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Abstract

A freshwater alkaliphilic strain of Pseudomonas aeruginosa, grown on waste frying oil-basal medium, produced a surface-

active metabolite identified as glycolipopeptide. Bioprocess conditions namely temperature, pH, agitation and duration 

were comparatively modeled using statistical and artificial neural network (ANN) methods to predict and optimize product 

yield using the matrix of a central composite rotatable design (CCRD). Response surface methodology (RSM) was the 

statistical approach while a feed-forward neural network, trained with Levenberg–Marquardt back-propagation algorithm, 

was the neural network method. Glycolipopeptide model was predicted by a significant (P < 0.001, R2 of 0.9923) quadratic 

function of the RSM with a mean squared error (MSE) of 3.6661. The neural network model, on the other hand, returned an 

R2 value of 0.9964 with an MSE of 1.7844. From all error metrics considered, ANN glycolipopeptide model significantly 

(P < 0.01) outperformed RSM counterpart in predictive modeling capability. Optimization of factor levels for maximum 

glycolipopeptide concentration produced bioprocess conditions of 32 °C for temperature, 7.6 for pH, agitation speed of 

130 rpm and a fermentation time of 66 h, at a combined desirability function of 0.872. The glycosylated lipid-tailed peptide 

demonstrated significant anti-bacterial activity (MIC = 8.125 µg/mL) against Proteus vulgaris, dose-dependent anti-biofilm 

activities against Escherichia coli (83%) and Candida dubliniensis (90%) in 24 h and an equally dose-dependent cytotoxic 

activity against human breast (MCF-7: IC50 = 65.12 µg/mL) and cervical (HeLa: IC50 = 16.44 µg/mL) cancer cell lines. 

The glycolipopeptide compound is recommended for further studies and trials for application in human cancer therapy.

Keywords Glycolipopeptide · Biological activity · Optimization · Response surface methodology · Artificial neural 

network

Introduction

Biological amphiphiles with surface and emulsifying activi-

ties are called biosurfactants (Ghasemi et al. 2018). They 

are produced by all life forms including plants (saponins), 

animals (bile salts) and microorganisms of diverse bacte-

rial, yeast and mold genera, and species (Chen et al. 2010; 

Bezerra et al. 2018; Kim et al. 2018; Ali et al. 2019). Micro-

bially-derived surfactants are, by far, the most explored, 

exploited and documented of all three biological sources. 

The tremendous attention received by them in recent times 

could be attributed to their huge industrial and environmen-

tal applications, which makes them one of the world’s most 

sought-after bioprocess chemicals besides antibiotics and 

biocatalysts.

Ability of biosurfactants to solubilize and emulsify 

hydrophobic organic compounds through surface and inter-

facial tension reduction, forms the basis for their applica-

tions in enhanced recovery of oil as well as in enhanced 

bioremediation of crude oil-impacted ecosystems (Bezza 

et al. 2015; Almeida et al. 2016; Bezza and Chirwa 2017; 

Ali et al. 2019). Their foaming or detergency property makes 
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them good candidates for production of detergents and per-

sonal care products (Terziyski et al. 2014; Vecino et al. 

2018) while their chelating property has found applications 

in bioremediation of toxic metal-impacted environments and 

in leaching of metals from their ores (Alsaqer et al. 2018; 

da Rocha Junior et al. 2019). Biosurfactants demonstrate 

commendable biological activities including antimicrobial, 

anti-adhesive, anti-biofilm and anti-cancer activities which 

are currently being exploited in medicine, food, cosmetic 

and pharmaceutical industries, as well as in plant-pathogen 

control in agriculture (Sivapathasekaran et al. 2010a, b; Wu 

et al. 2017; Vecino et al. 2018; Satpute et al. 2018a, b; Jimoh 

and Lin 2019; Bertrand and Munoz-Garay 2019; Javee et al. 

2020; Rani et al. 2020).

Microbial surfactants occur in diverse chemical types 

such as glycolipids, lipopeptides, phospho- and flavo-lipids, 

and the polymeric and particulate types. Production of a 

particular biosurfactant type is not the exclusive preserve 

of any microbial genus or species. Among the bacterial 

genera, Pseudomonas and Bacillus biosurfactants have 

been most studied and documented (Perfumo et al. 2017). 

Rhamnolipid; a type of glycolipid biosurfactant; has, until 

recently, been reported almost exclusively in Pseudomonas 

aeruginosa strains. However, Hoskova et al. (2015) have 

characterized rhamnolipids from Acinetobacter calcoace-

ticus and Enterobacter asburiae. Biosurfactant types other 

than rhamnolipid, including protein PA (Hisatsuka et al. 

1972), glycolipopeptide (Koronelli et al. 1983; Ilori and 

Amund, 2001; Ekpenyong et  al. 2016) and lipopeptide 

(Thavasi et al. 2011a, b) have also been reported in a few 

special strains of Pseudomonas aeruginosa. Other spe-

cies like Pseudomonas fluorescens and P. putida have been 

reported to produce glycolipopeptide (Desai et al. 1988), and 

lipopeptide and rhamnolipid (Kuiper et al. 2004; Martinez-

Toledo and Rodriguez-Vazquez 2013), respectively. Bacillus 

species are most commonly reported to produce lipopep-

tides. However, there have been reports of some species that 

produce glycolipid and glycolipopeptide biosurfactants as 

well (Thavasi et al. 2008; Mabrouk et al. 2014).

Glycolipopeptides are a form of lipid-tailed polymeric 

biological amphiphile produced by a few bacterial genera 

and/or species and have been categorized as bio-emulsifiers 

rather than biosurfactants on the basis of their high molec-

ular weights (Gutierrez and Banat 2015). They are glyco-

sylated lipopeptides or lipid-tailed glycoproteins commonly 

noted for producing stable water-in-oil or oil-in-water emul-

sions with hydrophobic compounds (Satpute et al. 2016). 

Reported microbial genera associated with their produc-

tion include Pseudomonas, Bacillus, Corynebacterium and 

Lactobacillus. Glycolipopeptides from Lactobacillus spe-

cies are mostly cell-associated but those from other genera 

are not (Vecino et al. 2018). There has been a heightened 

interest in glycolipopeptide biosurfactants arising from their 

demonstration of biological activities including antimicro-

bial, anti-biofilm and anticancer activities (Karlapudi et al. 

2020; Javee et al. 2020). A synthetic form of this compound 

is currently under investigation as potential vaccine base for 

B- and T-cell immunotherapy for cancers (Renaudet et al. 

2010).

Global availability of biosurfactants for their much-

needed applications has been limited by the same bioprocess 

economics frequently encountered in typical microbial 

metabolite production processes. The specific variables 

required to develop a successful biosurfactant fermentative 

production process include strain selection and improve-

ment (Hu et al. 2019; El-Housseiny et al. 2019), medium 

and process development through optimization (Rodrigues 

et al. 2019) and, identification and improvement of catalytic 

rates towards scale-up processes to maximize volumetric 

productivity (Truppo 2017; Wachtmeister and Rother 2017).

Design of experiments (DoE) has facilitated the devel-

opment of fermentation media for biosurfactant produc-

tion where major and trace nutrients composition, as well 

as environmental and/or operational conditions have been 

studied using different optimization protocols. A few dec-

ades ago, the traditional one-factor-at-a-time (OFAT) tech-

nique dominated literature and still applies today in the early 

stages of bioprocess optimization (Nicolo et al. 2017). This 

method, with its inherent limitations of tedium and inabil-

ity to account for interaction effects between and among 

independent variables, has been largely replaced with more 

robust techniques like response surface methodology (RSM) 

and artificial neural network (ANN) (Bertrand et al. 2018).

Response surface methodology (RSM) refers to a collec-

tion of statistical and mathematical techniques for construct-

ing approximation models based on physical experimenta-

tion or computer simulation. The primary objective of RSM 

is to optimize the response whose magnitude and direction is 

controlled by predictor variables. With RSM, optimization 

of medium and bioprocess conditions for microbial metab-

olite fermentations have been improved (Rodrigues et al. 

2006; Ebadipour et al. 2016; Chouaibi et al. 2019). Artifi-

cial neural network (ANN) approaches, on the other hand, 

are intelligence-based modeling techniques that rely on bio-

logical information processing to build models. They are a 

computer-based system that employs a number of neurons to 

simulate the learning pattern of the human brain. The neu-

rons are grouped into one or more hidden layers that are con-

nected using synapses called weights. ANN approaches are 

particularly suited to stochastic situations such as production 

since they typically detect the overwhelming non-linear rela-

tionships to facilitate a better modeling of the process (Siva-

pathasekaran et al. 2010a, b; Santos et al. 2017). Very often, 

these two optimization methods are compared for superiority 

and majority of the reports tilt in favour of ANN methods 

without consideration of the objective of research and tact 
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of the experimenter (Pal et al. 2009; Patel and Brahmbhatt 

2016; Sampaio et al. 2017; Karri et al. 2018).

In the present study, performances of RSM and ANN 

as techniques to build predictive models and optimize fer-

mentation conditions that enhance production of bioactive 

glycolipopeptide surface-active agent by Pseudomonas 

aeruginosa strain IKW1 are reported. Fermentation condi-

tions including temperature, pH, agitation speed and fer-

mentation time were the input variables while biomass and 

glycolipopeptide concentrations were the responses. Model 

performance was evaluated with error metrics other than 

coefficient of determination. Results are expected to guide 

the development of appropriate operational conditions for 

fermentative biosurfactant production and facilitate the 

determination of optimum kinetic and economic parameters 

in future researches towards scale-up of the bioprocess.

Materials and Methods

Inoculum Preparation

The bacterium, Pseudomonas aeruginosa strain IKW1, 

earlier isolated by Ekpenyong et al. (2016) and deposited 

with the University of Calabar Collection of Microorgan-

isms (Reg. No: WDCM 652), was retrieved from the cul-

ture collection and reactivated for the study using the proto-

cols described in Ekpenyong et al. (2017a).

Medium Development and Preparation

Fermentation medium was formulated as per the optimum 

major medium factor levels reported in Ekpenyong et al. 

(2017a) and trace element settings in Ekpenyong et  al. 

(2017b). The medium contained 5% (v/v) carbon source 

of waste frying oil. The waste oil composed of 2.18% w/w 

steric acid, 16.14% w/w volatile fractions; 22.51% w/w oleic 

acid; 50.63% w/w linoleic acid; 6.13% w/w palmitic acid; 

a saponification value of 73 and density of 286.7 kg/m3 at 

30 °C. Phosphates and buffering capacity were supplied as 

4.5 g/L  Na2HPO4/KH2PO4 (2:1); 1.19 g/L filter-sterilized 

urea (Merck) served as nitrogen source; nutritive salts were 

supplied as 0.2 g/L  MgSO4.7H2O, 0.5 g/L NaCl, 0.5 g/L 

 CaCl2, 0.5 g/L KCl. One milliliter of a solution of trace 

metals comprising 1.2500 mg nickel/L, 0.1250 mg zinc/L, 

0.1250  mg iron/L, 0.0104  mg boron/L and 0.0250  mg 

copper/L was used to fortify the production medium (Ekpe-

nyong et al. 2017b). The medium, without nitrogen source, 

was dispensed into 250 mL Erlenmeyer flasks (20% v/v) 

and sterilized by moist heating. The nitrogen source, urea 

(1.19 g/L) was sterilized by filtration and incorporated into 

each flask after cooling to 40 °C. The pH was adjusted as per 

experimental design using sodium-phosphate buffer (pH 5 to 

6.5) and Tris–HCl (pH 7.0 to 8.4) (Edet et al. 2018). There-

after, 10% (v/v) of triple-washed (phosphate buffered saline, 

pH 7) suspension  (108 cfu/mL) of an overnight LB broth 

culture of Pseudomonas aeruginosa strain IKW1 (UCCM 

0002) was added to each flask. Each flask was plugged with 

sterile cotton wool and incubated on a rotary shaker as per 

experimental design for temperature, agitation speed and 

duration (Table 1).

Experimental Design and Incubation Protocol

A  24 full-factorial central composite rotatable design 

(CCRD) was adopted as experimental design using Design 

Expert 9. Table 1 presents the actual and coded levels for the 

design matrix of the four input variables for the CCRD. The 

factors were earlier identified by Ekpenyong et al. (2016) as 

significant bioprocess operational conditions that influenced 

glycolipopeptide biosynthesis by the bacterium. The coded 

levels were determined as follows;  X1 = (temperature-30)/2; 

 X2 =  (pH-7.0)/0.6;  X3 =  (Agitation speed-150)/20 and 

 X4 = (Fermentation time-72)/6. The actual levels, on the 

other hand, were calculated using the equation below (Myers 

and Montgomery 2002):

The design matrix required 30 experimental runs. Incuba-

tion, at test bioprocess conditions, was adjusted according to 

experimental design (Table 1). Each experimental run was 

(1)

Coded value = actual level

−
high level + low level

2

÷
high level − low level

2

Table 1  Factor levels of a 

central composite rotatable 

design

Variable Code Actual values

− 2 − 1 0 1 2

Temperature (°C) X1 26 28 30 32 34

pH X2 5.8 6.4 7.0 7.6 8.2

Agitation speed (rpm) X3 110 130 150 170 190

Fermentation time (h) X4 60 66 72 78 84
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prepared in triplicates. Concentrations (g/L) of biomass  (Y1) 

and glycolipopeptide  (Y2) served as study outcomes.

Estimation of Concentrations of Biomass 
and Glycolipopeptide

Aliquots, measuring 10 mL from each experimental run, 

were withdrawn at intervals according to design. Biomass 

and surface-active compound were harvested by centrifu-

gation of flask contents at 8000×g for 15 min. Membrane 

filtration was adopted to sterilize the supernatant and gly-

colipopeptide was recovered from resulting sterile filtrate by 

acid precipitation at pH 2.0 using 6 N HCl, solvent extrac-

tion, dialysis and vacuum drying. Quantification of biomass 

followed the dry weight technique (Ekpenyong et al. 2016).

Modeling and Optimization Protocols

Response Surface Methodology (RSM)

Experimentally-generated data were analyzed by multiple 

regression analysis. Regression models for biomass and 

glycolipopeptide responses of a surface methodology were 

built by the least squares method at 5% significance level 

using Design Expert 9. Data was fitted using second-order 

polynomial function. Contour, surface and cube plotting, as 

well as determination of the optimal levels of factors using 

the desirability function, were performed by the statistical 

software used for the design of experiment (DoE).

The general quadratic model for the response variables 

took the form below;

where β0 denotes a constant coefficient, k the coefficient of 

the linear effect of the kth factor, βii the quadratic effect of 

the ith factor and βij the effect of the interaction between the 

ith and jth factors, where x1, x2, … xk are the independent 

variables and ε the error arising from the computation of the 

response variable Y.

Artificial Neural Network (ANN) Modeling

A two-layer feed-forward neural network with sigmoid 

hidden neurons trained with Levenberg–Marquardt back-

propagation algorithm was employed to model the response 

data generated from the CCRD against the predictor vari-

ables. MATLAB R2014a software (Mathworks Inc, Natick, 

USA) was used to create the network. The network topol-

ogy was 4-9-1 corresponding respectively, to the number of 

neurons in the input layer, hidden layer and output layer, to 

establish the influence of the four fermentation conditions 

(2)Y = �
0
+

k
∑

i=1

�ixi +

k
∑

i=1

�iix
2

i
+ �ijxixj + �

of temperature, pH, agitation and fermentation time on bio-

mass or glycolipopeptide concentrations. The variables in 

the input and output layers were scaled as [− 1, 1].

A total of 30 samples were presented to the network, 70% 

of which were used to train the network, 15% to validate 

its performance and another 15% to test it. Performance of 

the network, defined as the closeness of the model to real 

life systems, was evaluated with the values of coefficient 

of determination (R2) and mean squared error (MSE). To 

facilitate the comparison between the two models, root mean 

squared error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean percentage error 

(MPE) and Pearson’s Chi-squared measure (χ2) of both 

models were determined using Eqs. 3–11 below.

where n is the number of samples, y the actual observed 

value, ŷ the predicted value and ȳ the mean of the actual 

value, y.

Validation Experiments

Experiments were set up to validate the optimum operational 

conditions of temperature, pH, agitation and fermentation 

time suggested by the response optimizer in Design Expert 

9. Fermentation medium composition, incubation and out-

come determinations were as previously described in their 

respective sections in this study.

(3)R2 = 1 −

∑n

i=1
(y − ŷ)

2

∑n
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2

(4)MSE =
1

n
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(5)RMSE =

√

1

n

n
∑

i=1

(y − ŷ)2
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Determination of Biological Activities 
of Glycolipopeptide

Evaluation of Antimicrobial Activity of Glycolipopeptide

Test microbial strains included Streptococcus mutans UCCM 

0047 and Bacillus cereus UCCM 0007 (Gram-positives), 

Escherichia coli ATCC 10536 and Proteus vulgaris ATCC 

27973 (Gram-negatives), Fusarium oxysporum UCCM 0077 

and Aspergillus fumigatus UCCM 0052 (molds) and Can-

dida albicans ATCC 10231 and Cryptococcus neoformans 

CAB1034 (yeasts).

Bacterial suspensions of  106 cfu/mL and yeast suspen-

sion of  103 cfu/mL were prepared by the spectrophotometric 

method. Spore suspensions of molds were prepared in Cza-

pek–Dox agar (CDA) in Roux bottles and incubated at 35 °C 

for 14 days. Spores were dislodged from mycelia by gen-

tle tube inversions after adding 20 mL cold distilled water 

mixed with glass beads. The suspension was washed twice 

with cold water by centrifugation at 5000 rpm for 5 min. 

Spores were suspended in 2 mL of cold water to form the 

concentrated stock suspension. Test concentration  (103 cfu/

mL) of each mold was prepared from the concentrated stock 

solution by the spectrophotometric method.

For determination of minimum inhibitory concentration 

(MIC) of the compound, the broth microdilution technique 

of Clinical and Laboratory Standards Institute (CLSI) was 

adopted. Muller Hinton broth (Himeda, India) was prepared 

according to document M7-A6 for bacterial MICs and M27-

A3 for fungal MICs (CLSI 2019) Glycolipopeptide concen-

tration was prepared in consideration of its critical micelle 

concentration (CMC) of 20.80 mg/L given in Ekpenyong 

et al. (2016). Test compound concentration of 2.08 mg/mL 

(2080 µg/mL) was prepared in distilled water and diluted 

twofold in Muller-Hinton broth to obtain 1040 µg/mL stock 

solution. Working concentrations of the test glycosylated 

lipopeptide ranging from 1.015625 to 520 µg/mL were pre-

pared by twofold serial dilution using Muller-Hinton broth 

as diluent. A polystyrene panel of 96-wells was used with 

two wells serving as positive (broth and inoculum) and 

negative (broth without inoculum) controls. Chlorampheni-

col and amphotericin B (Sigma Aldrich, USA) served as 

positive bacterial and fungal controls respectively. For tests 

involving fungi, glycolipopeptide stock solution was pre-

pared in RPMI 1640 (Sigma Aldrich). An aliquot of 0.1 mL 

of each of bacterial, yeast and mold spores were inoculated 

into each well to give 5 × 104 cfu/well, 2.5 × 102 cfu/well 

and 2.5 × 102 spore forming units (sfu) per well respectively. 

All arrangements were made in triplicates and plates incu-

bated at 37 °C for 24 h, 48 h and 60 h for bacteria, yeasts and 

mold determinations respectively. The minimum inhibitory 

concentration (MIC) was defined as the lowest concentration 

of the glycolipopeptide that could completely inhibit visible 

growth of test organism under study conditions.

Evaluation of Anti-biofilm Activity of Glycolipopeptide 

Using the Crystal Violet Quantification Method

Ability of the glycolipopeptide to disrupt previously formed 

biofilms of two bacteria and two yeast species were tested. 

Selected biofilm-forming organisms included Enterococ-

cus aerogenes UCCM 0089, Escherichia coli ATCC 10536, 

Candida albicans ATCC 10231 and Candida dubliniensis 

UCCM 0058. A 48-h old Sabouraud dextrose agar culture 

of Candida species was used to inoculate 50 mL of yeast 

nitrogen base (YNB) medium supplemented with 1% glu-

cose in 250-mL Erlenmeyer flasks and incubated for 24 h at 

37 °C in an orbital water-bath shaker at 60 rpm. Cells were 

harvested by centrifugation at 6,000 rpm and washed twice 

with 0.15 M magnesium-free phosphate-buffered saline 

(PBS; pH 7.2). Cells were re-suspended in 10 mL of PBS 

and standardized to a concentration equivalent to 0.5 McFar-

land standards and used immediately. Brain heart infusion 

(BHI) broth (180 µL) containing 1% glucose was mixed 

with 20 µL of standardized bacterial culture while 180 µL 

of RPMI 1640 was also mixed with 20 µL of standardized 

yeast culture. Preparations, made in five replicates, were 

incubated in 96-well polystyrene plates for 24 h at 37 °C 

for bacteria and 30 °C for yeasts. Plates were washed with 

PBS after incubation to remove unattached cells. Thereafter, 

plates were treated with three concentrations of glycolipo-

peptide; 45, 90 and 180 µL/mL and incubated as previously 

described. Untreated wells that received only PBS served 

as positive control. All unattached cells were removed by 

washing five times with PBS and by use of pipette. Biofilms 

were defined as cells that attached to the bottom of wells. 

The biofilms were fixed with 300 µL of 99% methanol and 

stained with 1% crystal violet solution for 5 min. Excess 

stain was removed by washing with running tap water. Plates 

were allowed to dry in air after which they were treated with 

200 µL of 95% ethanol to dissolve the dye. The absorbances 

of solutions obtained were read off a 340 Microplate Reader 

(Thermo Scientific, USA) at 450 nm wavelength. Per cent 

biofilm disruption was calculated by comparing the absorb-

ance of treated biofilm with the un-treated control (Morais 

et al. 2017).

Evaluation of Anti-cancer Activity of Glycolipopeptide

The cell proliferation method based on the MTT assay pro-

tocol of Sivapathasekaran et al. (2010a, b) was adopted. The 

glycolipopeptide was tested against human breast cancer 

(MCF-7), leukemia (HL-60) and cervical epithelial carci-

noma (HeLa) cell lines (ATCC) at concentrations ranging 

from 5.20 to 665.6 µg/mL. The concentrations were twofold 
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dilutions of concentrated dialyzed fractions containing 

665.6 µg/mL of compound chosen as a multiple of the criti-

cal micelle concentration of the glycolipopeptide reported 

elsewhere (Ekpenyong et al. 2016). Cancer cell lines were 

grown to initial cell density of  105 cells/well in a 96-well 

microtiter plate. All preparations were made in triplicates. 

Selective inhibitory effect of the peptide compound was 

tested against a non-tumor human (HEK 283 T) embryonic 

cell line. Wells without glycolipopeptide served as positive 

controls with 100% cell viability. The highest concentra-

tion of glycolipopeptide that recorded no viable cell served 

as negative control with 0% viability. The formed purple-

coloured product was dissolved in dimethyl sulfoxide and 

its absorbance read off at 570 nm wavelength. Non-linear 

regression analysis of data, graphing and determination of 

median inhibitory concentration (IC50) of glycolipopeptide 

against all cancer cell lines was conducted using GraphPad 

Prism 8.

Determination of Surface Activities 
of Glycolipopeptide

Surface Tension Determination

Surface tension reduction potential of the glycolipopeptide 

which indicates surfactant effectiveness and the critical 

micelle concentration (cmc) which indicates its efficiency 

were determined as described in Ekpenyong et al. (2016).

Determination of Oil Displacement Activity

The oil displacement activity of the glycolipopeptide was 

determined by the oil spreading method of Morikawa and 

co-workers as described in Ekpenyong et al. (2016).

Determination of Emulsifying Activity

The emulsifying activity of the glycolipopeptide was meas-

ured by mixing equal volumes of each of palm oil and kero-

sene with equal volume of sterile glycolipopeptide broth and 

homogenizing for 5 min (Ekpenyong et al. 2016). The result-

ing emulsion was allowed to stand in the ambient conditions 

of the laboratory for 24 h and the percentage ratio of the 

height of emulsion to the total height of liquid in the tube 

was scored as emulsification index 24 (E24).

Results and Discussion

Study Design Observations

Table 2 is a presentation of the experimental observations 

for response variables; biomass, Y1 and glycolipopeptide 

concentrations, Y2 obtained from the central composite rotat-

able design (CCRD). Highest glycolipopeptide concentra-

tion of 117.2 g/L was obtained in run 10 (randomized as 3) 

while the least concentration of 50.87 g/L occurred in run 18 

(randomized as 24). Highest glycolipopeptide concentration 

corresponded to bioprocess conditions of temperature-28 °C, 

pH-7.6, agitation speed-130 rpm and duration 66 h. Lowest 

glycolipoepeptide concentration was obtained under condi-

tions set at tempearture-30 °C, pH-7, agitation-150 rpm and 

duration-84 h. When these conditions were compared with 

previously reported conditions in Ekpenyong et al. (2017a, 

b), it was observed that the first three bioprocess condi-

tions of temperature, pH and agitation had similar settings, 

however, duration of fermentation, when extended from 

72 to 84 h reduced glycolipopeptide concentration from 

84.44 g/L (Ekpenyong et al. 2017b) to 50.87 g/L. It was 

observed, for this run (data not shown), that the fermentation 

broth became viscous by the  80th hour suggesting possible 

release of exopolysaacharide by the bacterium. Production 

of exopolysaccharides by Pseudomonas aeruginosa strains 

have been reported by Franklin et al. (2011) as a measure to 

protect cells against environmental stress, in this case nutri-

ent deprivation, by self-encapsulation within the matrix 

material.

RSM Models

Analysis of Variance of Models

The ANOVA for biomass model is presented in Table 3 

and revealed an adjusted R2 value of 0.9887 suggesting that 

98.87% of the variations about the data could be explained 

by the model. The table also showed that four predictor 

interactive terms, namely,  X1X4,  X2X3,  X2X4,  X3X4, did not 

contribute significantly to the model. This indicated that 

the model had redundant predictor terms whose addition or 

removal did not significantly improve the model. The RSM 

model equation for biomass concentration, after elimination 

of the non-significant predictor terms, is therefore presented 

as Eq. 10 below;

The equation however, showed that the linear term of 

pH  (X2) made significant positive (enhancement) effect on 

biomass concentration,  Y1 whereas its quadratic term sig-

nificantly reduced biomass concentration. All the quadratic 

terms had significant effect on biomass concentration, how-

ever, only the quadratic effect of agitation enhanced biomass 

accumulation.

(10)

Y
1
= 25.72 − 2.51X

1
+ 2.8X

2
− 0.22X

3

− 0.42X
4
+ 1.42X

1
X

2
− 0.24X

1
X

3

− 1.17X
2

1
− 0.77X

2

2
+ 0.23X

2

3
− 0.20X

2

4
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The ANOVA summary describing glycolipopeptide 

regression model predictor variables is presented as Table 4. 

The model, after eliminating non-significant predictor terms, 

is given by the equation below;

Once again, the pH  (X2) made significant enhancement 

effect on  Y2 (glycolipopeptide concentration). However, if 

the coefficient of predictor  X2 in Eq. 6 is compared with that 

in Eq. 7, a higher enhancement influence of pH on glycolipo-

peptide concentration (10.99) than on biomass concentration 

(11)

Y
2
= 83.28 − 3.91X

1
+ 10.99X

2
− 4.04X

3

− 7.91X
4
+ 1.69X

1
X

2
+ 3.03X

1
X

4
− 1.09X

2
X

4

+ 6.18X
3
X

4
+ 1.16X

2

1
+ 1.21X

2

2
− 3.64X

2

4

(2.8) is observed suggesting that the environmental factor 

had more influence on metabolite synthesis than biomass 

accumulation. Additionally, whereas the quadratic term of 

the predictor variable pH reduced biomass concentration, 

the opposite was the case for glycolipopeptide concentration, 

 Y2. This suggests that the optimal levels of pH are not in the 

extremes of the experimental region of the glycolipopeptide 

model but within it.

The linear term of temperature reduced glycolipopeptide 

concentration while the quadratic term enhanced its produc-

tion. These results suggest that conditions for cellular growth 

of microorganisms are different in the vast majority of cases 

from those required for metabolite biosynthesis. Ekpenyong 

et al. (2017a) had earlier reported this in their research on 

Table 2  Central composite 

rotatable design (CCRD) matrix 

and responses of a surface 

methodology

X1, temperature©, X2, pH; X3, agitation (rpm); X4, duration of fermentation (h); Y1, biomass concentra-

tion (g/L); Y2, glycolipopeptide concentration (g/L)

Std Run Coded values Actual values Responses (g/L)

X1 X2 X3 X4 X1 X2 X3 X4 Y1 Y2

4 1 1 1 − 1 − 1 32 7.6 130 66 25.33 108.3

10 2 1 − 1 − 1 1 32 6.4 130 78 16.84 61.88

5 3 − 1 − 1 1 − 1 28 6.4 170 66 25.85 76.97

17 4 − 2 0 0 0 26 7 150 72 25.11 95.86

18 5 2 0 0 0 34 7 150 72 15.86 78.87

9 6 − 1 − 1 − 1 1 28 6.4 130 78 23.63 65.97

30 7 0 0 0 0 30 7 150 72 25.22 84.78

13 8 − 1 − 1 1 1 28 6.4 170 78 23.63 69.19

2 9 1 − 1 − 1 − 1 32 6.4 130 66 17.05 79.89

3 10 − 1 1 − 1 − 1 28 7.6 130 66 27.02 117.2

23 11 0 0 0 − 2 30 7 150 60 24.89 85.46

25 12 0 0 0 0 30 7 150 72 25.14 84.99

27 13 0 0 0 0 30 7 150 72 25.91 82.94

1 14 − 1 − 1 − 1 − 1 28 6.4 130 66 25.22 96.47

20 15 0 2 0 0 30 8.2 150 72 27.88 109.1

11 16 − 1 1 − 1 1 28 7.6 130 78 27.37 81.89

26 17 0 0 0 0 30 7 150 72 24.91 82.94

24 18 0 0 0 2 30 7 150 84 23.03 50.87

19 19 0 − 2 0 0 30 5.8 150 72 16.29 66.12

14 20 1 − 1 1 1 32 6.4 170 78 15.72 64.02

8 21 1 1 1 − 1 32 7.6 170 66 24.89 86.92

28 22 0 0 0 0 30 7 150 72 24.98 82.48

16 23 1 1 1 1 32 7.6 170 78 24.23 90.16

15 24 − 1 1 1 1 28 7.6 170 78 26.87 87.03

12 25 1 1 − 1 1 32 7.6 130 78 25.06 82.27

22 26 0 0 2 0 30 7 190 72 25.31 76.27

7 27 − 1 1 1 − 1 28 7.6 170 66 27.78 98.01

29 28 0 0 0 0 30 7 150 72 25.43 81.57

6 29 1 − 1 1 − 1 32 6.4 170 66 16.48 59.37

21 30 0 0 − 2 0 30 7 110 72 26.86 93.67
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major nutritional parameters that influence glycolipopeptide 

production. In a batch production system such as employed 

in this study, the only way to go around this problem would 

be to identify the metabolite of interest and optimize condi-

tions that favour it.

Contour, Surface and Cube Plots of RSM Models

A contour plot is a 2-dimensional representation of the sur-

face with similar responses connected to produce desirable 

response values and operating conditions. Figure 1a shows 

Table 3  ANOVA summary of 

biomass quadratic model

Model summary: adjusted R2 = 0.9887; predicted R2 = 0.9730, MSE = 0.10795, p = 0.05

Source Sum of squares Df Mean square F value p-value

Prob > F

Remark

Model 434.46 14 31.03 182.32 < 0.0001 Significant

A-temperature 151.35 1 151.35 889.22 < 0.0001

B-pH 188.78 1 188.78 1109.09 < 0.0001

C-agitation 1.11 1 1.11 6.54 0.0219

D-duration 4.16 1 4.16 24.43 0.0002

AB 32.23 1 32.23 189.38 < 0.0001

AC 0.93 1 0.93 5.44 0.0340

AD 0.38 1 0.38 2.24 0.1552 Not significant

BC 1.562E−004 1 1.562E−004 9.180E−004 0.9762 Not significant

BD 0.68 1 0.68 3.97 0.0647 Not significant

CD 0.50 1 0.50 2.94 0.1069 Not significant

A^2 37.47 1 37.47 220.16 < 0.0001

B^2 16.21 1 16.21 95.26 < 0.0001

C^2 1.47 1 1.47 8.61 0.0103

D^2 2.47 1 2.47 14.51 0.0017

Residual 2.55 15 0.17

Lack of Fit 1.88 10 0.19 1.41 0.3697 Not significant

Pure Error 0.67 5 0.13

Table 4  ANOVA summary 

of glycolipopeptide quadratic 

model

Model summary: adjusted R2 = 0.9911; predicted R2 = 0.9793, MSE = 0.579; p = 0.05

Source Sum of squares df Mean square F

value

p value

Prob > F

Remark

Model 6510.93 14 465.07 230.77 < 0.0001 Significant

A-temperature 367.31 1 367.31 182.26 < 0.0001

B-pH 2900.70 1 2900.70 1439.36 < 0.0001

C-agitation 391.80 1 391.80 194.42 < 0.0001

D-duration 1502.11 1 1502.11 745.36 < 0.0001

AB 45.46 1 45.46 22.56 0.0003

AC 0.15 1 0.15 0.075 0.7886 Not significant

AD 146.47 1 146.47 72.68 < 0.0001

BC 3.20 1 3.20 1.59 0.2272 Not significant

BD 18.94 1 18.94 9.40 0.0078

CD 611.94 1 611.94 303.65 < 0.0001

A^2 36.76 1 36.76 18.24 0.0007

B^2 40.33 1 40.33 20.01 0.0004

C^2 8.57 1 8.57 4.25 0.0570

D^2 363.90 1 363.90 180.57 < 0.0001

Residual 30.23 15 2.02

Lack of Fit 21.26 10 2.13 1.19 0.4514 Not significant

Pure Error 8.97 5 1.79
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a two-way interaction effect between pH and temperature 

while the levels of agitation and duration of fermentation 

were held at their mid-points. The figure indicates very mar-

ginal curved contours suggesting a ridge-shaped or planar 

surface of a linear model. The 3D surface plot, on the other 

hand, displays a surface view in three dimensions to estab-

lish desirable response values and operating conditions but 

provide a clearer concept of the response surface than 2D 

plots. Figure 1b shows the 3D plot involving the interaction 

between pH and temperature when the levels of agitation 

speed and duration of fermentation were held at their mid-

points. The 3D plot reveals a rising ridge surface indicating 

increasing response with increased darkening of colour. This 

suggests that biomass response increased as pH increased 

but with decreasing temperature. Maximum biomass was 

obtained when at high pH level of 0.5.corresponding to an 

actual value of 7.6 but at low temperature of -0.5 corre-

sponding to an actual value of 28 °C.

Figure 2a, b present the contour and surface plots for 

glycolipopeptide regression model respectively. Figure 2a 

shows a 2D plot where the contour lines are spaced far 

apart from each other suggesting that the glycolipopeptide 

response values changed quite slowly. Maximum glycolipo-

peptide was obtained when the pH was high with decreasing 

Fig. 1  Contour and surface plots 

(a, b) respectively of interac-

tion effect between temperature 

(X1) and pH (X2) on biomass 

concentration, Y1
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temperature. The 3D plot in Fig. 2b for glycolipopeptide 

regression model reveals a planar surface with slow changes 

in glycolipopeptide concentration. High pH favoured high 

glycolipopeptide concentration but at slowly decreasing 

temperature.

A more robust explanation of interaction effects is pre-

sented by cube plots in Fig. 3a, b. Figure 3a indicates that 

pH and process temperature interacted to affect the biomass 

response. When pH increased from low level to high level 

and temperature was low, the increase in biomass con-

centration was about 2.76 g/L. However, when tempera-

ture increased and the pH was low, biomass concentration 

dropped by 7.38 g/L.

This implies that high temperatures are not salutary to 

the accumulation of Pseudomonas aeruginosa strain IKW1 

biomass when the pH was low as earlier suggested by the 

contour and surface plots. However, since the model has 

interaction between pH and temperature, the effects were 

different when the variables were at their high levels. When 

temperature increased and pH was high, the drop in biomass 

concentration was only about 1.76 g/L. But when the pH 

increased and temperature was high, the drop in biomass 

increased by about 8.44 g/L. Figure 3a also includes agi-

tation as a third predictor of biomass model which agrees 

with the results presented in the analysis of variance table 

for biomass model (Table 3). The cube plot confirmed that 

increase in the bioprocess speed of agitation caused a nega-

tive change in biomass concentration by a factor of 0.92 g/L.

Figure 3b presents the cube plot for glycolipopeptide 

regression model and reveals that when pH increased to 

high level and bioprocess temperature was low, glycoli-

popeptide concentration increased by 18.43 g/L, but when 

Fig. 2  Contour and surface plots 

(a, b) respectively of interaction 

effect between temperature (X1) 

and pH (X2) on glycolipopep-

tide concentration, Y2
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temperature increased from low to high levels and the pH 

was low, concentration of glycolipopeptide dropped by 

about 12.96 g/L. That reduction was large and to avoid that, 

both parameters were held at their high levels. When the 

temperature increased and pH was high, the reduction in 

glycolipopeptide concentration was only 6.22 g/L. On the 

other hand, if the pH increased and temperature was high, 

the glycolipopeptide concentration increased by 25.17 g/L. 

Since this research is about improving glycolipopeptide 

yield, then the incremental raise in pH at high temperature, 

with low process agitation speed would be most salutary for 

maximum glycolipopeptide production.

ANN Models for Response Variables

Results of the two-layer feed-forward neural network are 

presented in Fig. 4. Figure 4a is the topology of the network 

and depicts the number of neurons deployed in the various 

layers of the network. Figure 4b shows how the network 

that trained samples for biomass model performed. While 

the training samples had a mean squared error (MSE) of 

0.005933 and an R2 value of 0.9996, the validation sam-

ples had an MSE of 0.27969 and R2 of 0.9892 and the test-

ing samples had an MSE of 0.327546 and an R2 of 0.9662. 

Fig. 3  Cube plots of interactions 

among three most significant 

variables for optimum biomass 

(a) and glycolipopeptide (b) 

concentrations
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However, when the overall network was tested, a perfor-

mance evaluation result for biomass model was R2 = 0.9971; 

MSE  =  0.10516; RMSE  =  0.3240. These values were 

obtained using 9 iterations and validation performance value 

of 0.2797 reached at epoch 6.

Figure 4c, on the other hand presents the network perfor-

mance for glycolipopeptide model. The training samples had 

an MSE of 0.2581 and an R2 of 0.9988; validation samples 

had an MSE of 7.6320 and an R2 of 0.8881 while the test-

ing samples had an MSE of 2.04238 and an R2 of 0.9997. 

However, when the overall network was tested for its per-

formance, the glycolipopeptide model had an R2 of 0.9962; 

MSE = 1.7844; RMSE = 3.184. These values were obtained 

using 7 iterations with a performance value of 7.632 at 

epoch 5. These results indicate that the error of prediction 

by the ANN approach was higher for the glycolipopeptide 

than for biomass model suggesting the involvement of more 

predictors for glycolipopeptide concentration.

The predicted values for biomass and glycolipopep-

tide models obtained with ANN are presented in Table 5. 

Maximum biomass concentration predicted by the network 

was 28.03 g/L when fermentation conditions were set at 

30 °C-temperature, 8.2-pH, 150 rpm-agitation speed and a 

fermentation time of 72 h but had its minimum as 15.72 g/L 

when fermentation conditions were set at 32 °C, pH of 6.4, 

agitation speed of 170 rpm and a fermentation time of 78 h. 

On the other hand, maximum concentration of glycolipo-

peptide predicted by the ANN model was 120.06 g/L when 

operating conditions were set at 28 °C, pH of 7.6, agitation 

speed of 130 rpm and a fermentation time of 66 h. However, 

the model had its minimum of 50.88 g/L when fermentation 

conditions were set at 30 °C, pH of 7.0, agitation speed of 

150 rpm and duration of operation of 84 h. The ANN model 

confirmed the significance of prolonged fermentation on 

glycolipopeptide production as counter-productive as the 

compound of interest has a tendency of being converted to 

exopolysaccharides for bacterial protection (Franklin et al. 

2011).

Comparison Between RSM and ANN Models

Comparison of the two approaches was based predomi-

nantly on their predictive capabilities using seven model 

performance parameters namely R2, MSE, RMSE, MAE, 

MAPE, MPE and Pearson’s χ2. Consideration for this num-

ber of performance metrics became unavoidable seeing that 

R2 alone as a model goodness-of-fit was not sufficient as 

observed in the similarity of regression plots in Fig. 5. The 

results of glycolipopeptide model comparison performed 

by multiple t-tests using the two-stage linear step-up pro-

cedure are presented as Fig. 6. Figure 6a shows negative 

MPE which underlies underperformance of models. All the 

error metrics significantly (P = 0.01) contributed to the per-

formance of the model. Briefly, the MSE is a metric which 

ensures that the model takes into account possible outliers 

(large residuals between actual and predicted values) of the 

model but to play down on the significance of outliers, the 

MAE metric is used. Determination of MSE requires that 

squared residuals be used for computation (Eq. 4) which fur-

ther increases the magnitude of outliers and strengthens the 

discriminating effect of the metric. Since outliers are effects 

observed naturally, MSE serves model performance evalua-

tion better with its quadratic contribution to total error than 

MAE which contributes proportionally, where outliers are a 

problem, otherwise MAE should do. All the evaluation met-

rics were in favour of ANN as a superior predictive modeling 

approach. The negative MPE values for both models indi-

cated underperformance of both models. Under-performing 

Fig. 4  Topology of the feed-forward neural network (a); network per-

formances for biomass (b) and glycolipopeptide (c) models
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models are recommended since they do not give false expec-

tations like over-performing models. Figure 6b is a volcano 

plot of the error metrics with a superimposed multiple t-test 

analysis results table. The table arranges the t-ratios in order 

of descending magnitude and reports the q value for each. 

The q-value is the p-value which has been adjusted for the 

proportion of false positives called the false discovery rate 

(FDR), which usually escape detection by the p-value. The 

negative logarithm of the q-values gives the most significant 

error metrics for model performance evaluation as MAE, 

MSE, Pearson’s Chi-Squared measure and RMSE in that 

order, and the least significant of all measures as the  R2 

metric (Fig. 5e). Several researches are in agreement with 

our findings that the ANN approach is a better modeling 

approach in terms of prediction capability than RSM (Pilk-

ington et al. 2014; Patel and Brahmbhatt. 2016; Karri et al. 

2018). The major advantage that ANN has over RSM as a 

prediction modeling tool is its overwhelming ability to han-

dle non-linear situations between response and independent 

variables (Patel and Brahmbhatt 2016). The almost-always 

limitation of RSM to quadratic models makes ANN a better 

modeling approach. If the cubic model is suggested for an 

RSM, then it would be a better modeling and optimization 

tool than ANN or just as good (Sampaio et al. 2017).

Statistical Optimization of Bioprocess Conditions 
for Maximum Glycolipopeptide Concentration

The result of the statistical optimization of process condi-

tions for maximum glycolipopeptide as goal is presented 

in Fig. 7a. The figure shows that biomass  (Y1) and glycoli-

popeptide  (Y2) concentrations of 25.30 g/L and 107.19 g/L 

Table 5  Summary of RSM and ANN experimental and predicted responses for biomass and glycolipopeptide

X1, temperature (°C); X2, pH; X3, agitation (rpm); X4, duration (h), RSM, response surface methodology; ANN, artificial neural network

S/N Input variables Biomass concentration (Y1) Glycolipopeptide concentration (Y2)

X1 (°C) X2 X3 (rpm) X4 (h) EXP. values RSM model ANN model EXP. values RSM model ANN model

1 32 7.6 130 66 25.33 25.32 25.31 108.29 114.40 108.33

2 32 6.4 130 78 16.84 16.76 16.84 61.88 65.56 61.89

3 28 6.4 170 66 25.85 25.85 25.83 76.97 76.97 76.95

4 26 7 150 72 25.11 25.11 25.11 95.86 95.86 95.84

5 34 7 150 72 15.86 15.85 15.95 78.87 78.87 79.44

6 28 6.4 130 78 23.63 23.63 23.63 65.97 65.97 65.96

7 30 7 150 72 25.22 25.44 25.68 84.78 82.94 83.15

8 28 6.4 170 78 23.63 23.34 23.61 69.19 71.21 69.16

9 32 6.4 130 66 17.05 17.05 17.06 79.89 79.28 79.86

10 28 7.6 130 66 27.02 27.02 27.02 117.18 117.2 120.06

11 30 7 150 60 24.89 24.89 25.44 85.46 90.18 85.47

12 30 7 150 72 25.14 25.44 25.68 84.99 82.94 83.15

13 30 7 150 72 25.91 25.44 25.68 82.94 82.94 83.15

14 28 6.4 130 66 25.22 25.17 25.22 96.47 96.47 96.44

15 30 8.2 150 72 27.88 27.88 28.03 109.05 111.27 109.14

16 28 7.6 130 78 27.37 27.37 27.35 81.89 81.89 81.88

17 30 7 150 72 24.91 25.44 25.68 82.94 82.94 83.15

18 30 7 150 84 23.03 22.74 23.03 50.87 50.87 50.88

19 30 5.8 150 72 16.29 16.29 16.30 66.12 64.62 65.80

20 32 6.4 170 78 15.72 15.71 15.72 64.02 64.02 62.76

21 32 7.6 170 66 24.89 24.88 24.90 86.92 86.92 86.94

22 30 7 150 72 24.98 25.44 25.68 82.48 82.94 83.15

23 32 7.6 170 78 24.23 24.45 24.24 90.16 90.16 90.15

24 28 7.6 170 78 26.87 26.87 26.67 87.03 87.03 87.04

25 32 7.6 130 78 25.06 25.06 25.04 82.27 82.28 82.27

26 30 7 190 72 25.31 25.44 24.82 76.27 76.27 81.65

27 28 7.6 170 66 27.78 26.39 27.78 98.01 98.01 100.32

28 30 7 150 72 25.43 25.44 25.68 81.57 82.94 83.15

29 32 6.4 170 66 16.48 16.02 15.97 59.37 59.37 59.33

30 30 7 110 72 26.86 26.85 26.83 93.67 97.61 93.66
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Fig. 5  Regression plots showing performances of RSM models a, b for biomass and glycolipopeptide respectively; ANN models c, d for bio-

mass and glycolipopeptide respectively; comparative linear regression of RSM and ANN models (e)
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respectively were obtained at  (X1,  X2,  X3,  X4) = (1, 1, − 1, 

− 1), corresponding to actual values of temperature-32 °C, 

pH-7.6, agitation-130  rpm and fermentation time-66 h, 

with a production yield,  Yp/x of 4.24. The desirability plot 

is given as Fig. 6b and revealed a desirability function of 

0.872. Desirability is an objective function whose value 

ranges from zero to one. The closer the function is to 1, 

the more reliable the results of the optimization process. To 

obtain a single desirability function in a production study 

such as this, where more than one goal could be involved, 

the desirable functions of the individual goals are frequently 

combined into one desirable function.

Validation of Suggested Optimum Fermentation 
Conditions

Experiments to validate the optimum predictor levels sug-

gested in Sect. 3.2, returned a glycolipopeptide concentra-

tion of 108.54 g/L and a biomass concentration of 25.49 g/L 

which gave a product yield,  Yp/x of 4.26. By comparing, 

especially the glycolipopeptide concentration of 107.19 g/L 

given by the response optimizer with that obtained in the 

validation experiment, the difference between them was 

not up to 1%. Therefore, it was concluded that the optimum 

level settings for the bioprocess conditions required to max-

imize glycolipopeptide production by the bacterium were 

adequate.

Antimicrobial Activities of Glycolipopeptide 
Compound

The glycolipopeptide exhibited a dose-dependent inhibition 

of Streptococcus mutans, Escherichia coli, Proteus vulgaris, 

Candida albicans, Fusarium oxysporum and Aspergillus 

fumigatus. However, the metabolite did not inhibit Bacillus 

cereus and Cryptoccocus neoformans at any of the tested 

concentrations. Table 6 presents the MICs of the peptide 

compound. Proteus vulgaris was most inhibited by the com-

pound with an MIC of 8.125 µg/mL. The mold and yeast 

organisms had large MICs of 130 µg/mL, suggesting that 

larger concentrations of the compound could be required to 

disrupt fungal functions. Not even the powerful lipopeptide 

biosurfactant, surfactin could inhibit Cryptococcus neofor-

mans CAB1034 at 260 µg/mL by the disk diffusion assay 

(Nicolo et al. 2017). It is expected that a fully-purified com-

pound will have a better activity than what is presented in 

this study. Inhibition of Fusarium oxysporum by the gly-

colipopeptide could be exploited in plant-pathogen con-

trol as the mold is noted for wrinkling of fluted-pumpkin 

leaves; a foremost edible leaf in the West-African region, 

especially South-South Nigeria. The MIC of 8.125 µg/

mL of the partially-purified compound is informative and 

points to its potency in the control of Proteus vulgaris asso-

ciated diseases with a fully-purified product. Reports on 

Fig. 6  Comparison of ANN 

and RSM models for glycoli-

popeptide production using a 

bar charts of a multiple t-test 

of model error metrics and 

b volcano plot of q values 

against individual error metric 

difference. The inserted table 

presents the magnitude of q 

values, with the encircled ones 

recommended as more reliable 

comparison error metrics
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microbial production of glycolipopeptides are few (Thavasi 

et al. 2011a; Karlapudi et al. 2020; Hippolyte et al. 2018), 

and even fewer address biological activity potentials. Kiran 

et al. (2009) reported a similar broad spectrum antimicro-

bial potential of a glycolipoprotein produced from a sponge-

associated marine fungus Aspergillus ustus strain MSF3. 

Both Karlapudi et al. (2020) and Hippolyte et al. (2018) 

used the agar well diffusion method as against the broth 

microdilution method adopted in this study and so the MIC 

results could not be corroborated. However, all four reports 

have confirmed the antimicrobial activity of their various 

glycolipopeptides.

Fig. 7  Optimal factor settings for glycolipopeptide production (a) and desirability function plot (b) to evaluate the reliability of suggested opti-

mal factor settings

Table 6  Minimum inhibitory concentrations (MIC) of glycolipopep-

tide to microorganisms by broth microdilution method

S/N Microorganism MIC (µg/mL)

1 Streptococcus mutans UCCM 0047 65

2 Bacillus cereus UCCM 0007 Not inhibited

3 Escherichia coli ATCC 10,536 16.25

4 Proteus vulgaris ATCC 27,973 8.125

5 Candida albicans ATCC 10,231 130

6 Cryptococcus neoformans CAB1034 Not inhibited

7 Fusarium oxysporum UCCM 0077 16.25

8 Aspergillus fumigatus UCCM 0052 130
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Anti-biofilm Activities of the Partially-Purified 
Fraction of Glycolipopeptide

Result of the anti-biofilm activity of the glycolipopeptide 

metabolite is presented as Fig. 8 and showed a dose-depend-

ent inhibitory activity of the compound. Percent inhibition 

of biofilm formation was found to be directly proportional to 

concentration of bioactive compound. However, degrees of 

bio-film inhibition varied with respect to test microorganism 

that formed it suggesting that biofilms are chemically and 

physically diverse as they are biologically complex. A two-

way ANOVA revealed that the interaction effects between 

test compound concentration and bacterial type was signifi-

cant, F (2.982, 11.93) = 24.68, P < 0.0001, with a Geisser 

Greenhouse epsilon correction value for assumption of no 

sphericity of 0.497. Figure 8 clearly shows that Escherichia 

coli and Candida dubliniensis were the most susceptible 

biofilms to glycolipopeptide treatment. Concentrations as 

low as 45 µg/mL could inhibit formation of their respective 

biofilms by 38.4% and 30.5% within 24 h while 180 µg/mL 

resulted in 83.7% and 90.6% inhibitions respectively. Kar-

lapudi et al. (2020) reported a biofilm inhibition of 82.5% 

in methicillin-resistant strain of Staphylococcus aureus at 

500 µg/mL of glycolipoprotein compound from Acinetobac-

ter indicus strain M6.

Anti-cancer Activities of the Partially-Purified 
Fraction of Glycolipopeptide

Certain types of glycoproteins are reported to be overex-

pressed during cancers and have therefore been targets for 

vaccine development. Lipid-tailed glycoproteins (glyco-

lipo-peptides) have been developed as a higher ordered 

structure of those vaccines with higher specificity towards 

cancer cells and more protection for healthy cells (McDon-

ald et al. 2015). Discovery of naturally-occurring anti-cancer 

glycolipopeptides from microorganisms could be a major 

breakthrough in cancer research. Glycolipopeptides’ cyto-

toxic activity is reported to proceed through activation of a 

complement-dependent lysis of MCF-7 breast cancer cells. 

In the present study, the partially-purified glycolipopeptide 

compound exhibited a dose-dependent inhibition of cancer 

cell proliferation. Details of the result are presented as Fig. 9. 

The sigmoidal non-linear regression with least squares 

fit gave half maximal inhibitory concentration (IC50) of 

6.025 ± 0.053 (65.12 µg glycolipopeptide/mL) to MCF-7 

cell line (Fig. 9a), 4.039 ± 0.052 (16.44 µg/mL) to HeLa cell 
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line (Fig. 9b) and 8.439 ± 1.811 (347.05 µg/mL) to HL-60 

cell line (Fig. 9c). The plot for HL-60 cell line (Fig. 9c) was 

not sigmoidal and the model showed significant lack-of-fit 

(F = 3.571, P = 0.0203) suggesting inadequacy to explain 

data variations about the region of experimentation. The 

glycolipopeptide is therefore not suitable for treatment of 

leukemia cell lines (at least not in its partially-purified state). 

The non-significant lack-of-fit of the non-linear regression 

sigmoidal models for cytotoxic effect of glycolipopeptide 

on MCF-7 and HeLa cell lines (F = 1.525, P = 0.2316, 

 R2 = 0.9947; F = 2.313, P = 0.1204,  R2 = 0.9955) suggested 

model adequacy for explanation of variations about the data. 

The peptide compound demonstrated selective inhibition by 

its very large IC50 (> 665.6 µg/mL) on the per cent viabil-

ity of normal non-tumor human embryonic cell line (HEK 

283T). Rhamnolipid biosurfactants have been reported to 

demonstrate lower IC50 values of 6.24 and 50 µg/mL against 

MCF-7 (Thanomsub et al. 2007). This could be due to dif-

ferences in chemical composition of the compound but most 

importantly on the level of purification of the compound 

since impure compound contains lower amount of the active 

compound than their pure counterparts (Sivapathasekaran 

et al. 2010a, b). Purification and characterization of the gly-

colipopeptide in this study is currently under intense inves-

tigation in our laboratory.

Re-evaluation of Surface Activities of Pseudomonas 
aeruginosa IKW1 Glycolipopeptide

The results of surface tension reduction showed no signifi-

cant deviation from that previously reported by these authors 

(Ekpenyong et al. 2016). The glycolipopeptide still reduced 

Plate 1  Surface activities of glycolipopeptide: oil displacement activ-

ity (a) of glycolipopeptide (i) from Pseudomonas aeruginosa strain 

IKW1, lipopeptide (ii) from Bacillus cereus UCCM 0007 and sodium 

dodecyl sulfate (SDS—iii) against control (iv); emulsification activ-

ity in kerosene (b) of glycolipopeptide (i), lipopeptide (ii) and sodium 

dodecyl sulfate (iii); and emulsification activity in palm oil (c) of 

lipopeptide (i) and glycolipopeptide (ii)
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the tensional force on the surface of fermentation medium 

from 71.88 to 24.61 dynes/cm at 28 ± 2 °C. This indicated 

that there was no significant difference (P > 0.05) in sur-

factant effectiveness between the data obtained in the current 

study and those from previous studies. Similarly, glycolipo-

peptide efficiency did not show any significant difference 

(P > 0.05) between its current critical micelle concentration 

of 20.69 mg/mL and the 20.8 mg/mL previously reported.

Plate 1a, ba and bb depict oil displacement and emulsifi-

cation activities of the surface-active compound respectively. 

There was significant (P < 0.05) increment in oil displace-

ment activity of the glycolipopeptide compound suggesting 

increase in the concentration of glycolipopeptide molecules 

obtained in this study. This activity has been reported to have 

a near-perfect linear relationship with surfactant concentra-

tion and is very frequently used as an indirect measurement 

of surface-active agent concentration (Morikawa et al. 2000). 

Emulsification indices (E24) significantly increased from an 

earlier reported 81.26% (Ekpenyong et al. 2017a) to 88.8% 

in kerosene (Plate 1ba) and from 82.87% (Ekpenyong et al. 

2017b) to 92.57% in palm oil (Plate 1bb) at 30 °C.

Conclusion

Response surface methodology and neural network methods 

were compared in terms of their predictive modeling capa-

bilities. Neural network approach showed superior predic-

tive abilities by reason of its better MAE, MSE, Pearson’s 

χ2 measure and RMSE using the q-value of a volcano plot 

of multiple t-test analysis. The tendency to under-predict 

was found to reside in both techniques as evidenced in the 

frequency and magnitude of outliers which form the basis 

for large MSE values and detected by MPE. This suggests 

that both modeling approaches are good and reliable. The 

response optimizer suggested predictor variables at their 

optimum settings of  (X1,  X2,  X3,  X4) = (1, 1, − 1, − 1), 

which corresponded to actual values of temperature-32 °C, 

pH-7.6, agitation-130 rpm and fermentation time-66 h, with 

a production yield,  Yp/x of 4.24, at a desirability function of 

0.872. Validation of these conditions gave a glycolipopeptide 

concentration of 108.54 g/L and a biomass concentration of 

25.49 g/L which resulted in a specific product yield,  Yp/x 

of 4.26 g/g/DCW/h. The glycolipopeptide demonstrated 

commendable antimicrobial, anti-biofilm and anticancer 

activities especially against MCF-7 and HeLa cell lines. The 

compound is recommended for further studies in terms of 

purification, characterization and pilot-scale production for 

applications in treatment of chronic candidiasis by Candida 

dubliniensis and vaccine development for immunotherapy 

of breast and cervical cancers.
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