 
correct classification of/f/). The addition of two more spec- 
tral cross sections, thereby attempting classification on the 
basis of the first 40 ms of the fricatives, did not improve 
overall performance for either the linear or Bark moments. 
The Bark moments did, however, provide a better classifica- 
tion than the linear moments (average correct classification 
of 77.7% for the Bark moments versus 74.5% correct for the 

linear moments). 
Since/0 / and If/may be discriminated by information 

in the transition region rather than by the noise itself (Har- 
ris, 1958), we attempted a discriminant analysis on the Bark 
moments from the first 40 ms plus the moments from a 20- 
ms interval of the transition. While the addition of this tran- 
sition information iml•roved categorization to an average of 
80.4% correct, only 61% of the/0/'s were correctly catego- 
rized. The remaining 39% were classified as/f/. Validation 
of this model with the female data was not attempted since 
the model derived from the male data performed so poorly. 

Figure 4 provides a representation of the overlap of the 
phoneme groups based on the first two canonical variates 
calculated from this last discriminant analysis. It can be seen 
that there is little overlap between the two sibilants, while the 
classes of the less intense fricatives almost completely over- 

FIG. 4. Cluster centers, marked by the appropriate phoneme, and boundar- 
ies enclosing all voiceless stops are plotted for the first two canonical vari- 
ares. Shading represents areas of classification ambiguity. 

lap one another. When either sibilant was misclassified, the 
error was most often in classifying the sibilant as either/f/or 
/0/. This result suggests that all relevant variables used to 
discriminate the sibilants from the other fricatives may not 
have been represented in our analysis. For example, if we 
included fricative intensity in our analysis, the classification 
errors of the sibilants might disappear. 

Given the poor discrimination of/f/and/0 / combined 
with the type of classification errors of the sibik, nts (i.e., 
sibilants classified as nonsibilants), discriminant analyses 
were performed on the sibilants alone. When the moments 
from the first 20 ms (i.e., two spectral cross sections) of the 
males' sibilants were included in the analysis, average dis- 
crimination improved to 82.7% when the linear moments 
were used and 98.3% corect for the Bark moments. Further, 
the function derived from the Bark moments correctly clas- 
sified 95% of the sibilants produced by the female subjects. 
Contingency tables from these analyses are presenled in Ta- 
ble IV. 

FIG. 5. Cluster centers, marked by the appropriate phoneme, and boundar- 
ies enclosing all voiceless fdcatives are plotted for the first two canonical 
variates. Shaded regions indicate cluster overlap. 
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TABLE IV. Classification of voiceless sibilants from moments calculated from first 20 ms, re: frication onset. 

Males Females 

Percent Number of cases Percent Number of cases 
Phoneme correct s g cotreel s 

Linear 70.0 21 9 

90.0 3 27 

Bark s 96.6 29 I 

g 100 0 3O 

103 30 0 

I00 0 30 

93.3 28 2 

96.7 ! 29 

Post hoc inspection of the weightings of the variables 
used in the discriminant functions indicates that the sibilants 

were discriminated primarily on the basis of skewness. 
Further, this discrimination improved when the Bark mo- 
ments were used. 

In summary, the voiceless stops could be classified with 
an average of 92% accuracy from the linear moments de- 
rived from the first 40 ms of the voiceless stops. Further, the 
classification functions can be generalized across gender. 
Correct classification of 98% of the sibilants resulted from 

the discriminant analysis of the Bark moments obtained 
from the first 20 ms of the consonants. Again, these effects 
hold across gender. 

II. DISCUSSION 

The results of the present experiment demonstrate that a 
quantitative procedure can be applied to the classification of 
word-initial voiceless obstruents. Compared to qualitative 
descriptions of obstruent features (Kewley-Port, 1983; 
Blumstein and Stevens, 1979, 1980), the moments analysis 
described in this article provided greater classification accu- 
racy. For example, Kewley-Port and Luce (1984) found 
that sophisticated judges could classify voiceless stops with 
89% accuracy. In the present experiment, 92% of the voice- 
less stops were correctly categorized using linear moments 
from the first 40 ms of the VOT interval. 

Performance on the Bark scale was similar to the accu- 

racy noted by Kewley-Port and Luce(1984) but inferior to 
the linear moments in the classification of the voiceless stops. 
This is in contrast to Kewley-Port's (1983) findings that the 
"auditory filter representation" of LPC spectra for voiced 
stops "appeared to display place of articulation more sue- 
cessfully" (p. 332) than the linear spectra. It may be that the 
filter bandwidths used in the present investigation were suffi- 
ciently different from Kewley-Port's to account for the dif- 
ferent results. The Bark scale is essentially a log-frequency 
scale, thereby providing a wider analysis band in the high- 
frequency compared to the low-frequency region. This 
causes a greater weighting of energy in the higher frequen- 
cies and an upwards shift in the spectral peaks. The effect 
was to distort the indices of specral shape, namely, skewness 
and kurtosis, since the Bark spectra for all voiceless stops 
have a strong negative slope and little dispersion around the 
mean frequency. It is possible that the narrower bandwidths 
used by Kewley-Port did not cause as much distortion as was 

seen in the Bark scale used in the present work. Also, Kew- 
Icy-Port used LPC spectra as the basis of analysis. The LPC 
filtering prior to "auditory filtering" may have reduced the 
excessive high-frequency weighting that distorted shape in- 
dices. 

On the linear scale, the important variables for the clas- 
sification of stops were the mean frequency of the frication 
interval after the burst and the shape of the spectra from all 
temporal intervals including the burst. It seems reasonable, 
on psychoacoustic grounds, that the mean frequency of the 
burst would not be relevant to the discrimination of voiceless 

stops. The burst for stop consonants is of such short duration 
that frequency discrimination would be extremely poor, if 
not impossible. For this reason, the burst is probably best 
described as noise with little frequency specificity. 

A high rate of classification accuracy was also found for 
the voiceless sibilants. Unlike the stops, however, the sibi- 
lants were discriminated better on the Bark scale than on the 

linear scale. The superiority of the Bark over the linear scale 
in the classification of sibilants has been demonstrated by 
Bladon and Seitz (1986). They found that voiceless sibilants 
were discriminated best by the slope of the Bark transformed 
spectra. Our results, which demonstrated that skewhess was 
the most important moment used to discriminate/s/from 
/•/, are consistent with Bladon and Seitz's data. 

Neither the linear nor the Bark moments provided accu- 
rate classification of/f/and/0/. In fact, nearly half of the 
/0/tokens were misclassified as/f/. One explanation for 
this poor classification is that/f/and/0 / are, preceptually, 
among the most confusable consonants (Miller and Nicely, 
1955). One might, therefore, infer that the acoustic cues for 
these two phonemes are not highly distinctive. It is possible 
that classification accuracy of these phonemes could be im- 
proved with different analysis parameters. For example, dis- 
tinctive spectral information may reside in the later portion 
of these less intense fricatives. Since our analysis concentrat- 
ed on phoneme onsets (the first 40 ms), we may have failed 
to capture salient spectral differences. The addition of limit- 
ed information from the transition region (i.e., 20 ms prior 
to the vowel onset), may have been inadequate to improve 
classification. Alternatively, a different window size may 
have yielded better spectral differentiation of/f/and/0/. 
We chose to use a 20-ms Hamming window for all of our 
analyses. Since fricatives are characterized by a relatively 
stationary articulatory configuration, a larger window could 
have been used. This may have provided greater frequency 
specificity, which may have aided in differentiating/f/from 
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/0/. The effect of these changes on classification of the frica- 
tives is being explored. 

One of the most striking features of the present data is 
that the classification functions of the voiceless obstruents 

could be generalized across gender. On average, categoriza- 
tion of females' obstruents was accomplished with 96% ac- 
curacy using the same model established from the males' 
moments data. To the best of our knowledge, this is the first 
demonstration of a high rate of cross-gender classification in 
the absence of any additional normalization procedure. It 
suggests that a quantitative procedure may provide scale- 
independent shape information upon which spectral classifi- 
cation can be made. 

As we have indicated, these results are preliminary in 
the sense that the speech sample was rather limited. It is 
possible that the high degree of classification accuracy may 
diminish when additional sources of variability (e.g., more 
vowel contexts, changes in rate) are introduced. However, 
the data of Forrest et al. (1987) suggest that this is not that 
case, at least for male speakers. The improvement in classifi- 
cation accuracy in the present study compared to the 
Kewley-Port's and Blumstein and Stevens' work may also be 
attributable to differences in sampling rate; that is, both 
Kewley-Port and Blumstein and Stevens sampled the speech 
signal at 8 kHz. In the present investigation, a sampling rate 
of 20 kHz was employed. It is possible that there is informa- 
tion in the higher frequencies that aids classification of voice- 
less obstruents. These possibilities are being explored in on- 
going research. 

Finally, the application of discriminant function analy- 
sis to the continuous distributions of the spectral moments 
may hold promise as a technique for indexing the distance 
between a segmental error and a target phoneme. The output 
of the discriminant function analysis includes a metric (Ma- 
halanobis D 2) that describes the distance of each item 
(phone) from the mean of the cluster. This metric may be 
particularly useful when error sounds are not easily placed 
into a phoneme category. If the appropriate acoustic-percep- 
tual studies show that these ambiguous sounds can be de- 
scribed meaningfully by Mahalanobis D: values, we may 
have a means for application of spectral classification sys- 
tems to the description of disordered speech, which is, in 
fact, our goal. 
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