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ABSTRACT

Prediction of RNA secondary structure is a fundamental problem in computational structural biology. For several decades, free
energy minimization has been the most popular method for prediction from a single sequence. In recent years, the McCaskill
algorithm for computation of partition function and base-pair probabilities has become increasingly appreciated. This paradigm-
shifting work has inspired the developments of extended partition function algorithms, statistical sampling and clustering, and
application of Bayesian statistical inference. The performance of thermodynamics-based methods is limited by thermodynamic rules
and parameters. However, further improvements may come from statistical estimates derived from structural databases for thermo-
dynamics parameters with weak or little experimental data. The Bayesian inference approach appears to be promising in this context.
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INTRODUCTION

RNA molecules are involved in some of the cell’s most funda-
mental processes that include catalysis, pre-mRNA splicing
and RNA editing, and regulation of transcription and transla-
tion. To a large degree, the function of a regulatory RNA mol-
ecule is determined by its structure. Computational methods
for modeling RNA secondary structure provide useful initial
models for solving the tertiary structure by crystallography or
nuclear magnetic resonance (NMR). The problem of compu-
tational prediction of secondary structure for a single RNA
sequence dates back to the early 1970s (Tinoco et al. 1971).
Free energy minimization has been the most popular method
for such prediction. A review of the developments of this
paradigm for RNA folding can be found elsewhere (Zuker
2000). The partition function approach by McCaskill enables
rigorous computation of base-pair probabilities and heat capa-
city (McCaskill 1990). In recent years, there has been increas-
ing interest in ensemble-base approaches that extend the
pioneering work of McCaskill. This review is focused on dis-
cussing these recent developments. The Bayesian statistical
inference approach has proven to be highly valuable for
numerous computational biology problems. A Bayesian frame-
work is outlined for tackling the problem of statistical esti-
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mation of thermodynamic parameters using RNA structure
databases. Here the single sequence problem is the primary
concern. Reviews of methods based on covariation anal-
ysis of homologous RNAs can be found elsewhere (Zuker
2000; Gardner and Giegerich 2004).

FREE ENERGY MINIMIZATION PARADIGM

In structural computational biology, free energy minimiza-
tion for prediction of macromolecular folding is a long-
established paradigm. It assumes that, at equilibrium, the
solution to the underlying molecular folding problem is
unique, and that the molecule folds into the lowest energy
state. Also implicitly assumed is that the free energies of
individual structural motifs are additive. This paradigm has
been the foundation for prediction of RNA secondary
structure for over three decades (Tinoco et al. 1971; Nussi-
nov and Jacobson 1980; Zuker and Stiegler 1981; Mathews
et al. 1999, 2004). Other applications include protein
folding (Anfinsen 1973; Abagyan 1993) and transmem-
brane helix packing (Pappu et al. 1999). For RNA secondary
structure prediction, free energy parameters for basic struc-
tural motifs are estimated or extrapolated from chemical
melting experiments (Xia et al. 1998; Mathews et al. 1999,
2004). The discrete optimization problem is ill conditioned,
in that the prediction is sensitive to small changes in the
energy parameters (Zuker 2000; Layton and Bundschuh
2005). Furthermore, there is substantial uncertainty in the
energy parameters, particularly for loops. For these reasons,
efficient algorithms have been developed for not only
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TABLE 1. RNA folding programs based on free energy minimization

Name Functions® URL

mfold Folding of single and interacting nucleic acids http://www.bioinfo.rpi.edu/applications/mfold
RNAstructure Window software for RNA folding and oligo design http://rna.urmc.rochester.edu/rnastructure.html
Vienna RNA package Optimal and complete suboptimal folding http://www.tbi.univie.ac.at/~ivo/RNA

RNAshapes Abstract shape representation of Vienna suboptimal foldings  http://bibiserv.techfak.uni-bielefeld.de/rnashapes
pknotsRG Folding including a class of simple pseudoknots http://bibiserv.techfak.uni-bielefeld.de/pknotsrg
PKNOTS Folding including a class of pseudoknots http://selab.wustl.edu/cgi-bin/selab.pl?mode=software
RNALOSS Locally optimal folding http://clavius.bc.edu/~clotelab/RNALOSS

“Only directly relevant functions are listed.

computing the minimum free energy (MFE) structure, but
also for generating a heuristic set of suboptimal structures
(Zuker and Stiegler 1981; Mathews et al. 1999, 2004). An
alternative approach computes all suboptimal foldings
within an energy increment above the MFE (Wuchty et al.
1999). The exponential growth in the number of these fold-
ings motivated recent development of the RNAshapes
method for the efficient representation of the near-optimal
foldings (Giegerich et al. 2004). The complete suboptimal
approach addresses the low-energy end of the unweighted
energy landscape. Neither approach guarantees an unbiased
representation of the Boltzmann-weighted ensemble. The
free energy minimization algorithm (Zuker and Stiegler
1981) and the algorithm for computing suboptimal struc-
tures (Wuchty et al. 1999) have been extended for two or
more interacting RNAs (Andronescu et al. 2005). For the
simple Nussinov—Jacobson energy model of constant base-
pair energies (Nussinov and Jacobson 1980), an efficient
algorithm has been developed for computation of the num-
ber of structures with k fewer base pairs than the maximum
number (Clote 2005). Free energy minimization algorithms
have also been developed to include certain types of pseu-
doknots (Rivas and Eddy 1999; Reeder and Giegerich 2004),
but applications are limited to short or moderate-length
sequences, depending on the time complexity and the mem-
ory requirement of the particular algorithm. A list of the
programs for implementing these algorithms is presented by
Table 1.

PARTITION FUNCTION APPROACH

In a drastic departure from free energy minimization, the
partition function approach pioneered by McCaskill (1990)
laid the foundation for statistical characterizations of the
equilibrium ensemble of RNA secondary structures. In par-
ticular, base-pair probabilities can be calculated. Similar to
its MFE counterpart, the algorithm for computing partition
function and base-pair probabilities is cubic and requires
quadratic storage. The significance of base-pair probabil-
ities has been further demonstrated in two recent studies.
For base pairs in the MFE structure, those with higher
probabilities have higher predictive accuracy measured by
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positive predictive value (Mathews 2004). The positive pre-
dictive value is the percentage of base pairs in the predicted
structure that are in the structure determined by compara-
tive sequence analysis. Thus, base-pair probabilities provide
measures of confidence for MFE predictions. That study
was based on a new partition function algorithm that accom-
modates coaxial stacking and more recent energy parameters.
Furthermore, base-pair probabilities are found to be less af-
fected by uncertainties in energy parameters than is the MFE
structure (Layton and Bundschuh 2005). The McCaskill
algorithm has also been extended to include a class of pseu-
doknots (Dirks and Pierce 2003, 2004). Like the partition
function, the mean and variance (and any moments in gen-
eral) of the Boltzmann-weighted free energy distribution can
be calculated, and these ensemble characteristics are report-
ed to be useful for distinguishing biological sequences from
random sequences (Miklos et al. 2005). A partition function
algorithm for k-point mutants of an RNA sequence has
recently been described (Clote et al. 2005). For modeling the
hybridization of two nucleic acid molecules, the Zuker group
was the first to compute partition function and base-pair
probabilities (Dimitrov and Zuker 2004). These develop-
ments are indicative of the recent surge in interest in the
ensemble-based approaches. Table 2 presents a list of pro-
grams for implementing the partition function algorithms
and the extensions below with comprehensive Turner free
energy parameters.

STATISTICAL SAMPLING APPROACH

In the traceback step of an RNA folding algorithm, base
pairs are generated one at a time according a chosen prin-
ciple (e.g., energy minimization or probabilistic sampling as
discussed below) to form a secondary structure. The long-
standing problem of a statistical representation of probable
foldings can be addressed by a sampling extension of the
partition function approach (Ding and Lawrence 2003). In
the traceback step, the conditional probabilities computed
with partition functions are used to sample a new base pair
or unpaired base(s), given partially formed structure. Thus,
the essence of the sampling algorithm is stochastic trace-
back. This algorithm generates a sample of secondary struc-
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TABLE 2. RNA folding programs for characterizing Boltzmann ensemble of RNA secondary structures, using comprehensive Turner free energy

parameters
Name Functions® URL
Sfold Statistical sampling and clustering, and http://sfold.wadsworth.org;

rational design of nucleic acids http://www.bioinfo.rpi.edu/applications/sfold
RNAstructure Partition function and base-pair probabilities http://rna.urmc.rochester.edu/rnastructure.html
Vienna RNA package Partition function and base-pair probabilities http://www.tbi.univie.ac.at/~ivo/RNA
NUPACK Partition function and base-pair http://www.acm.caltech.edu/~niles/software.html

probabilities including a class of pseudoknots

“Only directly relevant functions are listed.

tures in proportion to their Boltzmann weights, guarantee-
ing a statistical representation of the Boltzmann-weighted
ensemble.

A statistical sample of the ensemble allows sampling
estimates of the probabilities of any structural motifs,
from the simplest elements of base pair and unpaired base,
to loops of various types, to more complex structures con-
sisting of stems and loops that may be of special interest
in a given application. In particular, probability profiling
of single-stranded regions in RNA secondary structure is
directly applicable to the rational design of mRNA-tar-
geting nucleic acids (Ding and Lawrence 2001, 2003, 2005;
Ding 2002; Ding et al. 2004). The Boltzmann-weighted
density of states (BWDOS) (Ding and Lawrence 2003) char-
acterizes the weighted energy landscape, whereas a density-
of-states algorithm (Cupal et al. 1997), applicable only to
short sequences, describes the unweighted landscape. A struc-
ture sample can also be used for computation of other char-
acteristics of the Boltzmann ensemble. For example, the
mean and the variance of the free energy distribution can be
estimated by a sample, whereas exact calculations require
laborious algorithm development (Miklos et al. 2005). In
principle, a sampling extension can also be developed for a
partition function algorithm including pseudoknots. In this
case, base-pair probabilities can be estimated by a sample,
and the estimates should closely approximate those com-
puted by a high-order algorithm (Dirks and Pierce 2004).

A sample of moderate size drawn from the ensemble of
an enormous number of possible structures is sufficient to
guarantee statistical reproducibility in the estimates of typi-
cal sampling statistics. The reproducibility is best demon-
strated when two independent samples do not have a single
structure in common (Ding and Lawrence 2003). These
seemingly surprising observations are fully expected for an
exact sampling algorithm.

In a recent study on both structural RNAs and mRNAs
(D. Mathews, pers. comm.), base-pair probabilities esti-
mated by the following three methods were compared
to those computed by the partition function approach
(McCaskill 1990; Mathews 2004): (1) the heuristic set of
suboptimal foldings from the mfold program (Zuker 1989),
(2) the complete suboptimal foldings (Wuchty et al. 1999),

and (3) statistical sampling (Ding and Lawrence 2003). The
same thermodynamic parameters and energy functions
(Mathews et al. 2004) are used in implementing all these
methods. These three methods generate different sets of
structures, while the partition function approach does not
generate a single structure. However, the partition function
method does offer exact base-pair probabilities for the
Boltzmann ensemble. Thus, to assess how well a set of struc-
tures represents the Boltzmann ensemble, the estimates of the
base-pair probabilities using this set can be compared with
the exact probabilities.

It was found from this study that the sampling method
makes far better estimates than do the other two methods.
In particular, a small sample of only 100 structures per-
forms far better than does a complete set of suboptimal
structures within 2 kT of the lowest free energy structure.
The improvement by sampling is over an order of magni-
tude, as measured by the square root of the mean square
deviation (RMSD). The major reason for this result is that,
for sequences of several hundred bases or longer, the near-
optimal foldings constitute only a small portion of the
Boltzmann ensemble. This is illustrated in Figure 1 for
an RNase P sequence; there is little overlap between the
BWDOS for a sample of 1000 structures and the un-
weighted density of states for the 1000 structures with
the lowest energies. Another reason for the above result is
that there exist “entropic clusters” in the ensemble (Ding
and Lawrence 2003). In such a cluster, each structure has a
much higher energy (lower probability) than does the MFE;
however, the cluster will be represented in a sample simply
as a result of the sheer huge number of structures in the
cluster, so that the cluster has a substantial probability (sum
of probabilities of individual structures in the cluster).

CLUSTER REPRESENTATION OF BOLTZMANN
ENSEMBLE

In the sampled ensemble, distinct structural clusters were
observed (Ding and Lawrence 2003). This observation sug-
gests that the Boltzmann ensemble can be efficiently repre-
sented by clusters. An automated clustering procedure and
tools have recently been developed for this purpose (Chan
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ter centroid make structural predictions
that are substantially improved over the
MFE predictions (Ding et al. 2005), a
result that further validates ensemble-
based approaches.

In a recent comparison between
mRNAs and structural RNAs (Y. Ding,
C.Y. Chan, and C.E. Lawrence, in prep.),
similarity was observed for the number of
clusters and the energy gap between the
MEFE structure and the sampled ensemble.
However, for structural RNAs, there are
more high-frequency base pairs in both
the Boltzmann ensemble and the clusters,
and the clusters are more compact. Thus,

7y clustering provides a new method for
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s detecting differences between structural
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biological RNA sequences and random
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comparative analysis
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FIGURE 1. The energy distribution of the 1000 lowest energy structures (gray bars, i.e., the
partial density of states for free energy below —133.90 kcal/mol, 1.9 kcal/mol above the MFE)
and the energy distribution of 1000 sampled structures (black bars, i.e., the density of states
of the weighted ensemble) for Heliobacterium chlorum RNase P RNA of 342 nt in length
(GenBank accession U64881). The structure determined by comparative analysis is from the
RNase P database (Brown 1999) and does not contain pseudoknotted base pairs. For a
comparison based on the same implementation of the thermodynamic rules, all other
structures here and the free energies of all the structures were computed with the Vienna

sequences (Y. Ding, C.Y. Chan, and C.E.
Lawrence, in prep.).

BAYESIAN STATISTICAL INFERENCE
APPROACH

Since the early 1990s, Bayesian methods
have been applied to a wide range of
problems in the burgeoning fields of

package (Hofacker 2003).

et al. 2005; Ding et al. 2005; Y. Ding, C.Y. Chan, and C.E.
Lawrence, in prep.). The procedure returns three to four
clusters on average. Another advantage of clustering is that
the centroid structure, as the single best representative of
the cluster, can be easily identified with little computational
cost. The centroid of any set of structures is defined as the
structure in the whole ensemble that has the shortest total
distance to structures in the set. For the base-pair distance
between two structures, the centroid is simply the structure
formed by all base pairs having a frequency >0.5 in the struc-
ture set (Ding et al. 2005). The clusters together with their
probabilities (estimated by frequencies in
the sample), and their centroids, present
a complete and efficient statistical char-
acterization of the Boltzmann ensem-
ble (Fig. 2). Similar to the reproduci-
bility of ensemble-level sampling statis-
tics (Ding and Lawrence 2003), the clus-
ters and centroids are also statistically re-

N
N

Beltzmann ensemble of

RNA secondary structures

bioinformatics and genomics. The Baye-

sian Revolution (Beaumont and Rannala
2004; Eddy 2004) can be partly credited to the conceptual
simplicity of the Bayesian approach (as opposed to the
difficulties of the classic, frequentist approach; Gelman et
al. 1997) and partly to advances in computing power.

Bayesian inference paradigm

Bayesian inference methods treat all quantities in a problem
as random variables. A Bayesian method starts with the
specification of a joint distribution of all quantities of
interest. Basic probability rules are applied to derive the

Sampling

producible from one sample to another,
even when the two independent samples
do not share a single structure (Y. Ding,

C.Y. Chan, and C.E. Lawrence, in prep.). It
was a surprising finding that the centroid
of the sampled ensemble and the best clus-
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FIGURE 2. Efficient representation of the Boltzmann ensemble of secondary structures for an
RNA molecule by clusters identified from a statistically representative sample of structures. The
size or probability of a cluster is estimated by the frequency of occurrence of the cluster in the
sample, and a representative of the cluster is its centroid structure (Ding et al. 2005).
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posterior distributions of the unknown quantities, given the
observed data. Inferential statements are made rigorously
from these posterior distributions (Gelman et al. 1997).
While these posterior distributions are usually easy to write
down, they require intensive computations that have become
feasible only with advancing computational power. The Baye-
sian method has been successfully used in regulatory motif
search (Lawrence et al. 1993; Thompson et al. 2003), sequence
alignment (Zhu et al. 1998), and sequence segmentation (Liu
and Lawrence 1999), and it has the potential to provide a
powerful solution to the general problem of missing data in
the analysis of biopolymer sequences (Liu and Lawrence
1999). Excellent textbooks on Bayesian analysis are available
(Berger 1985; Gelman et al. 1997; Carlin and Louis 2000; Liu
2001; Jaynes 2003). The motivation for and the framework of
the Bayesian methodology are outlined below.

The focus of all statistics is on making inferences. The
concept of statistical inference closely follows the dictionary
definition of inference: “the process of deriving a conclu-
sion from fact and/or premise”. In statistics the facts are the
observed data, the premise is represented by a probabilistic
model of the system of interest, and the conclusions con-
cern unobserved quantities. In classical statistics, inferences
are made by finding point estimates of unknown variables,
with maximum likelihood estimates being the most com-
mon type of estimates. Uncertainty is addressed by setting
confidence limits on these estimates. Bayesian statistics has
a more ambitious goal: to find the probability distribution
of all unknown variables after considering the data. The full
process of a typical Bayesian analysis can be described as
consisting of three main steps: (1) setting up a full prob-
ability model that includes all of the variables, so as to cap-
ture the relationships among these variables; (2) summariz-
ing the findings for particular quantities of interest, by
appropriate posterior distributions; and (3) evaluating the
appropriateness of the model and suggesting improvements
(Gelman et al. 1997).

A standard procedure for carrying out Step 1 is to first
write down the likelihood function, i.e., the probability of the
observed data given the unknowns, and multiply it by
a prior distribution, i.e., a distribution for all of the un-
observed variables (typically, unknown parameters). Let y
denote the observed data, and 6, the unobserved parameter.
The joint probability distribution is represented as joint =
likelihood * prior, i.e.,

p(0,y) = p(y | O)p(0)

where the prior distribution on 6, p(0), reveals what is
known about the parameter without the knowledge of the
data; p(y | 0) is often denoted as /(6 | y), and is referred to
as the likelihood in classical statistics that is based on a
model of the underlying process.

Bayesian inference is drawn by examination of the prob-
ability of all possible values of the parameter, after consid-

eration of the data. Accordingly, Step 2 is completed by
obtaining the posterior distribution, i.e., the conditional dis-
tribution of the parameter, given the data, through the ap-
plication of Bayes’s Theorem to the joint distribution:

p(0,y) _p(y|0)p(0)
P() p()

POy = cp(y|0)p(0)

where the posterior distribution p(8 | y) tells us what is
known about 0, given knowledge of the data. Thus, the
primary tasks of Bayesian analysis are to develop a model
for p(6,y) and to perform computation necessary to sum-
marize p(8 | y). The computation of the marginal likelihood
p(y) is typically the most challenging part of the Bayesian
analysis. The popular Gibbs sampler and related Monte
Carlo methods can aid Bayesian computation (Liu 2001).
Bayesian inference can not only be readily applied to any
probability model, but it can also avoid the difficulties of
asymptotic inferences for interval estimates that are en-
countered by classical statistics. It provides a satisfactory
way of explicitly introducing and keeping track of assump-
tions about prior knowledge or ignorance. When no or mi-
nimal prior information is available about the parameter,
a noninformative prior can be considered in the application
of the Bayesian machinery for making inferences. Typically,
a uniform density giving equal weight to all possible values of
the parameter is used for this purpose. For a continuous
parameter defined on an infinite interval, the uniform density
is referred to as an improper prior because it does not inte-
grate to 1. Use of an improper prior can lead to a proper
posterior distribution, but caution must be exercised in in-
terpretation of the results (Gelman et al. 1997). In this case,
the posterior mode is the maximum likelihood estimate,
because the posterior distribution is proportional to the
likelihood function. In many situations, noninformative
prior Bayesian inference could be argued to be the single
most powerful method of statistical analysis (Berger 1985).

Applications to RNA structure predictions

From the perspective of statistical mechanics, the secondary
structure of an RNA sequence is a random variable that
follows the Boltzmann equilibrium distribution. From a full
Bayesian viewpoint, the Boltzmann equilibrium distribu-
tion is, in fact, a conditional probability distribution, given
the RNA sequence data and the thermodynamic param-
eters (Ding and Lawrence 2003). The Bayesian inference
approach was first applied to the RNA folding problem for
a single sequence (Ding and Lawrence 1999). In this applica-
tion, the set of random variables includes the primary se-
quence data (observed), the unknown secondary structure
and number of destabilizing loops, and free energy pa-
rameters. Based on the stacking energy model and nonin-
formative priors, the Bayesian algorithm returns posterior
distributions for the number of destabilizing loops, stacking
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energy matrices, and secondary structures. In particular, the
idea of generating a statistically representative sample of
RNA secondary structures after partition function calcula-
tion was presented for the first time.

The Bayesian approach has also been applied to the
prediction of the common secondary structure for homo-
logous sequences (Knight et al. 2004). This procedure works
on a reduced structural space, by considering a set of fold-
ings based on thermodynamic predictions made by the
RNAsubopt program of the Vienna package (Hofacker
2003). Posterior inference is performed using Bayes’s The-
orem, given thermodynamic predictions, alignment (mu-
tual information) and chemical mapping information, and
under the assumptions of uniform prior for the structures
in the reduced space, and conditional independence for
data from different sources. The alternative of modeling
the full structure space, as considered for the one-sequence
problem (Ding and Lawrence 1999), appears to be much
more challenging to implement for the multiple-sequence
problem.

STATISTICAL ESTIMATION OF THERMODYNAMIC
PARAMETERS

In terms of free energy, the sampled ensemble can be much
closer to the structure determined by comparative analysis
than are the MFE structure and the near-optimal structures
(Fig. 1); nevertheless, there is much room for improvement.
If the free energy function were complete, and if all thermo-
dynamic parameters were accurate, the biological structure
could often be expected to have the lowest energy. How-
ever, the thermodynamics parameters for RNA, for which
thermodynamics is arguably best studied among macro-
molecules, are incomplete. In particular, extrapolations for
large loops are currently necessary. Thus, any free-energy-
based algorithm is limited by the parameters used.
Structure predictions might be improved through kinetic
modeling of RNA folding (Doshi et al. 2004), and through
improvements in the accuracy of the free energy model.
While the set of experimental parameters is expected to
continue to improve, an alternative is to statistically esti-
mate the parameters, by taking advantage of RNA structure
databases (Larsen and Zwieb 1991; Brown 1999; Cannone et
al. 2002; Rosenblad et al. 2003; Zwieb et al. 2003; Sprinzl
and Vassilenko 2005). This strategy was first considered by
Michael Zuker in the 1990s. In numerous presentations
(including the 2003 Computational RNA Workshop in
Benasque, Spain), Zuker described “pseudo energy rules”
for base-pair stacking and small structural motifs that are
derived by computing the ratio of the observed frequencies
over the expected frequencies from random background.
Essentially based on the same framework, the published
statistical energies for base-pair stacking are in excellent
agreement with the well-studied experimental energies
(Dima et al. 2005), suggesting the potential of such “knowl-
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edge-based” approaches to improve estimates of energies
for loops and other secondary structural motifs.

The idea of estimating energy parameters with known
structural information does follow the way a Bayesian
thinks about a problem. It has been shown that the primary
sequence data, the secondary structure, and the free energy
parameters can be described together through Bayesian
statistical modeling (Ding and Lawrence 1999). Like the
relationships among pressure, volume, and absolute tem-
perature for an ideal gas of a fixed number of moles,
inference on any variable can be made from the knowledge
of the other two variables. Analogously, databases contain-
ing secondary structural information can be used to make
inferences on the thermodynamic parameters. The accuracy
of the estimates obviously rests on the assumption that the
structural information from comparative analysis is reli-
able. For 16S and 23S ribosomal RNAs, comparative analy-
sis identifies nearly all of the base pairs present in the crystal
structures, but also predicts some base pairs that are absent
in the crystal structures (Cannone et al. 2002).

For statistical inference, independence of observations
simplifies the formulation of a probability model, in par-
ticular, the likelihood function. Correlated observations
complicate the analysis. For the problem of multiple se-
quence alignment, two methods have been proposed to
address the issue of sequence correlation (or redundancy)
due to similarity among related sequences. One approach is
to recruit diversified sequences so as to minimize correla-
tion. This approach is not objective and results in loss of
information, and automation is essential as data sets grow
(Vingron and Sibbald 1993). Another approach is to use
a sequence weighting scheme that assigns higher weights
to more distantly related sequences, based on the distance
between a sequence and an ancestral or generalized se-
quence (Luthy et al. 1994; Thompson et al. 1994); alterna-
tively it can assign weights based on the diversity observed
at each position in the alignment (Henikoff and Henikoff
1994). Conceptually, inferences for thermodynamic para-
meters can be performed for any sequence in a database or
for a set of sequences. It is advantageous to pool informa-
tion from diverse sequences, for improved accuracy in the
estimates.

The Turner parameter values can be used for prior spe-
cification, e.g., uniform priors on intervals centering at
Turner values. The prior specification is the first step of
Bayesian statistical inference. For the posterior distribution
of a parameter, a global peak is very interesting. If the peak
is near the Tuner parameter value, this indicates that the
Turner parameter is supported by the structural data used.
If the peak is away from the Turner value, this suggests that
the value can be corrected by the posterior mode. If the
posterior is flat on the interval, this may mean that there
remains substantial uncertainty about the parameter so that
a much larger data set may be necessary for an estimate with
improved accuracy. Alternatively, a flat posterior may sug-
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gest that the parameter is not important, if predictions are
not sensitive to changes in this parameter.

For the large number of free energy parameters, the high
dimensionality of the estimation problem will pose compu-
tational challenges. To reduce dimensionality, a “divide and
conquer” strategy can be considered that focuses on one
class of motifs when energies of other motifs are considered
to be reliable and thus are assumed to be known. For ex-
ample, for estimating the parameters for multibranched
loops, tRNA sequences (with the implications of modified
bases taken into consideration as further discussed below)
may be considered and it can be assumed that the energies
for base-pair stacking and small loops are known and accu-
rate. The values of the estimated energies for prediction
improvement can be assessed by the positive predictive
values and sensitivity for MFE structure and centroids
computed with these estimates. The sensitivity for a pre-
dicted structure is the percentage of base pairs in the struc-
ture determined by comparative sequence analysis that are
also present in the predicted structure.

It is well understood that modified nucleotides (Rozenski
et al. 1999) present problems for structure predictions for
tRNAs. Some of the modified nucleotides either cannot
form the correct set of hydrogen bonds or cannot stack
(D. Mathews, pers. comm.). These nucleotides can be han-
dled by forcing them to be unpaired for folding, and a list of
such nucleotides has been published (Mathews et al. 1999).
Other modified nucleotides can still form canonical pairs,
but with a high likelihood of altered strength for every
nucleotide (D. Mathews, pers. comm.). For these nucleo-
tides, their energetic contributions may also be estimated
by applying the Bayesian framework, with an appropriate
assembly of tRNA sequences that contain a particular mod-
ification of interest.

The Bayesian inference process is illustrated in Figure 3
for the simplest case of one sequence, one structure, and
one parameter. For multiple sequences and parameters, the
construction of the likelihood must take into account mul-
tiple observations (e.g., through the assumption of in-
dependence), and posterior inference can generally be
facilitated by Gibbs sampler and related Monte Carlo meth-
ods (Liu 2001). In some cases, e.g., in discrete modeling
of the base-pair stacking parameters (Ding and Lawrence
1999), the marginal likelihood can be exactly computed.

CONCLUSIONS

The paradigm-shifting work by McCaskill has inspired the
recent developments of extended partition function algo-
rithms for modeling single molecular folding and hybridi-
zation of two nucleic acid molecules, sampling extension,
and clustering representation of sampled ensemble. These
methods enable characterizations of the equilibrium struc-
ture ensemble that are not possible with the use of free
energy minimization.

Variables
R : primary RNA sequence
I : secondary structure
8 ¢ thermodynamic parameter

|

Data

(R, ) from RNA
structure databases

|

Bayesian Modeling

Prior : P(9)
Likelihood : P(R,I|8)
Joint : P(R,I,9)

|

Bayesian Inference
Posterior : P(B{ R, D)

FIGURE 3. The Bayesian inference framework for estimating a ther-
modynamic parameter, with the use of RNA structure databases. The
essence of the Bayesian viewpoint is that both the data and the
parameter are random variables. Here, the primary RNA sequence R
and the known secondary structure I are data available from RNA
structure databases, and ¥ is the unknown thermodynamic parameter.
Based on a likelihood function constructed with an appropriate model
and a prior distribution on the parameter, the joint probability dis-
tribution of all variables will allow Bayesian inference to be drawn
about the thermodynamic parameter, through the posterior distribu-
tion of ¥ given the data, i.e., P(O | R, I).

Computational solution of a macromolecular folding
problem requires two components: sufficiently complete
and accurate free energies and a procedure to find the
minimum of the energy function (Abagyan 1993). The
energy model is incomplete for RNA secondary structure.
The ensemble is important to consider even in the ideal case
of the complete energy model, because macromolecular
folding may not always be governed by the Anfinsen
hypothesis of lowest energy state (Anfinsen 1973). For
RNA, in the rugged energy landscape, it might be possible
that one of the structural clusters approximately represents
an energy well that is utilized in folding to the native
structure, while the others could be associated with kinetic
traps and metastable (misfolded) states that can be involved
in an RNA conformational switch.

In the post-genomic era, the Bayesian approach has pro-
ven to be highly useful to address uncertainties in large,
noisy biological data sets (Eddy 2004). The Bayesian infer-
ence approach appears to be well suited to the problem of
estimating thermodynamic parameters from RNA structure
databases. The application of Bayesian methods to compu-
tational RNA problems lags behind the applications of these
methods to sequence analysis and other genetic problems
(Beaumont and Rannala 2004). The potential of the highly
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flexible Bayesian framework is worthy of full exploration in
the era of RNAomics.
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