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Abstract
The limitations of genome-wide association (GWA) studies that focus on the phenotypic influence
of common genetic variants have motivated human geneticists to consider the contribution of rare
variants to phenotypic expression. The increasing availability of high-throughput sequencing
technology has enabled studies of rare variants, but will not be sufficient for their success since
appropriate analytical methods are also needed. We consider data analysis approaches to testing
associations between a phenotype and collections of rare variants in a defined genomic region or
set of regions. Ultimately, although a wide variety of analytical approaches exist, more work is
needed to refine them and determine their properties and power in different contexts.

Introduction
Despite the success of genome wide association (GWA) studies in identifying common
single nucleotide variants (SNVs) that contribute to complex diseases1, the vast majority of
genetic variants contributing to disease susceptibility are yet to be discovered. In fact, it has
been argued that these variants are not likely to be captured in current GWA study
paradigms that focus on common SNVs.2 It is now widely believed that many genetic and
epigenetic factors are likely to contribute to common complex diseases, including multiple
rare SNVs (defined by convention as those that have frequencies < 1%), copy number
variations (CNVs), and other forms of structural variation. 3–12 Irrespective of how one
might define ‘rare variant’ (which, although we have adopted the convention <1%
frequency, might range from <0.1% to <0.01% depending on the context13) it is essential to
recognize that such variants likely contribute to phenotypic expression in conjunction with,
or over-and-above, common variants. This consideration has important implications when
designing a study or choosing a statistical method for analyzing associations involving rare
variants.

There are many reasons to believe that multiple rare variants, both within the same gene and
across different genes, collectively influence the expression and prevalence of traits and
diseases in the population at large. First, it has been argued that population phenomena, such
as the recent expansion of the human population, are likely to have resulted in a large
number of segregating, functionally-relevant, rare variants that mediate phenotypic
variation.14, 15 Second, the discovery of rare independent somatic mutations within and
across genes contributing to tumorigenesis may parallel the functional effects of inherited
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variants contributing to congenital disease.11, 16, 17 Third, the identification of multiple rare
variants within the same gene contributing to largely monogenic disorders such as Cystic
Fibrosis and BRCA1 and BRCA2-associated breast cancer18, 19 suggests that rare variants
might also influence common complex traits and diseases. Fourth, the identification of
multiple functional variants within the same gene and the association of these variants with
both in vitro and clinical phenotypes indicates that multiple rare variants could influence
general clinical phenotypic expression20. Fifth, importantly, sequencing studies focusing on
specific genes have shown that collections of rare variants can indeed associate with
particular phenotypes (Table 1).

To comprehensively characterize the contribution of rare variants to phenotypic expression,
one could either sequence genomic regions of interest using high-throughput DNA
sequencing technologies21 or genotype common and rare variants identified in previous
sequencing studies using custom genotyping chips. There are a number of ways to approach
association studies involving rare variants, which are independent of sequencing or
genotyping technology. For example, one could: focus on candidate disease genes 22; focus
on genomic regions implicated in linkage or genome-wide association studies, under the
assumption that phenotypically-relevant rare variants also exist in those regions; consider
multiple functional genomic regions, such as exons 23; or study entire genomes.12, 24 The
sampling framework for such studies is also extremely important as one could focus on:
cases and controls, possibly in DNA pools22 or with oversampling of controls to achieve
greater power in studies of rare diseases; individuals phenotyped for a particular quantitative
trait; individuals with ‘extreme’ phenotype values in order to increase efficiency25, 26; or
families in order to exploit parent-offspring transmission patterns.12, 24

In addition to a sequencing technology and an appropriate sampling and study design,
bioinformatic methods for analyzing the potentially massive amounts of sequence data likely
to be generated in a study are needed, as are algorithms for accurately identifying rare
variants and assigning genotypes to individuals from sequence data12, 27. Importantly,
statistical analysis methods for relating rare variants to phenotypes of interest are needed.
Association analyses involving rare variants are not as straightforward as analyses involving
common variations since the power to detect an association between a single rare variant is
low in even very large samples (Figure 1).14, 28, 29 Therefore, researchers have begun to
develop data analysis strategies that assess the collective effects of multiple rare variants
within and across genomic regions 13, 28, 30. This challenge of statistical analysis is the focus
of this Review.

There are many settings in which a collection of rare variants might exhibit an association
with a trait. Of the many different methods that could be used for testing associations, not all
of them are likely to work well in each of these settings. Here, we consider the rationales
behind different data analysis methods, pointing out their limitations and advantages. We
also outline areas for further research. As noted, appropriately sophisticated methods for
identifying variants, assigning genotypes, and sampling individuals are crucial for rare
variant analyses, but we do not discuss them here. There are, however, a few additional
issues that researchers need to consider in any association study involving rare variants, as
briefly described in Box 1. Finally, although we focus on the analysis of rare SNVs, aspects
of the analytical methods discussed can be used with other forms of variation including rare
CNVs, although certain caveats apply, which we mention briefly.
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Box 1

Issues Impacting the Interpretation of Rare-Variant Association Studies

There are a number of statistical analysis issues that go beyond the choice of an
association test statistic in studies of rare variants. These are outlined briefly below.

Sequencing and Genotyping errors

It has been shown that differential genotyping error rate can have substantial impact on
common-variant based GWA studies.89 Given that current sequencing protocols have
inherent error rates, more research is needed to understand how false positive variant
calls and nucleotide misassignments in sequence-based association studies of rare
variants will impact inferences.

Phasing

Rare variant effects can manifest as compound heterozygosity,90 the ‘unmasking’ of
deleterious variants via deletions on a homologous chromosome12, and other haplotype
context-dependent phenomena. Thus, leveraging phase information in an association
study of rare variants may be crucial, but obtaining phase from sequence data alone is not
trivial.24, 91–93

Stratification

The potential for false positive associations due to population stratification is large in
studies involving rare variants since specific rare variants are more likely to be unique to
a particular geoethnic group. Thus, even if focus in a rare variant study is on a particular
gene or genomic region, it is important to genotype the individuals in the study on
enough additional markers to assess and control for stratification using standard
strategies.94, 95

The Use of In Silico Controls

The practice of identifying and quantifying allele frequencies in a group of individuals
and comparing them with historical or publicly available ‘control’ sets in studies
involving rare variants is highly problematic due to the potential for stratification and
sampling variation effects.96 In order to avoid this, either sophisticated genetic
background matching strategies or de novo sequencing of a case and control group are
recommended, but more work in this area is needed.

Genomic Units of Analysis

Different strategies for testing a genomic region for association involving rare variants
exist. For example, one could test all the variants in a region (depending on its size) for
collective frequency differences between, e.g., cases and controls, define particular
regions of interest, such as exons or transcription factor binding sites (Box 2), or pursue a
‘moving window’ analysis in which variants in contiguous, possibly overlapping,
subregions are tested. Each of these strategies impacts the number and nature of multiple
testing problems.

Box 2

In Silico Functional Assessment of Sequence Variations

Identifying groups of variants that reside in genomic regions known or likely to be of
functional significance, such as exons, promoters, enhancers, etc. can be pursued
through the use of genome browsers such as the UCSC genome browser. One can also
assess the more specific functional potential of individual sequence variants given
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their sequence contexts and incorporate this information into an association analysis
(e.g., by weighting them more heavily in test statistics). The table below lists web
resources for such assessments. Finally, one could identify variants that participate in
common multigene pathway and processes and assess their collective effects on a
phenotype.

Functional Element Annotation

Beyond the basic annotations presented in the UCSC genome browser, numerous
prediction methods exist for transcription factor binding sites exist (TFsearch,
Consite:100, TRANSFAC:101, enhancers (VISTA Enhancer Browser:102), microRNAs
(miRBase:103), microRNA binding sites (Targetscan:104), intronic splice sites105, and
exonic splicing enhancers106, 107, silencers108, 109, regulatory elements110–112 (Table
B.1). Epigenetic and/or regulatory factors derived from the ENCODE project113, such
as histone binding/methylation/acylation, CpG islands, nuclease accessible sites,
transcription start sites, and others are also available through the UCSC Genome
Browser114.

Pathway and Process Assessment

There are numerous resources for pathway information and analysis. Open source
databases that include pathway information, but not necessarily analysis of datasets,
include Reactome 115, BioCarta and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) 116, as well as a biological process resource, The Gene Ontology (GO)
database117. Publically available pathway analysis tools that link to these databases
include, but are not limited to, Cytoscape 118, GenMAPP 119, and the DAVID
Bioinformatics Resource 120. Commercially available tools that build off these
databases and include proprietary pathway information include Ingenuity Pathway
Analysis and GeneGo by MetaCore. For a more complete review of pathway analysis
tools, see Suderman and Hallet.121

Functional Impact Prediction Modeling

Functional predictions often leverage various types of information, including but not
limited to protein structure information, sequence conservation, motif conservation,
etc., in order to build models that generate a probability that a particular variant is
functionally important. Some of these methods, and many integrative web servers for
this purpose, have been reviewed.122–124 Functional prediction for non-coding
variants are generally limited to scoring the deviation of a polymorphism from known
regulatory factor motifs, and examples are limited but include MaxEntScan for
splicing prediction105, or RAVEN for regulatory regions.125

Generality of Annotators

A number of webservers and algorithms attempt to integrate the various functionally-
relevant genomic features in order to explicitly weight or prioritize variants
investigated in an association study. A subset of the tools attempt to prioritize SNPs
based upon scores returned from the various functional impact predictors while many
simply present the functional elements and leave it up to the user to draw their own
conclusions about ultimate functionality. A few tools, such as SeattleSeq and
Sequence Variant Analyzer integrate various types of biological data in order to
annotate novel sequence variants, whereas Trait-O-Matic annotates variations with
respect to overt phenotypic features that they have been associated with.

Imputation
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There is a great deal of precedent for assigning individuals who have not been sequenced
or genotyped at a specific locus common genotypes based on available neighboring locus
genotype information and linkage disequilibrium patterns via imputation methods.97

Although highly problematic in situations involving de novo or even moderately rare
variants (<1%), imputation methods involving rare variants have begun to receive
attention and could be extremely useful in future association studies.98

Accommodating Multiple Comparisons

Controlling for false positive findings due to multiple testing is necessary. Pre-specified
Bonferroni-like corrections on association p-values are not likely to be appropriate given
possible correlations between defined groups of rare variants and/or overlapping
windows to be tested. Such correlations will also impact false discovery rate (FDR)
procedures for accommodating multiple testing a posteriori.99 Simulation studies and
permutation testing that consider the entire set of tests performed (e.g., all windows and
groups of variants across all genomic regions considered) to a get a global false positive
rate are the most appropriate given their flexibility and sound theoretical bases, but will
likely be very computationally intensive.75 More work in this area is also sorely needed.

Capturing the Effects of Rare Variants
The nature of the effect of rare variants

As noted, rare variants are likely to influence a trait along with common variants.4, 14 In
addition, just as interaction effects involving either genetic or environmental factors must be
considered in standard GWA studies9, they are also likely to be important in association
studies involving rare variants. With these facts in mind, there are a number of different
settings in which rare variants within a defined genomic region could influence a phenotype.
Figure 2 provides a few contrasting examples, including situations in which: a common
variant is associated with a phenotype; rare variants influence a phenotype independently of
one another; rare variants, along with variants with more moderate or common frequencies,
act synergistically to influence a phenotype; or only a subset of the rare variants influences
the phenotype due to their locations in a functional element within the region of interest.

Of these possible settings, the one receiving the most attention by statistical geneticists is the
‘extreme allelic heterogeneity (EAH)’ setting in which single or small subgroups of
individuals with a particular phenotype or disease possess any one, or some subset, of a
larger set of rare variants that all independently perturb a single relevant gene in a similar
way.12, 31 Although conceptually easier to accommodate in statistical analysis models, there
is no reason to believe that the EAH setting is the rule rather than the exception with respect
to rare variant influences on phenotypic expression. Statistical analysis models and methods
for rare variant association studies should therefore be developed and tested in settings that
go beyond the EAH model, such as settings implicating synergistic effects of rare (and
common) variants within (and across) genomic regions.

Single locus tests vs. ‘collapsing’ sets of rare variants
The simplest approach to testing rare variants for association with a trait is to test them
individually using standard contingency table and regression methods of the sort
implemented in widely used genetic data analysis packages such as PLINK.32 This strategy
is highly problematic given, for example, the poor power that such statistical tests have to
detect small rare variant frequency differences between diagnostic or phenotypic groups
(figures 1A and 1B).14, 28, 29 In order to overcome power issues associated with testing rare
variants individually, one could ‘collapse’ sets of rare variants into a single group and test
their collective frequency differences between cases and controls.28, 30 In its simplest form
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this strategy could involve counting individuals possessing a rare variant at any position in
the genomic region of interest, calculating the frequencies of these individuals, for example
in case and control groups, and then testing the two groups for frequency differences. This
strategy forms the basis for most of the statistical models described in this review and
variations of it have been considered in many studies involving rare variants (Table 1). To
make this collapsing strategy more biologically appealing, elaborate ways of leveraging
functional elements and annotations in a genomic region to collapse the variants together
can be exploited (see below and Box 2). The effect of collapsing variants and testing their
collective frequency differences on power can be substantial, as depicted in Figure 1B.

Quantitative Traits and Conditional Analysis
Regression-based collapsed variant and conditional tests can greatly enhance association
studies involving rare variants. Consider Figure 1C which plots the power to detect the
effect of a variant on a quantitative trait for 1000 individuals as a function of the fraction of
variation of the quantitative trait explained by that variant. If a set of rare variants each
individually explain only a small fraction of the variation of the trait, they could be
combined into a single predictor variable, perhaps by creating a dummy variable which
equals 1 if an individual possesses any of the variants and 0 otherwise.33 This strategy
should increase the fraction of variation explained by the variants as a whole and hence
increase the power to detect their collective, rather than individual, effects. In addition, if
one included other factors in a regression model - such as covariate effects, the effects of
previously identified common variants, or other collapsed sets of rare variants - then the
power to detect the association involving rare variants could increase substantially (Figure
1C). Not all analysis methods proposed for rare variant studies, however, can accommodate
additional factors in their formulations and hence leverage conditioning effects. In addition,
not all models can accommodate quantitative trait analysis unless the phenotype is broken
into quantiles and stratified analysis is pursued (Table 2).

Defining Collapsing Sets of Rare Variants via Function or Proximity
The collapsing strategy makes important assumptions. First, some formulations of collapsed
tests assume that each subject is likely to have only a single rare variant. This may be true
given the low frequency of the variants, but could in theory be untrue if the variants interact
with one another or large genomic regions are tested.20, 33 Second, if one collapses variants
by counting individuals possessing rare variants, then if either the frequency of those
variants is large enough or if there are many of them, the percentage of individuals
possessing any one of them could reach 100%. Therefore, ways of circumscribing the
variants to be collapsed, such as leveraging functional information (Box 2), or weighting the
variants in some way,34, 35 are important. Alternatively, one could employ statistics that do
not rely on simple counting. For example, one could tally the number of variants within a
collapsed set possessed by each individual.33

Although there are a number of ways to leverage functional annotations to guide the
collapsing of rare variants in association studies, their use will only be as good as the science
behind those annotations. It is also possible that different functional ‘levels’ of annotation
can be used to define collapsed sets of rare variants. For example, one could define a set of
variants as ‘genic’ if they reside in the open reading frame associated with a gene; as
‘exonic’ if they reside in coding regions within that frame; as ‘non-synonymous coding
variants’ if they perturb an encoded amino acid; and as ‘non-synonymous coding within an
active site of the encoded protein’ if a variant impacts a residue within the active site of the
encoded protein. With this in mind, one could perhaps test hierarchies of hypotheses about
collections of variants and their biological impact on a phenotype.
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It is important to note the distinction between leveraging functional annotations to collapse a
set of rare variants based on their location versus predictions that the variants themselves
have a functional effect (Box 2).35 In fact, two recent papers23, 36 suggest that leveraging
functional annotations and computational methods for predicting the consequences of
specific rare variants can be used to great advantage in the identification of disease-
predisposing variants, at least for rare monogenic conditions. Functional annotations for rare
CNVs and other forms of structural variation can also be leveraged in collapsed or group-
wise analyses. However, many of these forms of variation are thought to exert or manifest
their effects throughout the genome and not necessarily as a group of variants in a singular
region of the genome. Thus, pathway-based (Box 2) and other higher-order approaches to
collapsing or summarizing rare CNV effects have been proposed, especially in the context
of neuropsychiatric disease.3, 37

Specific analysis models
There are a number of statistical analysis strategies that can be used to test the hypothesis
that specific collections of rare variants are associated with a particular trait or disease.
Some of these methods have been developed in contexts beyond human association studies,
such as assessing genetic differentiation between human geoethnic groups or pathogen
sequences. In addition, some methods are more or less agnostic to variant frequencies. In
order to facilitate their descriptions, we have grouped various methods together in three
broad and somewhat arbitrary categories: tests based on the use of group summary
information on variant frequencies compared between, for example, case and control groups;
tests based on the similarity or diversity of unique DNA sequences possessed by different
individuals; and regression models that consider collapsed sets of variants and other factors
as predictors of a phenotype. We consider each of these three categories separately below,
although Table 2 provides brief summaries of representative methods from each category.
Each of the methods discussed can leverage functional annotations to define collapsed
variant sets or can be used in a moving window setting (Box 2).

Box 3

Measures of Diversity and Genomic Similarity

Exploiting sequence similarity or diversity in genetic association studies can be
problematic due to the fact that the choice of a similarity or diversity measure can impact
the interpretation of the results. This issue is well-documented in the cluster analysis
literature59, 126 but has been shown to influence the interpretation of genomic studies as
well. For example, the determination of phylogenetic patterns among different species
based on DNA sequences requires the choice of a DNA sequence alignment method in
order to identify patterns of orthology, and it has been shown that, depending on how
DNA similarities are defined and the alignments are determined, different conclusions
can be drawn about the phylogenetic, and hence evolutionary, relationships between
species.127

For within-species studies assessing the ancestral relationships between populations
based on DNA sequence, it has been shown that the choice of a distance measure can
impact the interpretation of the results50, 128. Measures of nucleotide similarity for the
comparison of DNA sequences between pairs of individuals within a species are also
problematic for this reason. This issue is no less problematic for the assessment of the
difference in the diversity of DNA sequences obtained from two or more groups of
individuals when summary allele frequency measures are used.50 For example, consider
the classical general formula for diversity measures129, 130 for a single population:
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Where pi is the frequency of the ith allele out of a total of k (i=1,…, k) and the exponent
q determines the Δ measure’s sensitivity to the frequency of the alleles. Thus, the use of
q values less than 1.0 produces a measure that emphasizes rare variants and the use of λ
values greater than 1.0 produces a measure that emphasizes common variants.50, 129 The
use of different q values in the construction of Δ measures for the comparison of the
genetic diversities of two (or more) populations will have the same effect50, 130, 131:
small q values will impact differences in rare variants and large q values emphasize
differences in common variants132. Since a genomic region may harbor common,
moderately common, and rare variants, some of which may influence phenotypic
expression, the choice of a q value for association studies based on diversity indices may
be problematic.

Methods based on summary statistics
Morgenthaler and Thilly30 were the first to describe a version of the collapsing approach in
which the frequency of individuals carrying any one of a number of rare variants is
contrasted between case and control groups. They termed this approach the ‘cohort allelic
sums test’ or ‘CAST’ method and suggested the use of standard contingency table-based
Chi-square or Fisher’s exact tests for obtaining p-values. The method as first proposed does
not easily accommodate covariates, cannot be used with quantitative phenotypes, and does
not consider weighting of the variants using, for example, variant frequency or functional
annotations. Li and Leal considered an extension of the CAST method, which they termed
the ‘Combined Multivariate and Collapsing (CMC)’ method.28 Here, rare variants are
collapsed, as in the CAST method, and treated as a single set of variants whose frequency
differences are then tested between groups. This testing could potentially be done
simultaneously with frequency differences at other individual loci or among other collapsed
sets using a summary distance-based Hotelling’s T-Squared statistic.28, 38 The CMC statistic
has desirable properties in that it appropriately controls type I error rates even when non-
functional variants are included in the set of variants to be tested, and has better power than
the standard CAST method. In addition, the CMC statistic can be implemented in a
regression modeling framework as discussed later.

Madsen and Browning proposed a statistic for testing a prespecified collapsed set of variants
that leverages weighting of each variant by its frequency, thus allowing one to include
variants of any frequency into the collapsed set.34 A score is calculated for each individual
using that individual’s genotypes and the frequency-determined weights. The sum of ranks
of the scores among the cases is then used as a summary statistic to be compared to the same
statistic computed among the controls using permutation methods, in a manner analogous to
the Wilcoxon rank test.39 Madsen and Browning showed that their proposed statistic is more
powerful than either the CAST or CMC methods in a number of settings, but more work in
this area is needed to clarify the advantages, if any, of each.34 Other strategies for testing
groupwise frequency differences of genetic variations between cases and controls in an
analogous manner to the CAST method have been proposed, although many have only been
implemented in settings involving common variants. 34, 40, 4142

Recently, Price et al.35 implemented a method for testing rare coding variants that considers
optimal or variable weighting of the variants in a procedure resembling Madsen and
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Browning’s.34 Price et al.35 showed that their method is more powerful than approaches that
consider fixed weights. In addition, they argued that the use of the predicted functional
impact of each individual non-synonymous coding variant could be leveraged in their
model. Finally, Han and Pan40 recently devised a method that cleverly considers the
direction of the effect of the implicated variants (e.g., protective or deleterious) which can be
implemented in a regression model framework (see below). Other summary statistic
methods essentially ignore direction of effect and hence may be problematic in settings in
which rare variants are not necessarily more frequent in disease or certain a priori defined
phenotypic states.

Another way of exploiting summary statistics for rare variant analysis involves comparing
haplotype frequencies between, for example, case and control groups, as opposed to
genotype or single variant carrier status frequencies.43–45 Haplotype analyses require phase
information, which is not trivial to obtain for genotyped rare variants or variants derived
from sequence data (Box 1). In addition, if enough rare variants are studied, each individual
in a sample of cases and controls may have their own unique haplotypes, making summary
statistic approaches impossible. A recently proposed two-stage approach to haplotype
analysis of rare variants could alleviate this problem since it collapses haplotypes into
groups and eliminates variants not likely to be relevant prior to contrasting haplotype
frequencies.46

Other potential methods that leverage summary statistics to test multiple variant frequency
differences across groups include classical DNA sequence diversity measures such as
nucleotide polymorphism, θ, and nucleotide diversity, π47, as well as traditional measures of
population differentiation such as that statistics referred to as Fst and Gst.48, 49 These
methods are more or less agnostic to allele frequencies, but can provide insight into
differences between groups over many rare variants. However, their utility and power have
not been assessed in association analysis settings. In addition, flaws with measures such as
Fst and Gst have been pointed out that may not allow them to reliably capture diversity,
differences in diversity, or population differentiation in general in some of the most trivial
settings, given their focus on heterozygosity.50 Jost50 discusses alternatives to traditional
Fst, Gst and related DNA sequence population differentiation measures, but these measures
still require assumptions about the best way to apply them in any one particular setting.
Interestingly, the methods described by Jost can be easily adjusted to assess group
differences attributable to many rare variants (see Box 3).50

Approaches based on similarities among individual sequences
Instead of constructing statistics based on the frequencies of individual or collapsed variants,
statistics that reflect the similarity of the unique DNA sequences possessed by individuals
can be constructed. Such statistics have their roots in the assessment of cross-species
orthology, protein family determination, phylogeny construction and a number of other
molecular genetic analyses based on DNA sequence similarity and are more or less agnostic
to the frequencies of the variants being considered.20, 51 The main motivation for similarity-
based approaches to assessing rare variant associations is that the general nucleotide
background or context within which a rare variant can influence a phenotype may be
important. Thus, such approaches assume some form of interaction among variants or at
least a simple shaping of gene function by the balance of variations an individual possesses.

Many recent papers have described flexible strategies for testing genetic associations that
leverage individual sequence similarity information,20, 52–57 and it has been shown that such
strategies can be as powerful, if not more so, than some traditional tests of association in
many settings involving common variations.58 However, the performance of these methods
when many rare variants and no common variants are considered is an open question. In
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addition, a limitation of these methods is that a specific DNA similarity or distance measure
or metric must be chosen and this can be problematic (Box 3).59 For example, a number of
approaches have described DNA sequence similarity metrics that consider the origins or
phylogenetic relationships between sequences.60–62 In addition, other approaches, some of
which have their roots in comparing pathogen sequences, consider weighting individual
nucleotides by their frequency or putative functional effects.54, 63, 64

The problem of choosing a DNA sequence similarity measure based purely on nucleotide
content matching or genealogical or cladistic distance is rooted in the fact that, ultimately,
functional nucleotide content (i.e., what nucleotides and nucleotide combinations an
individual possesses that impact function) determines gene activity, rather than the
phylogenetic origins of those nucleotides. Thus, in theory, similarity measures that build off
the functional features and functional capacities of impacted genes associated with DNA
sequence (Box 2) – as shaped by particular nucleotides and nucleotide combinations – are
likely to be more appropriate for association studies than measures based on either
phylogenetic relationships between sequences or the mere equality of aligned nucleotides.

Alternatively, statistics that exploit pairwise sequence similarity can be used65 as
alternatives to classical summary statistic measures of sequence diversity differences
between groups. Such statistics would be highly appropriate in situations, such as the EAH
situation, in which a group of individuals (e.g., cases) are hypothesized to simply possess
more unique variants or more unique combinations of variants than another group of
individuals (e.g., controls) in a defined genomic region.

In the absence of knowledge of which rare variants to collapse or consider as a set, one
could potentially search for a subset of variants that maximally discriminates between, for
example cases and controls, based on the distances between the sequences in the two
groups.66 Permutation methods could be used to derive p-values for discriminative ability.
Searches for optimal sets of variations in this manner have parallels to the approach
underlying logic regression67 and the method of Han and Pan40, which are discussed later in
the section on regression methods. Although intuitively appealing, such methods are
problematic in that the determination of an optimal subset of variants based on group
differences can be computationally-intensive. In addition, if a large enough genomic region
is considered, then one could merely ‘collapse’ all variants unique to each case and then
unique to each control, resulting in a set of variants that completely and perfectly
discriminate cases from controls. The possibility of this phenomenon emphasizes a need for
considering functional annotations in relevant data analyses or other ways of circumscribing
rare variants to be considered as a collapsed set.

Finally, traditional family-based linkage analyses consider the consistency of within-family
sharing of specific transmitted chromosomal segments among affected family members
rather than the consistency or similarity of the nucleotide content of those segments across
different families. As a result, such methods are fairly robust to allelic heterogeneity.68

However, not all approaches to linkage analysis are very powerful, and this is especially true
for non-parametric approaches involving small families69, 70, although transmission/
disequilibrium tests may have merit in the analysis of rare variants.71 In addition, linkage
analysis approaches not only come with the often difficult and expensive need to sample
family members, but many phenotypes may not exhibit familial aggregation, undermining
the motivation to consider family-based studies10.

Multiple regression and data mining methods
Regression models treat the phenotype as a dependent variable and collapsed sets of variants
as independent or predictor variables. Such methods provide a flexible framework for
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assessing the contribution of collections of rare variants to a phenotype.28, 33 Such models
can accommodate a number of additional predictor variables, including common variants,
covariates such as gender and age, and interaction terms. Recently, Morris and Zeggini33

assessed the power of simple regression methods for testing collapsed sets of rare variants
for association with a quantitative trait and found that such approaches are indeed intuitive,
flexible and powerful. The authors compared the use of a simple tally of the number of rare
variants possed by an individual across a large region as a predictor of a phenotype against
the use of a simple indicator of the possession of any rare variant. They found that the use of
a tally may be more powerful.33 However, they did not consider conditioning effects (Figure
1C) or problems associated with analyses involving many correlated predictor variables.33

Multiple regression models have been applied in many standard GWA studies in an effort to
identify the most likely causal variants in a particular genomic region harboring many
associated variants72, 73. However, their direct application via simple extensions of the
methods described by Morris and Zeggini33 to the analysis of multiple individual rare
variants or collapsed sets of variants may be problematic. For example, collapsed sets of
variants might be correlated due to LD with an additional common variant included in the
model or due to the manner in which different subsets of variants are collapsed based on
functional annotations, as discussed previously in the context of the hierarchical nature of
collapsing sets of variants based on functional annotations. Furthermore, strong
multicollinearity is known to cause numerical and interpretation issues in traditional linear
regression analysis. In addition, there will likely be many potential predictor variables to
choose from if many individual common and rare variants, as well as collapsed sets of
variants, are considered. Having many independent variables, or more independent variables
than subjects, creates enormous potential for numerical instabilities and overfitting in
standard linear regression models.

Newer regression techniques that make use of regularization and shrinkage parameters to
control for collinearity and overfitting can be used to overcome these problems. Two such
techniques, ridge regression74 and the LASSO75,76 have been considered in genetic
association analysis contexts, and other methods have also been proposed as well.77–80, 81

Tibshirani82 compared the relative merits of standard stepwise regression, ridge regression,
and the LASSO in different non-genetic contexts and concluded that each method seems is
best suited for different specific settings, depending on the number and effect sizes of the
predictors. This is problematic in the context of genetic association analyses since one will
not necessarily know a priori how many common, rare, or collapsed sets of variants might
influence a phenotype, nor what kind of effects those variants have. One possible solution to
this problem is to devise methods that combine elements of many different regression
procedures, such as the ‘bridge (GPS)’ regression procedure of Friedman83 that exploits
constructs forming the basis for both ridge and LASSO-based regression. Alternatively,
‘ensemble’ methods or ‘super learners’ that combine the results of different regression and
prediction methods84 could be used. However, it is not clear that such methods will pick out
functional or causal variants in an association study involving a large number of variants or
collapsed sets of variants over those that may, due to LD, merely act as strong predictors of
the phenotype.

Logic regression67 may be a particularly attractive regression-based approach, at least in
theory, for the analysis of rare variants. Logic regression, which is similar in ways to the
method proposed by Han and Pan,40 was initially proposed for analyzing sequence data and
does not assume that variants have been collapsed a priori. Instead, it constructs, and then
tests for association, combinations of variants held together through the creation of dummy
independent variables. These variables are constructed from logical operators such as
‘AND’ and ‘OR’ that connect and combine sets of variants into potential predictors of the
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phenotype. There are many issues with logic regression and related approaches that are
similar to the issues discussed previously in the context of selecting an optimal subset of rare
variants40, 66. These include: computational burden; difficulty in obtaining p-values for each
potential independent variable (or individual rare variant, as opposed to a collapsed group of
rare variants); and the identification of the optimal, and hence the biologically most-
plausible, set of genetic predictors. The development of regression analysis methods for rare
variant association analyses is an important area of research, however, as the flexibility,
conditioning strategies, and ability to accommodate many effects make them particularly
appealing.

Power Studies
Most studies assessing associations between rare variants and a phenotype have relied on
rather simple collapsing strategies (Table 1). The advantages of more sophisticated data
analysis methods are therefore unclear from a practical and implementation standpoint.
However, power studies comparing newer methods with more simplistic methods for rare
variant analysis have been pursued (Table 3). The studies we list in Table 3 are in no way
exhaustive, but their consideration can provide insight into the limitations of the different
strategies and, therefore, motivation for further studies. For example, almost all such studies
consider comparisons between a proposed novel method and simple single locus analyses,
which is an obvious comparison at some level, but does not reflect the sophistication and
utility of the proposed method. In addition, almost all of the studies considered simulations
under some version of the EAH model of rare variant effects and do not consider other
scenarios (Figure 2) or the influence of LD structure among multiple common and rare
variants (of the type that might create ‘synthetic associations’85). In addition, studies so far
have not considered tests within a hierarchical collapsing framework that leverages
functional annotations of genomic regions to separate truly causal variants from collections
of rare variants that merely contain causal variants.

Other obvious issues with the current assessments of the power and other properties of rare
variant analysis methods concern the simple fact that not enough time has elapsed since their
introduction for someone to compare them all in a large study. In addition, some methods
are clearly nuanced and are unlikely to work in situations other than those for which they
were designed. For example, some methods do not take into account the possible direction
of a rare variant effect, such as the methods described by Li and Leal28 and Madsen and
Browning34 whereas other methods are designed to handle these situations40. Finally,
although many such published power studies simulate data assuming a population genetics
model for the propagation of rare variants, the appropriateness of the assumptions of these
models is unclear. We believe that the best approach will be to take real sequence data
obtained from many individuals (e.g., the 1000 Genomes Project data) and simulate
phenotypes based on variants in those sequences, making assumptions only about
phenotypic effect sizes and interactions between variants.

In this light, Bansal et al.86 recently considered the analysis of sequencing data obtained on
two genes, FAAH and MGLL, thought be associated with morbid obesity among 142
morbidly obese and 147 control subjects discussed in a previous study66. They applied 11 of
the methods described in this review plus 9 high-dimensional regression procedures, and
showed that the methods do not consistently agree on the most strongly associated regions
of the genes or the most likely causal variants. Their results emphasize the need for
simulation and theoretical studies of different methodologies.
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Conclusions and future directions
The identification and characterization of the effects of collections of rare variants on
common complex disease susceptibility and general phenotypic expression will play
prominent roles in future genetic studies. Appropriate data analysis methods for associating
rare variants to a phenotype are therefore needed. A number of rare variant association
analysis methods have been proposed that build off the notion of collapsing variants into
groups based on either functional annotations of the genomic regions they reside in or on
their location in a defined genomic region or ‘window.’ The power and robustness of these
models need to be assessed in a wide variety of contexts. In addition, future studies of rare
variants will likely be pursued in the context of a broader understanding of the genetic and
environmental factors contributing to a particular common complex disease, making it
unlikely that an exclusive focus on the influence of rare variants would be appropriate.
Furthermore, as DNA sequencing and other genomic technology costs decrease, the
frequency and functional impact of different forms of variation beyond SNPs will also be
better understood. In this context merely finding that a set of rare variants appears to be
collectively associated with a phenotype in no way suggests that all those variants are indeed
functional or causally related to the phenotype. Thus, the problem of assigning causality to
rare variants in a set may be more pronounced than it is in assigning causality to a single
common variant.

A better understanding of the genetic architecture of disease, as well as a better appreciation
of the forms and functions of DNA sequence variation, will undoubtedly impact the choice
of a statistical method for rare variant association studies. Thus, for example, methods which
can accommodate covariates, previously identified genetic factors, allelic heterogeneity, and
different sets of collapsed variants simultaneously, such as regression-based methods, are
clearly advantageous. However, methods which can account for subtle synergistic effects of
many loci within a defined region and/or different forms of variation that might contribute to
gene function, such as those rooted in sequence or functional similarity56, 57, 87, 88 are also
likely to be appropriate. It is arguable that, in general, variants or groups of variants should
always be studied in a more comprehensive regression model that includes covariates and
other confounding variables no matter how the collapsed set was initially identified. Such an
approach might mitigate a range of concerns, for example about accommodating
confounding variables and the functional assessment of variants.
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GLOSSARY

Contingency table a way of representing categorical data in a matrix that is often used
to record and analyze the relation between two or more categorical
variables. Also referred to as cross-tabulation or a cross-tab table

Regression
methods

Statistical methods for predicting or relating a variable (or set of
variables) known as the ‘dependent’ variable to another variable
(or set of variables) known as the ‘independent’ or ‘predictor’
variable. The resulting relationship defines a ‘regression function’
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Conditional tests In regression analysis, the importance of additional variables (or
‘covariates’) one be included in the model - that is, the model can
be ‘conditioned’ on the additional variables. A ‘conditional test’ of
the relationship between the primary independent variable and the
dependent variable can therefore be performed

Covariate effects The influence of non-primary independent variables on the
relationship between a primary independent variable and a
dependent variable in a regression analysis setting

Quantiles Points taken at regular intervals in the cumulative distribution
function (CDF) of a random variable that are used to define
discrete categories of that variable

Stratified analysis Data analysis that proceeds by breaking up the units of observation
into groups and analyzing those groups independently

Group summary
information

Statistics that capture frequencies, counts, and other measures that
reflect information at the population or sample level, in contrast to
measures reflecting information that is unique to each individual

Moving window A method for testing genetic associations in which a subregion of a
larger region is defined. Variants with the defined region are test
for association, the region is shifted to an adjacent region, and the
process repeated until all the subregions have been assessed

Type 1 error rates The probability of a false positive result from a statistical
hypothesis test

Permutation
methods

Strategies for assessing the probability of observing the value of a
particular statistic. The probability is computed from a data set in
which the data are randomly shuffled and the statistic is
recomputed from the shuffled data many times and ultimately
compared to the value of the statistic obtained with the non-
shuffled data

Phase information The determination of the nucleotide content of each of the
homologous chromosomes in a diploid individual

Fst/Gst Two classical measures of population differentiation at the
nucleotide level. Essentially, Fst and Gst capture and quantify the
allele frequency differences between populations

Logic regression A regression analysis procedure in which sets of independent
variables are groups together using logical operators such as
‘AND’ and ‘OR.’ These sets of independent variables, rather than
the individual variables themselves, are tested for association with
a dependent variable

Non-parametric
approaches

Statistical analysis methods that do not rely on specific
distributional assumptions (e.g., normality) for the variables being
analyzed

Multicollinearity The situation in which two or more predictors (or subsets of
predictors) are strongly (but not perfectly) correlated to one other,
making it difficult to interpret the strength of the effect of each
predictor (or predictor subset). For example, it would be hard to
detect a gene if its effect is ‘absorbed’ (or masked) by
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combinations of genetic background action/interaction parameters
in the model

Overfitting A phenomenon in which predictions of a dependent variable, based
on a set independent variables in a regression setting, are
complicated by the fact that there are many more independent
variables used in the prediction than there are individuals who
have been measured on these independent variables

Regularization/
Shrinkage

A method for combating overfitting in regression models. Most of
the independent variables are assumed to make only a small or
non-existent contribution to the prediction of a dependent variable.
Hence their impact is ‘shrunk’ or ‘regulated’ to be close to zero
when estimating relevant parameters governing the regression
model

Compound
heterozygosity

A situation in medical genetics in which two normally recessive
alleles of a gene cause disease when they are located on different
chromosome homologues in the same individual

Population
stratification

The phenomenon of an apparently homogeneous population that is
actually composed of subgroups of individuals with distinct
ancestral origins and differing allele frequencies at many loci. This
leads to bias in the assessment of the significance of associations
of a trait with particular loci

Multiple testing In statistics, multiple testing occurs when one considers a more
than one statistical inference from a single data set. Errors in
inference are more likely to occur when one considers all the
inferences as a whole

Imputation Based on the known linkage disequilibrium structure in fully
genotyped individuals, the genotype of untyped variants can be
inferred or imputed in individuals who are genotyped for a smaller
number of variants
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‘AT A GLANCE’ BULLET POINTS

• We review the motivation for exploring the role of rare variants in phenotypic
expression

• There are several problems with capturing the effects of rare variants in
association studies using current statistical analysis methods

• We discuss the concept and use of ‘collapsing’ sets of rare variants into
predictors of phenotypic expression, to aid statistical analyses of rare variant
associations.

• Functional annotations of specific variants and genomic regions can be used to
define collapsed sets of rare variants

• A range of statistical analysis models and inference-making procedures could be
exploited to assess the association between rare variants and phenotypic
expression. We discuss the relative merits of these approaches.

• We compare ‘Moving window’ and ‘defined region’ approaches to the analysis
of rare variant effects

• We discuss the importance for rare variant analysis of the flexibility of statistical
analysis models and methods in accommodating factors including common
variants, interactions between variants, beneficial and deleterious effects of
variants and environmental factors.
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Figure 1. Sample size requirements and statistical power for variants of different frequencies
(A). Sample sizes necessary to detect an association between an allele with a specific effect
size and a binary trait. The plots assume a standard z-test for the difference in the frequency
of the allele between the two phenotypic categories. A genome-wide type I error rate of 10−9

was assumed, under the assumption that one may perform 2 orders of magnitude more tests
in a complete sequence-based GWAS than a standard GWAS. (B). Similar setting to that
provided in Figure 1A except the effect size depicted on the x axis gives the ratio of the
frequency of the allele in the case vs. control groups. These curves give insight into the
power gains associated with the collapsing strategy. Consider the black line in Figure 1B
and testing a single rare variant with a frequency of 0.01 in the controls and 0.02 in the
cases. This difference would require approximately 250,000 cases and controls to detect
with 80% power at a super genome-wide level of significance. However, if one were to test
5 such variants with the same frequencies after collapsing them (assuming they are
independent and no individual has more than one such variant), then one would effectively
be testing a 0.05 frequency among the controls and a 0.10 frequency among the cases. From
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the red line in Figure 1B this difference would require only 3000 cases and controls. (C).
Power to detect a quantitative trait locus with a sample of 1000 individuals as a function of
fraction of phenotypic variation explained by the locus via standard linear regression
analysis. A genome-wide type I error rate of 10−9 was assumed.
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Figure 2. Scenarios in which DNA sequence variants distinguish cases and controls
Blue lines indicate genomic regions; red boxes indicate variants. A. Variants at a single
locus with common alleles are more frequent in cases then controls. B. Multiple rare
variations contribute to the phenotype such that the collective frequency of these variations
is greater in cases. This would create a greater diversity of haplotypes or DNA sequences
among the cases. C. Multiple rare variations contribute to the phenotype, but act in a
synergistic fashion such that cases are likely to have more similar DNA sequences compared
to controls. D. Multiple rare variations contribute to a phenotype, but the variations
contributing to the phenotype reside in specific genomic regions. This situation would create
greater sequence diversity among the cases, as in setting B, but only within the genomic
regions of relevance.
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Table B.1

Integrative Web-Servers for Variant Annotation

Server Name URL
Types of variant

annotated

FASTSNP http://fastsnp.ibms.sinica.edu.tw/ Precalculated SNPs

F-SNP http://compbio.cs.queensu.ca/F-SNP/ Precalculated SNPs

Human Splicing Finder http://www.umd.be/HSF/ Any Sequence /
Splicing Only

MutDB http://mutdb.org/ Precalculated SNPs

PharmGKB http://www.pharmgkb.org/index.jsp Pharmacogenetic SNPs

PolyDoms http://polydoms.cchmc.org/polydoms/ Precalculated SNPs

PupaSuite http://pupasuite.bioinfo.cipf.es/ Precalculated SNPs

SeattleSeq http://gvs.gs.washington.edu/SeattleSeqAnnotation/ Any Sequence

Sequence Variant Analyzer http://www.svaproject.org/ Any Sequence

SNP@Domain http://bioportal.net/. Precalculated SNPs

SNPeffect http://snpeffect.vib.be/ Precalculated SNPs

SNP Functional Portal http://brainarray.mbni.med.umich.edu/Brainarray/Database/SearchSNP/snpfunc.aspx Precalculated SNPs

Trait-o-matic http://snp.med.harvard.edu/ SNPs Associated with
Traits
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